Citation: Cibely Silva Martin, Mateus Dassie Maximino, Matheus Santos Pereira, Clarissa de Almeida Olivati, Priscila Alessio. The role of film composition and nanostructuration on the polyphenol sensor performance[J]. AIMS Materials Science, 2017, 4(1): 27-42. doi: 10.3934/matersci.2017.1.27
[1] | Engelkamp H, Middelbeek S, Nolte JMR, et al. (1999) Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. Science 284: 785–788. doi: 10.1126/science.284.5415.785 |
[2] | Mondal T, Basak D, Al Ouahabi A, et al. (2015) Extended supramolecular organization of [small pi]-systems using yet unexplored simultaneous intra- and inter-molecular H-bonding motifs of 1,3-dihydroxy derivatives. Chem Commun 51: 5040–5043. doi: 10.1039/C4CC10335A |
[3] | Lu H, Kobayashi N (2016) Optically Active Porphyrin and Phthalocyanine Systems. Chem Rev 116: 6184–6261. doi: 10.1021/acs.chemrev.5b00588 |
[4] | Volpati D, Alessio P, Zanfolim AA, et al. (2008) Exploiting Distinct Molecular Architectures of Ultrathin Films Made with Iron Phthalocyanine for Sensing. J Phys Chem B 112: 15275–15282. doi: 10.1021/jp804159h |
[5] | Dey S, Pal AJ (2011) Layer-by-Layer Electrostatic Assembly with a Control over Orientation of Molecules: Anisotropy of Electrical Conductivity and Dielectric Properties. Langmuir 27: 8687–8693. doi: 10.1021/la201471f |
[6] | Eccher J, Zajaczkowski W, Faria GC, et al. (2015) Thermal Evaporation versus Spin-Coating: Electrical Performance in Columnar Liquid Crystal OLEDs. ACS Appl Mater Interface 7: 16374–16381. doi: 10.1021/acsami.5b03496 |
[7] | Cea P, Ballesteros Luz M, Martín S (2014) Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics. Nanofabrication. |
[8] | Camacho SA, Aoki PHB, Assis FFd, et al. (2014) Supramolecular arrangements of an organometallic forming nanostructured films. Mater Res 17: 1375–1383. doi: 10.1590/1516-1439.279014 |
[9] | Yang Y, Zhang Y, Wei Z (2013) Supramolecular Helices: Chirality Transfer from Conjugated Molecules to Structures. Adv Mater 25: 6039–6049. doi: 10.1002/adma.201302448 |
[10] | Li W-S, Aida T (2009) Dendrimer Porphyrins and Phthalocyanines. Chem Rev 109: 6047–6076. doi: 10.1021/cr900186c |
[11] | Chen Z, Lohr A, Saha-Moller CR, et al. (2009) Self-assembled [small pi]-stacks of functional dyes in solution: structural and thermodynamic features. Chem Soc Rev 38: 564–584. |
[12] | Wurthner F (2004) Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem Commun 1564–1579. |
[13] | Würthner F, Thalacker C, Diele S, et al. (2001) Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes. Chemistry–A Eur J 7: 2245–2253. |
[14] | Voitechovič E, Bratov A, Abramova N, et al. (2015) Development of label-free impedimetric platform based on new conductive polyaniline polymer and three-dimensional interdigitated electrode array for biosensor applications. Electrochim Acta 173: 59–66. doi: 10.1016/j.electacta.2015.05.011 |
[15] | Bisquert J, Garcia-Belmonte G, Bueno P, et al. (1998) Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J Electroanal Chem 452: 229–234. doi: 10.1016/S0022-0728(98)00115-6 |
[16] | Yang L (2008) Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74: 1621–1629. doi: 10.1016/j.talanta.2007.10.018 |
[17] | Bertoncello P, Peruffo M (2008) An investigation on the self-aggregation properties of sulfonated copper(II) phthalocyanine (CuTsPc) thin films. Colloid Surface A 321: 106–112. doi: 10.1016/j.colsurfa.2008.01.054 |
[18] | Lee SK, Zu Y, Herrmann A, et al. (1999) Electrochemistry, Spectroscopy and Electrogenerated Chemiluminescence of Perylene, Terrylene, and Quaterrylene Diimides in Aprotic Solution. J Am Chem Soc 121: 3513–3520. doi: 10.1021/ja984188m |
[19] | Arıcı M, Arıcan D, Uğur AL, et al. (2013) Electrochemical and spectroelectrochemical characterization of newly synthesized manganese, cobalt, iron and copper phthalocyanines. Electrochim Acta 87: 554–566. doi: 10.1016/j.electacta.2012.09.045 |
[20] | Apetrei C, Alessio P, Constantino CJL, et al. (2011) Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants. Biosens Bioelectron 26: 2513–2519. doi: 10.1016/j.bios.2010.10.047 |
[21] | Alessio P, Martin CS, de Saja JA, et al. (2016) Mimetic biosensors composed by layer-by-layer films of phospholipid, phthalocyanine and silver nanoparticles to polyphenol detection. Sensor Actuat B-Chem 233: 654–666. doi: 10.1016/j.snb.2016.04.139 |
[22] | Song Y, Yang T, Zhou X, et al. (2016) A microsensor for hydroquinone and catechol based on a poly(3,4-ethylenedioxythiophene) modified carbon fiber electrode. Anal Method 8: 886–892. doi: 10.1039/C5AY02532J |
[23] | García-Hernández C, García-Cabezón C, Medina-Plaza C, et al. (2015) Electrochemical behavior of polypyrrol/AuNP composites deposited by different electrochemical methods: sensing properties towards catechol. Beilstein J Nanotechno 6: 2052–2061. |
[24] | Liu W, Wu L, Zhang X, et al. (2014) Highly-selective electrochemical determination of catechol based on 3-aminophenylboronic acid-3,4,9,10-perylene tetracarboxylic acid functionalized carbon nanotubes modified electrode. Anal Method 6: 718–724. doi: 10.1039/C3AY41633J |
[25] | Janeiro P, Oliveira Brett AM (2004) Catechin electrochemical oxidation mechanisms. Anal Chim Acta 518: 109–115. doi: 10.1016/j.aca.2004.05.038 |