Citation: Vladlena Tiasto, Valeriia Mikhailova, Valeriia Gulaia, Valeriia Vikhareva, Boris Zorin, Alexandra Kalitnik, Alexander Kagansky. Esophageal cancer research today and tomorrow: Lessons from algae and other perspectives[J]. AIMS Genetics, 2018, 5(1): 75-90. doi: 10.3934/genet.2018.1.75
[1] | Song Q, Jiang D, Wang H, et al. (2017) Chromosomal and genomic variations in esophageal squamous cell carcinoma: A review of technologies, applications, and prospections. J Cancer 8: 2492. doi: 10.7150/jca.19601 |
[2] | Hou X, Wen J, Ren Z, et al. (2017) Non-coding RNAs: New biomarkers and therapeutic targets for esophageal cancer. Oncotarget 8: 43571–43578. |
[3] | Esophagus Cancer statictics in USA. Esophagus Cancer.org. [Online] June 14, 2017. Available from: www.cancer.org/cancer/esophaguscancer/detailedguide/esophagus-cancer-key-statistics. |
[4] | Testa U, Castelli G, Pelosi E (2017) Esophageal cancer: Genomic and molecular characterization, stem cell compartment and clonal evolution. Medicinis 4. |
[5] | Esophageal cancer statistics in UK. Cancer Research UK. [Online] Nov 22, 2017. Available from: www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/oesophageal-cancer#heading-One. |
[6] | Zhang Y (2013) Epidemiology of esophageal cancer. World J Gastroenterol 19: 5598–5606. doi: 10.3748/wjg.v19.i34.5598 |
[7] | Taylor PR, Abnet CC, Dawsey SM (2013) Squamous dysplasia â the precursor lesion for esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 22: 540–552. doi: 10.1158/1055-9965.EPI-12-1347 |
[8] | Siewert JR, Ott K (2007) Are squamous and adenocarcinomas of the esophagus the same disease? Semin Radiat Oncol 17: 38–44. doi: 10.1016/j.semradonc.2006.09.007 |
[9] | Zhao R, Young CB, Mee-Hyun L, et al. (2016) Implications of genetic and epigenetic alterations of CDKN2A (p16INK4a) in cancer. Ebiomedicine 8: 30–39. doi: 10.1016/j.ebiom.2016.04.017 |
[10] | Singhi AD, Foxwell TJ, Nason K, et al. (2015) Smad4 loss in esophageal adenocarcinoma is associated with an increased propensity for disease recurrence and poor survival. Am J Surg Pathol 39: 487–495. doi: 10.1097/PAS.0000000000000356 |
[11] | Streppel MM, Lata S, DelaBastide M, et al. (2014) Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene 33: 347–357. doi: 10.1038/onc.2012.586 |
[12] | Dulak AM, Stojanov P, Peng S, et al. (2013) Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet 45: 478–486. doi: 10.1038/ng.2591 |
[13] | Gao YB, Chen ZL, Li JG, et al. (2014) Genetic landscape of esophageal squamous cell carcinoma. Nat Genet 46: 1097–1102. doi: 10.1038/ng.3076 |
[14] | Sasaki Y, Tamura M, Koyama R, et al. (2016) Genomic characterization of esophageal squamous cell carcinoma: Insights from next-generation sequencing. World J Gastroenterol 22: 2284–2293. doi: 10.3748/wjg.v22.i7.2284 |
[15] | Nazila N, Katrien VR, Mohammad V, et al. (2013) Expression, Tissue Distribution and Function of miR-21 in Esophageal Squamous Cell Carcinoma. PLoS One 8: e73009. doi: 10.1371/journal.pone.0073009 |
[16] | Rubenstein JH, Shaheen NJ (2015) Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology 149: 302–317. doi: 10.1053/j.gastro.2015.04.053 |
[17] | Watanabe M (2015) Risk factors and molecular mechanisms of esophageal cancer: Differences between the histologic subtypes. J Cancer Metastasis Treat 1: 1–7. |
[18] | Halland M, Katzka D, Iyer PG (2015) Recent developments in pathogenesis, diagnosis and therapy of Barrett's esophagus. World J Gastroenterol 21: 6479–6490. doi: 10.3748/wjg.v21.i21.6479 |
