Citation: Dinesh Rangappa, Erabhoina Hari Mohan, Varma Siddhartha, Raghavan Gopalan, Tata Narasinga Rao. Preparation of LiMn2O4 Graphene Hybrid Nanostructure by Combustion Synthesis and Their Electrochemical Properties[J]. AIMS Materials Science, 2014, 1(4): 174-183. doi: 10.3934/matersci.2014.4.174
[1] | Maclean LAH, Poinsignon C, Amarilla JA, et al. (1995) Electrochemical behaviour of natural and synthetic ramsdellite. J Mater Chem 5: 1183-1189. doi: 10.1039/jm9950501183 |
[2] | Xia Y, Zhou Y, Yoshio M (1997) Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells. J Electrochem Soc 144: 2593-2600. doi: 10.1149/1.1837870 |
[3] | Tsai YW, Santhanam R, Hwang BJ, et al. (2003) Structure stabilization of LiMn2O4 cathode material by bimetal dopants. J Power Sources 119: 701. |
[4] | Jeong WT, Joo JH, Lee KS (2003) Improvement of electrode performances of spinel LiMn2O4 prepared by mechanical alloying and subsequent firing. J Power Sour 119: 690-694. |
[5] | Schalkwijk V, Scrosati WA, Eds B (2002) Advances in Lithium-ion Batteries, Kluwer Academic/Plenum Publishers, New York. |
[6] | Wang XL, Feygenson M, Aronson MC, et al. (2010) Sn/SnOx core-shell nanospheres: Synthesis, anode performance in Li-Ion batteries, and superconductivity. J Phys Chem C114: 14697-14703. |
[7] | Thackeray MM, Shao- Horn Y, Kahaian AJ, et al. (1998) Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/LixMnzO4 Cells. Electrochem Solid State lett 1: 7. |
[8] | Saitoh M, Yoshida S, Yamane H, et al. (2003) Capacity Fading of the Acid-treated Lithium Manganese Oxides in High-temperature Storage. J Power Sources 122: 162-168. doi: 10.1016/S0378-7753(03)00395-1 |
[9] | Shin Y, Manthiram A (2002) Microstrain and Capacity Fade in Spinel. Manganese Oxides. Electrochem Solid State Lett 5: A55-A58. doi: 10.1149/1.1450063 |
[10] | Taniguchi I (2005) Powder properties of partially substituted LiMxMn2-xO4 (M = Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis. Mater Chem Phys 92: 172-179. doi: 10.1016/j.matchemphys.2005.01.020 |
[11] | Jeong IS, Kim JU, Gu HB (2001) Electrochemical properties of LiMgyMn2-yO4 spinel phases for rechargeable lithium batteries. J Power Sources 102: 55-59. doi: 10.1016/S0378-7753(01)00775-3 |
[12] | Yi TF, Zhu YR, Zhu XD (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15: 779-784. doi: 10.1007/s11581-009-0373-x |
[13] | Amarilla JM, Petrov K, Pico F, et al. (2009) Sucrose-aided combus-tion synthesis of nanosized LiMn1.99·yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels. J Power Sources 191: 591-600. |
[14] | Chan HW, Duh JG, Sheen SR (2003) LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries. J Power Sources 115: 110-118. doi: 10.1016/S0378-7753(02)00616-X |
[15] | Choi HJ, Lee KM, Kim GH (2001) Mechanochemical synthesis and electrochemical properties of LiMn2O4. J Am Ceram Soc 84: 242-244. doi: 10.1111/j.1151-2916.2001.tb00642.x |
[16] | Sun YK, Oh IH, Kim KY (1997) Synthesis of Spinel LiMn2O4 by the Sol-Gel Method for a Cathode-Active Material in Lithium Secondary. Ind Eng Chem Res 36: 4839-4846. doi: 10.1021/ie970227b |
[17] | Yan H, Hnang X, Chen L (1999) J Power Source 81: 647-650. |
[18] | Ohano K, Saitou M (2003) Techinical Report. |
[19] | Du K, Zhang H (2003) Preparation and performance of spinel LiMn2O4 by a citrate route with combustion. J Alloy Compd 352: 250-254. doi: 10.1016/S0925-8388(02)01165-9 |
[20] | Fey GTK, Cho YD, Kumar TP (2006) Mater. Chem. Phys. 99: 451-415. |
[21] | Park HB, Kim J, Lee CW (2001) Synthesis of LiMn2O4 powder by auto-ignited combustion of poly(acrylic acid)-metal nitrate precursor. J Power Sources 92: 124-130. doi: 10.1016/S0378-7753(00)00512-7 |
[22] | Liu XM, Huang ZD, Oh S, et al. (2010) Sol-gel synthesis of multiwalled carbon nanotube- LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J Power Sources 195: 4290-4296. doi: 10.1016/j.jpowsour.2010.01.068 |
[23] | Paek SM, Yoo E (2009) I. Honma, Nano Lett, 9: 72-76. doi: 10.1021/nl802484w |
[24] | Bak SM, Nam KW, Lee CW, et al. (2011) Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J Mater Chem 21: 17309-17315. doi: 10.1039/c1jm13741g |
[25] | Jain SR, Adiga KC, Verneker VR (1981) A New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures. Comb Flam 40: 71-79. doi: 10.1016/0010-2180(81)90111-5 |
[26] | Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80: 1339. doi: 10.1021/ja01539a017 |
[27] | Hon YM, Lin SP, Fung KZ, et al. (2002) Synthesis and characterization of nano-LiMn2O4 powder by tartaricacid gel process. J Euro Ceram Soc 22: 653-660. doi: 10.1016/S0955-2219(01)00382-X |
[28] | Spakr ME, Novak P, Schnyder B et al. (1998) J Electrochem Soc 145: 1113. |
[29] | Thackeray MM, David WIF, Bruce PG (1983) Lithium Insertion Into Manganese Spinels. Mater Res Bull 18: 461-472. doi: 10.1016/0025-5408(83)90138-1 |
[30] | Ramana CV, Massot M, Julien CM (2005) XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf Interface Anal 37: 412-416. doi: 10.1002/sia.2022 |
[31] | Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44: 3232-3238. doi: 10.1016/j.carbon.2006.06.032 |
[32] | Geng Y, Wang SJ, Kim JK (2009) Preparation of graphite nanoplatelets and graphene sheets. J Colloids Interface Sci 336: 592-598. doi: 10.1016/j.jcis.2009.04.005 |
[33] | Veluchamy A, Ikuta H, Wakihara M (2001) Boron-substituted manganese spinel oxide cathode for lithium ion battery. Solid State Ionis 143: 161-171. doi: 10.1016/S0167-2738(01)00856-6 |
[34] | Sinha NN, Munichandraiah N (2009) The effect of particle size on performance of cathodematerials of Li-ion batteries. J Library IISc Ernet 89: 381-392. |
[35] | Wagemaker M, Kearley GJ, Van-Well AA, et al. (2003) Multiple Li positions inside oxygen octahedra in lithiated. TiO2 anatase. J Am Chem Soc 125: 840-848. doi: 10.1021/ja028165q |