Citation: Leonid A. Kaledin, Fred Tepper, Tatiana G. Kaledin. Electrokinetic aspects of water filtration by AlOOH-coated siliceous particles with nanoscale roughness[J]. AIMS Materials Science, 2017, 4(2): 470-486. doi: 10.3934/matersci.2017.2.470
[1] | Von Smoluchowski M (1921) Handbuch der Electrizität und des Magnetismus, 2: 366–428. |
[2] | Lyklema J (1991) Fundamentals of Interface and Colloid Science: Fundamentals, London: Academic Press. |
[3] | Rice CL, Whitehead P (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69: 4017–4024. doi: 10.1021/j100895a062 |
[4] | O'Brien RW, Perrins WT (1984) The electrical conductivity of a porous plug. J Colloid Interf Sci 99: 20–31. doi: 10.1016/0021-9797(84)90081-X |
[5] | Dukhin AS, Shilov V, Borkovskaya Y (1999) Dynamic electrophoretic mobility in concentrated dispersed systems. Cell model. Langmuir 15: 3452–3457. |
[6] | Borghi F, Vyas V, Podesta A, et al. (2013) Nanoscale roughness and morphology affect the isoelectric point of titania surfaces. PLoS One 8: e68655. doi: 10.1371/journal.pone.0068655 |
[7] | Kaledin LA, Tepper F, Kaledin TG (2016) Pristine point of zero charge (p.p.z.c.) and zeta potentials of boehmite's nanolayer and nanofiber surfaces. Int J Smart Nano Mater 7: 1–21. |
[8] | Ermakova L, Bogdanova N, Sidorova M, et al. (2010) Electrosurface characteristics of oxide nanolayers and nanopore membranes in electrolye solutions. In: Starov VM, Nanoscience: Colloidal and Interfacial Aspects, Boca Raton: CRC Press, Taylor & Francis group, 193–220. |
[9] | Rezwan K, Meier LP, Gauckler LJ (2005) Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: the influence of positively and negatively charged oxide surface coatings. Biomaterials 26: 4351–4357. doi: 10.1016/j.biomaterials.2004.11.017 |
[10] | Cohen RR, Radke CJ (1991) Streaming potentials of nonuniformly charged surfaces. J Colloid Interf Sci 141: 338–347. doi: 10.1016/0021-9797(91)90330-B |
[11] | Cohen RR (1987) Equilibrium and dynamic properties of the charged aqueous/clay interface [PhD thesis]. University of California. |
[12] | Li D (2004) Electrokinetics in microfluidics, Amsterdam: Elsevier. |
[13] | Erickson D, Li D (2002) Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir 18: 8949–8959. doi: 10.1021/la025942r |
[14] | Erickson D, Li D (2001) Streaming potential and streaming current methods for characterizing heterogeneous solid surfaces. J Colloid Interf Sci 237: 283–289. doi: 10.1006/jcis.2001.7476 |
[15] | Derjaguin BV, Landau L (1941) Theory of stability of strongly charged lyophobic sols of the adhesion of strongly charge particles in solution electrolytes (in russian). Acta Physicochim USSR 14: 633–662. |
[16] | Verwey EJ, Overbeek JTG (1948) Theory of the Stability of Lyophobic Colloids, Amsterdam: Elsevier. |
[17] | Hoek EMV, Agarwal GK (2006) Extended DLVO interactions between spherical particles and rough surfaces. J Colloid Interf Sci 298: 50–58 doi: 10.1016/j.jcis.2005.12.031 |
[18] | Duval JFL, Leermakers FAM, van Leeuwen HP (2004) Electrostatic interactions between double layers: influence of surface roughness, regulation, and chemical heterogeneities. Langmuir 20: 5052–5065. doi: 10.1021/la030404f |
[19] | Walz JY, Suresh L, Piech M (1999) The effect of nanoscale roughness on long range interaction forces. J Nanopart Res 1: 99–113. doi: 10.1023/A:1010065714589 |
[20] | Parsons DF, Walsh RB, Craig VSJ (2014) Surface forces: Surface roughness in theory and experiment. J Chem Phys 140: 164701. doi: 10.1063/1.4871412 |
[21] | Henry C, Minier JP, Lefèvre G, et al. (2011) Numerical Study on the Deposition Rate of Hematite Particle on Polypropylene Walls: Role of Surface Roughness. Langmuir 27: 4603–4612. doi: 10.1021/la104488a |