[19] | Palethorpe HM, Drew PA, Smith E (2017) Androgen Signaling in Esophageal Adenocarcinoma Cell Lines In Vitro. Dig Dis Sci 62: 3402–3414. doi: 10.1007/s10620-017-4794-5 |
[20] | Wang RH (2015) From reflux esophagitis to Barrett's esophagus and esophageal adenocarcinoma. World J Gastroenterol 21: 5210–5219. doi: 10.3748/wjg.v21.i17.5210 |
[21] | Pietsch EC, Humbey O, Murphy ME (2006) Polymorphisms in the p53 pathway. Oncogene 25: 1602–1611. doi: 10.1038/sj.onc.1209367 |
[22] | Bond G, Hu W, Bond EE, et al. (2004) A single nucleotide polymorphism in the MDM2 promoter. Cell 119: 591–602. doi: 10.1016/j.cell.2004.11.022 |
[23] | Akbari M, Malekzadeh R, Lepage P, et al. (2011) Mutations in Fanconi anemia genes and the risk of esophageal cancer. Hum Genet 129: 573–582. doi: 10.1007/s00439-011-0951-7 |
[24] | Dandara C, Li DP, Walther G, et al. (2006) Gene-environment interaction: The role of SULT1A1 and CYP3A5 polymorphisms as risk modifiers for squamous cell. Carcinogenesis 27: 791–797. doi: 10.1093/carcin/bgi257 |
[25] | O'Neill JR, Pak HS, Pairocastineira E, et al. (2017) Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-Specific Proteins. Mol Cell Proteomics Mcp 16: 1138–1150. doi: 10.1074/mcp.M116.065078 |
[26] | Ke X, Yan R, Sun Z, et al. (2017) Esophageal Adenocarcinoma-Derived Extracellular Vesicle MicroRNAs Induce a Neoplastic Phenotype in Gastric Organoids. Neoplasia 19: 941–949. doi: 10.1016/j.neo.2017.06.007 |
[27] | Lee Y, Urbanska AM, Hayakawa Y, et al. (2016) Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus. Oncotarget 8: 203–214. |
[28] | D'Journo XB, Thomas PA (2014) Current management of esophageal cancer. J Thorac Dis 6: S253–S264. |
[29] | Sohda M, Kuwano H (2016) Current Status and Future Prospects for Esophageal Cancer Treatment. Ann Thorac Cardiovasc Surg 23: 1–11. doi: 10.1093/icvts/ivw098 |
[30] | Akutsu Y, Matsubara H (2015) Chemoradiotherapy and surgery for T4 esophageal cancer in Japan. Surg Today 45: 1360–1365. doi: 10.1007/s00595-015-1116-4 |
[31] | Sithranga BN, Kathiresan K (2011) Anticancer drugs from marine flora: An overview. J Oncol 2010: 214186. |
[32] | Tebbutt NC, Price TJ, Ferraro DA, et al. (2016) Panitumumab added to docetaxel, cisplatin and fluoropyrimidine in oesophagogastric cancer: ATTAX3 phase II trial. Br J Cancer 114: 505–509. doi: 10.1038/bjc.2015.440 |
[33] | Niu J, Gelbspan D, Weitz D, et al. (2014) HER2-positive, trastuzumab-resistant metastatic esophageal cancer presenting with brain metastasis after durable response to dual HER2 blockade: A case report. J Gastrointest Oncol 5: E103–E110. |
[34] | Idelevich E, Kashtan H, Klein Y, et al. (2012) Prospective phase II study of neoadjuvant therapy with cisplatin, 5-FU, and bevacizumab for locally advanced resectable esophageal cancer. Onkologie 35: 427–431. doi: 10.1159/000340072 |
[35] | Davidson M, Starling N (2016) Trastuzumab in the management of gastroesophageal cancer: Patient selection and perspectives. OncoTargets Ther 9: 7235–7245. doi: 10.2147/OTT.S100643 |
[36] | Ilson DH, Kelsen D, Shah M, et al. (2011) A phase 2 trial of erlotinib in patients with previously treated squamous cell and adenocarcinoma of the esophagusr. Cancer 117: 1409–1414. doi: 10.1002/cncr.25602 |
[37] | Rodriguez CP, Adelstein DJ, Rice TW, et al. (2010) A phase II study of perioperative concurrent chemotherapy, gefitinib, and hyperfractionated radiation followed by maintenance gefitinib in locoregionally advanced esophagus and gastroesophageal junction cancer. J Thorac Oncol 5: 229–235. doi: 10.1097/JTO.0b013e3181c5e334 |
[38] | Altiok S, Mezzadra H, Jagannath S, et al. (2010) A novel pharmacodynamic approach to assess and predict tumor response to the epidermal growth factor receptor inhibitor gefitinib in patients with esophageal cancer. Int J Oncol 36: 19. |
[39] | Martinucci I, Bortoli ND, Russo S, et al. (2016) Barrett's esophagus in 2016: From pathophysiology to treatment. World J Gastrointest Pharmacol Ther 7: 190–206. doi: 10.4292/wjgpt.v7.i2.190 |
[40] | Kwiatek MA, Roman S, Fareeduddin A, et al. (2011) An alginate-antacid formulation (Gaviscon Double Action Liquid) can eliminate the postprandial "acid pocket" in symptomatic GERD patients. Aliment Pharmacol Ther 34: 59–66. doi: 10.1111/j.1365-2036.2011.04678.x |
[41] | Yuan H, Song J, Li X, et al. (2006) Immunomodulation and antitumor activity of k-carrageenan oligosaccharides. Cancer Lett 243: 228–234. doi: 10.1016/j.canlet.2005.11.032 |
[42] | Monnerat C, Faivre S, Temam S, et al. (2002) End points for new agents in induction chemotherapy for locally advanced head and neck cancers. Ann Oncol 13: 995–1006. doi: 10.1093/annonc/mdf172 |
[43] | Neergheen-Bhujun V, Awan AT, Baran Y, et al. (2017) Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. J Global Health 7: 020304. doi: 10.7189/jogh.07.020304 |
[44] | Jimeno J, Faircloth G, Sousa-Faro JF, et al. (2004) New Marine Derived Anticancer Therapeutics-A Journey from the Sea to Clinical Trials. Mar Drugs 2: 14–29. doi: 10.3390/md201014 |
[45] | Kijjoa A, Sawangwong P (2004) Drugs and Cosmetics from the Sea. Mar Drugs 2: 328–336. |
[46] | Kuo YH, Liang TW, Liu KC, et al. (2011) Isolation and identification of a novel antioxidant with antitumour activity from Serratia ureilytica using squid pen as fermentation substrate. Mar Biotechnol 13: 451–461. doi: 10.1007/s10126-010-9316-9 |
[47] | Kwon HJ, Bae SY, Kim KH, et al. (2007) Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera. Food Chem 104: 196–201. doi: 10.1016/j.foodchem.2006.11.031 |
[48] | Lins KOAL, Bezerra DP, Alves APNN, et al. (2009) Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J Appl Toxicol Jat 29: 20–26. doi: 10.1002/jat.1374 |
[49] | Thoppil RJ, Bishayee A (2011) Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol 3: 228–249. doi: 10.4254/wjh.v3.i9.228 |
[50] | Zandi K, Ahmadzadeh S, Tajbakhsh S, et al. (2010) Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines. Eur Rev Med Pharmacol Sci 14: 669–673. |
[51] | Usoltseva RV, Anastyuk SD, Shevchenko NM, et al. (2017) Polysaccharides from brown algae Sargassum duplicatum: The structure and anticancer activity in vitro. Carbohydr Polym 175: 547–556. doi: 10.1016/j.carbpol.2017.08.044 |
[52] | Alves C, Pinteus S, Horta A, et al. (2016) High cytotoxicity and anti-proliferative activity of algae extracts on an in vitro model of human hepatocellular carcinoma. Springerplus 5: 1339. doi: 10.1186/s40064-016-2938-2 |
[53] | Gamal-Eldeen AM, Ahmed EF, Abo-Zeid MA (2009) In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food Chem Toxicol 47: 1378–1384. doi: 10.1016/j.fct.2009.03.016 |
[54] | Foley SA, Mulloy B, Tuohy MG, et al. (2011) An unfractionated fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. J Nat Prod 74: 1851–1861. doi: 10.1021/np200124m |
[55] | Jiang Z, Okimura T, Yokose T (2010) Effects of sulfated fucan, ascophyllan, from the brown Alga Ascophyllum nodosum on various cell lines: A comparative study on ascophyllan and fucoidan. J Biosci Bioeng 110: 113–117. doi: 10.1016/j.jbiosc.2010.01.007 |