[22] | Grasso D, Subramaniam K, Butkus M, et al. (2002) A review of non-DLVO interactions in environmental colloidal systems. Rev Environ Sci Biotechnol 1: 17–38. doi: 10.1023/A:1015146710500 |
[23] | Tepper F, Kaledin L (2005) Nanosize electropositive fibrous adsorbent. US patent 6,838,005. |
[24] | Velev OD, Furusawa K, Nagayama N (1996) Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres. Langmuir 12: 2374–2384. |
[25] | International Organization for Standardization (1995) ISO 10705-1 Water quality-Detection and enumeration of bacteriophages-Part 1. Enumeration of F-specific RNA bacteriophages, Geneve, Switzerland. |
[26] | Duek A, Arkhangelsky E, Krush R, et al. (2012) New and Conventional Pore Size Tests in Virus-Removing Membranes. Water Res 46: 2505–2514. doi: 10.1016/j.watres.2011.12.058 |
[27] | Herath G, Yamamoto K, Urase T (1999) Removal of Viruses by Microfiltration Membranes at Different Solution Environments. Water Sci Technol 40: 331–338. |
[28] | Chrysikopoulos CV, Syngouna VI (2012) Attachment of Bacteriophages MS2 and ΦX174 onto Kaolinite and Montmorillonite: Extended-DLVO Interactions. Colloid Surface B 92: 74–83. |
[29] | Lin DQ, Brixius PJ, Hubbuch JJ, et al. (2003) Biomass/Adsorbent Electrostatic Interactions in Expanded Bed Adsorption: A Zeta Potential Study. Biotechnol Bioeng 83: 149–157. doi: 10.1002/bit.10654 |
[30] | Dika C, Duval JF, Francius G, et al. (2015) Isoelectric point is an inadequate descriptor of MS2, Phi X 174 and PRD1 phages adhesion on abiotic surfaces. J Colloid Interf Sci 446: 327–334. doi: 10.1016/j.jcis.2014.08.055 |
[31] | Michen B, Graule T (2010) Isoelectric Points of Viruses. J Appl Microbiol 109: 388–397. |
[32] | Oulman CS, Baumann ER (1964) Streaming potentials in diatomite filtration of water. J Am Water Works Ass 56: 915–930. |
[33] | Briggs DR (1928) The determination of the ζ potential on cellulose-a method. J Phys Chem 32: 641–675. |
[34] | Mossman CE, Mason SG (1959) Surface electrical conductance and electrokinetic potentials in networks of fibrous materials. Can J Chem 37: 1153–1164. doi: 10.1139/v59-170 |
[35] | Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11: 431–441. doi: 10.1137/0111030 |
[36] | Haynes WM, Lide DR, Bruno TJ (2012) CRC Handbook of Chemistry and Physics, 93rd Edition, Boca Raton: CRC Press, Taylor and Francis Group. |
[37] | Lyklema J (1995) Fundamentals of Interface and Colloid Science: Solid-Liquid Interfaces, San Diego: Academic Press. |
[38] | Szymczyk A, Fievet P, Foissy A (2002) Electrokinetic characterization of porous plugs from streaming potential coupled with electrical resistance measurements. J Colloid Interf Sci 255: 323–331. doi: 10.1006/jcis.2002.8591 |
[39] | Johnston PR (1992) Fluid sterilization by filtration, Buffalo Grove: Interpharm Press. |
[40] | Tepper F, Kaledin LA (2008) Drinking water filtration device. US patent 7,390,343. |
[41] | Tepper F, Kaledin LA (2006) Electrostatic air filter. US patent 7,311,752 |
[42] | Pepper IL, Gerba CP (2004) Environmental Microbiology: A Laboratory Manual, Amsterdam: Elsevier. |
[43] | US Environmental Protection Agency (1986) SW-846 Test Method 9132: Total coliform: Membrane-filter technique. |
[44] | Einstein A (1956) Investigations on the theory of the Brownian movement, New York: Dover Publications (English translation of original publications). |
[45] | Kaledin LA, Tepper F, Kaledin TG (2016) Aluminized Siliceous Powder and Water Purification Device Incorporating the Same. US Patent 9,309,131. |
[46] | Szymczyk A, Zhu H, Balannec B (2010) Ion rejection properties of nanopores with bipolar fixed charge distributions. J Phys Chem B 114: 10143–10150. doi: 10.1021/jp1025575 |