[56] | Zhang Z, Kiichiro T, Hiroshi E, et al. (2011) Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PLoS One 6: e27441. doi: 10.1371/journal.pone.0027441 |
[57] | Jiao G, Yu G, Zhang J, et al. (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9: 196–223. doi: 10.3390/md9020196 |
[58] | Cumashi A, Ushakova NA, Preobrazhenskaya ME, et al. (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541–552. doi: 10.1093/glycob/cwm014 |
[59] | Hyun J, Kim S, Kang J, et al. (2009) Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol Pharm Bull 32: 1760–1764. doi: 10.1248/bpb.32.1760 |
[60] | Park HS, Kim GY, Nam TJ, et al. (2011) Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J Food Sci 76: T77–T83. doi: 10.1111/j.1750-3841.2011.02099.x |
[61] | Luo M, Shao B, Nie W, et al. (2015) Antitumor and Adjuvant Activity of λ-carrageenan by Stimulating Immune Response in Cancer Immunotherapy. Sci Rep 5: 11062. doi: 10.1038/srep11062 |
[62] | Jazzara M, Ghannam A, Soukkarieh C, et al. (2016) Anti-Proliferative Activity of λ-Carrageenan Through the Induction of Apoptosis in Human Breast Cancer Cells. Iran J Cancer Prev 9: e3836. |
[63] | Yuan Y, Song J, Li X, et al. (2011) Enhanced immunostimulatory and antitumor activity of different derivatives of kappa-carrageenan oligosaccharides from Kappaphycus striatum. J Appl Phycol 23: 59–65. doi: 10.1007/s10811-010-9536-4 |
[64] | Fedorov SN, Ermakova SP, Zvyagintseva TN, et al. (2013) Anticancer and Cancer Preventive Properties of Marine Polysaccharides: Some Results and Prospects. Mar Drugs 11: 4876–4901. doi: 10.3390/md11124876 |
[65] | Yermak IM, Barabanova AO, Aminin DL, et al. (2012) Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. Carbohydr Polym 87: 713–720. doi: 10.1016/j.carbpol.2011.08.053 |
[66] | Kalitnik AA, Anastyuk SD, Sokolova EV, et al. (2016) Oligosaccharides of k/β-carrageenan from the red alga Tichocarpus crinitus and their ability to induce interleukin 10. J Appl Phycol 28: 545–553. doi: 10.1007/s10811-015-0577-6 |
[67] | Thomson AW, Fowler EF (1981) Carrageenan: A review of its effects on the immune system. Agents Actions 11: 265–273. doi: 10.1007/BF01967625 |
[68] | Morais-Zani KD, Nunes FPB, Silva JBD, et al. (2013) The anti-inflammatory action of Bothrops jararaca snake antithrombin on acute inflammation induced by carrageenan in mice. Inflammation Res 62: 733–742. doi: 10.1007/s00011-013-0628-x |
[69] | Tsuji R, Hoshino K, Noro Y, et al. (2003) Suppression of allergic reaction by λ-carrageenan: Toll-like receptor 4/MyD88-dependent and -independent modulation of immunity. Clin Exp Allergy 33: 249–258. doi: 10.1046/j.1365-2222.2003.01575.x |
[70] | Garcia AM, Chaly ES (1996) Preliminary spherical agglomerates of water-soluble drug using natural polymer and cross-linking technique. J Controlled Release 40: 179–186. doi: 10.1016/0168-3659(95)00179-4 |
[71] | Schmidt AG, Wartewig S, Picker KM (2003) Potential of carrageenans to protect drugs from polymorphic transformation. Eur J Pharm Biopharm 56: 101–110. doi: 10.1016/S0939-6411(03)00037-7 |
[72] | Thommes M, Kleinebudde P (2006) Use of kappa-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronisation. I. Influence of type and fraction of filler. Eur J Pharm Biopharm 63: 59–67. |
[73] | Hugerth AM (2001) Micropolarity and microviscosity of amitriptyline and dextran sulfate/carrageenan-amitriptyline systems: The nature of polyelectrolyte-drug complexes. J Pharm Sci 90: 1665–1677. doi: 10.1002/jps.1117 |
[74] | Patil RT, Speaker TJ (2000) Water-based microsphere delivery system for proteins. J Pharm Sci 89: 9–15. doi: 10.1002/(SICI)1520-6017(200001)89:1<9::AID-JPS2>3.0.CO;2-5 |
[75] | Yermak IM, Khotimchenko YS (2003) Chemical properties, biological activities and applications of carrageenan from red algae. Recent Adv Mar Biotechnol 9: 207–255. |
[76] | Volod'ko AV, Davydova VN, Chusovitin E, et al. (2014) Soluble chitosan carrageenan polyelectrolyte complexes and their gastroprotective activity. Carbohydr Polym 101: 1087. doi: 10.1016/j.carbpol.2013.10.049 |
[77] | Lahaye M, Kaeffer B (1997) Seaweed dietary fibres: Structure, physico-chemical and biological properties relevent to intestinal physiology. Sci Aliment 17: 563–584. |
[78] | Cummings JH, Mann JI, Nishida C, et al. (2009) Dietary fibre: An agreed definition. Lancet 373: 365–366. doi: 10.1016/S0140-6736(09)60117-3 |
[79] | Harris RE, Chlebowski RT, Jackson RD, et al. (2003) Breast cancer and nonsteroidal anti-inflammatory drugs: Prospective results from the Women's Health Initiative. Cancer Res 63: 6096–6101. |
[80] | Stansbury, Jillian, SEAWEED, CHEWING GUM AND GERD. Ndnr Botanical Medicine, [Online] January 17, 2017. Available from: http://ndnr.com/botanical-medicine/seaweed-chewing-gum-and-gerd/#comments. |
[81] | Greene ER, Huang S, Serhan CN, et al. (2011) Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediators 96: 27–36. doi: 10.1016/j.prostaglandins.2011.08.004 |
[82] | Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860–867. doi: 10.1038/nature01322 |
[83] | Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4: 641–648. doi: 10.1038/nri1415 |
[84] | Ekbom A, Helmick C, Zack M, et al. (1990) Ulcerative colitis and colorectal cancer. N Engl J Med 323: 1228–1233. doi: 10.1056/NEJM199011013231802 |
[85] | Kulaylat MN, Dayton MT (2010) Ulcerative colitis and cancer. J Surg Oncol 101: 706–712. doi: 10.1002/jso.21505 |
[86] | Kalitnik AA, Marcov PA, Anastyuk SD, et al. (2015) Gelling polysaccharide from Chondrus armatus and its oligosaccharides: The structural peculiarities and anti-inflammatory. Carbohydr Polym 115: 768–775. doi: 10.1016/j.carbpol.2014.04.070 |
[87] | Sokolova EV, Karetin Y, Davydova VN, et al. (2016) Carrageenans effect on neutrophils alone and in combination with LPS in vitro. J Biomed Mater Res Part A 104: 1603–1609. doi: 10.1002/jbm.a.35693 |
[88] | Abdel-Latif MM, Duggan S, Reynolds JV, et al. (2009) Inflammation and esophageal carcinogenesis. Curr Opin Pharmacol 9: 396–404. doi: 10.1016/j.coph.2009.06.010 |
[89] | Hardikar S, Onstad L, Song X, et al. (2014) Inflammation and oxidative stress markers and esophageal adenocarcinoma incidence in a Barrett's esophagus cohort. Cancer Epidemiol Biomarkers Prev 23: 2393–2403. doi: 10.1158/1055-9965.EPI-14-0384 |
[90] | Wang Q, Hao J, Guan Q, et al. (2014) The Mediterranean diet and gastrointestinal cancers risk. Recent Pat Food Nutr Agric 6: 23–26. doi: 10.2174/2212798406666141024111945 |
[91] | Jessri M, Rashidkhani B, Hajizadeh B, et al. (2012) Adherence to Mediterranean-style dietary pattern and risk of esophageal squamous cell carcinoma: A case-control study in Iran. J Am Coll Nutr 31: 338–351. doi: 10.1080/07315724.2012.10720437 |
[92] | Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13: 405–414. doi: 10.1038/nmeth.3839 |
[93] | Rybtsov S, Batsivari A, Bilotkach K, et al. (2014) Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43- embryonic precursor. Stem Cell Rep 3: 489–501. doi: 10.1016/j.stemcr.2014.07.009 |
[94] | Huang Q, Zou Y, Arno MC, et al. (2017) Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 46: 6255–6275. doi: 10.1039/C6CS00052E |