Citation: Helena E. Richardson. Drosophila models of cancer[J]. AIMS Genetics, 2015, 2(1): 97-103. doi: 10.3934/genet.2015.1.97
[1] | Fortini ME, Skupski MP, Boguski MS, et al. (2000) A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 150: F23-30. doi: 10.1083/jcb.150.2.F23 |
[2] | Cheng L, Parsons LM, Richardson HE (2013) Modelling cancer in Drosophila – The next generation. (version 2.0). Encyclopedia Life Sciences (eLS Wiley). DOI: 10.1002/9780470015902.a0020862.pub2 |
[3] | Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6: 9-23. |
[4] | Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13: 172-183. doi: 10.1038/nrc3461 |
[5] | Rudrapatna VA, Cagan RL, Das TK (2012) Drosophila cancer models. Dev Dyn 241: 107-118. doi: 10.1002/dvdy.22771 |
[6] | Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5: 626-639. doi: 10.1038/nrc1671 |
[7] | Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674. doi: 10.1016/j.cell.2011.02.013 |
[8] | Bangi E (2013) Drosophila at the intersection of infection, inflammation, and cancer. Front Cell Infect Microbiol 3: 103. |
[9] | Pastor-Pareja JC, Xu T (2013) Dissecting social cell biology and tumors using Drosophila genetics. Annu Rev Genet 47: 51-74. doi: 10.1146/annurev-genet-110711-155414 |
[10] | Stefanatos RK, Vidal M (2011) Tumor invasion and metastasis in Drosophila: a bold past, a bright future. J Genet Genomics 38: 431-438. doi: 10.1016/j.jgg.2011.09.004 |
[11] | Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229: 27-33. |
[12] | Patel PH, Edgar BA (2014) Tissue design: how Drosophila tumors remodel their neighborhood. Semin Cell Dev Biol 28: 86-95. doi: 10.1016/j.semcdb.2014.03.012 |
[13] | Trosko JE (2014) Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer? Anat Rec (Hoboken) 297: 161-173. doi: 10.1002/ar.22793 |
[14] | Suh DH, Kim HS, Kim B, et al. (2014) Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: A therapeutic implication. Biochem Pharmacol 92: 43-54. doi: 10.1016/j.bcp.2014.08.011 |
[15] | Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12: 23-38. |
[16] | Januschke J, Gonzalez C (2008) Drosophila asymmetric division, polarity and cancer. Oncogene 27: 6994-7002. doi: 10.1038/onc.2008.349 |
[17] | Bell GP, Thompson BJ (2014) Colorectal cancer progression: lessons from Drosophila? Semin Cell Dev Biol 28: 70-77. doi: 10.1016/j.semcdb.2014.02.007 |
[18] | Janssens DH, Lee CY (2014) It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Semin Cell Dev Biol 28: 63-69. doi: 10.1016/j.semcdb.2014.03.006 |
[19] | Rosales-Nieves AE, Gonzalez-Reyes A (2014) Genetics and mechanisms of ovarian cancer: parallels between Drosophila and humans. Semin Cell Dev Biol 28: 104-109. doi: 10.1016/j.semcdb.2014.03.031 |
[20] | Spradling A, Fuller MT, Braun RE, et al. (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3: a002642. |
[21] | Sousa-Nunes R, Somers WG (2013) Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Adv Exp Med Biol 786: 79-102. doi: 10.1007/978-94-007-6621-1_6 |
[22] | Bausek N (2013) JAK-STAT signaling in stem cells and their niches in Drosophila. JAKSTAT 2: e25686. |
[23] | Resende LP, Jones DL (2012) Local signaling within stem cell niches: insights from Drosophila. Curr Opin Cell Biol 24: 225-231. doi: 10.1016/j.ceb.2012.01.004 |
[24] | Papagiannouli F, Lohmann I (2012) Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 7: 723-736. doi: 10.1002/biot.201100352 |
[25] | Lee JEA, Parsons LM, Quinn LM (2014) MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS Genet 1: 81-98. doi: 10.3934/genet.2014.1.81 |
[26] | Ma X (2014) Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS Genet 1: 20-33. doi: 10.3934/genet.2014.1.20 |
[27] | Estella C, Baonza A (2015) Cell proliferation control by Notch signaling during imaginal discs development in Drosophila. AIMS Genet 2: 70-96. doi: 10.3934/genet.2015.1.70 |
[28] | Froldi F, Szuperak M, Cheng LY (2015) Neural stem cell derived tumourigenesis. AIMS Genet 2: 13-24. doi: 10.3934/genet.2015.1.13 |
[29] | La Marca JE, Somers WG (2014) The Drosophila gonads: models for stem cell proliferation, self-renewal and differentiation. AIMS Genet 1: 55-80. doi: 10.3934/genet.2014.1.55 |
[30] | Murray MJ (2015) Drosophila models of metastasis. AIMS Genet 2: 25-53. doi: 10.3934/genet.2015.1.25 |
[31] | Su TT (2015) Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genet 2: 54-69. doi: 10.3934/genet.2015.1.54 |
[32] | Liu D, Shaukat Z, Hussain R, et al. (2015) Drosophila as a model for chromosomal instability. AIMS Genet 2: 1-12. doi: 10.3934/genet.2015.1.1 |
[33] | Ntziachristos P, Lim JS, Sage J, et al. (2014) From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 25: 318-334. doi: 10.1016/j.ccr.2014.02.018 |
[34] | Dominguez M (2014) Oncogenic programmes and Notch activity: an 'organized crime'? Semin Cell Dev Biol 28: 78-85. doi: 10.1016/j.semcdb.2014.04.012 |
[35] | Grusche FA, Degoutin JL, Richardson HE, et al. (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350: 255-266. doi: 10.1016/j.ydbio.2010.11.020 |
[36] | Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13: 246-257. doi: 10.1038/nrc3458 |
[37] | Barron DA, Kagey JD (2014) The role of the Hippo pathway in human disease and tumorigenesis. Clin Transl Med 3: 25. doi: 10.1186/2001-1326-3-25 |
[38] | Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537-549. doi: 10.1038/nrc2694 |
[39] | Grifoni D, Bellosta P (2014) Drosophila Myc: A master regulator of cellular performance. Biochim Biophys Acta S1874-9399: 00188-6. |
[40] | Quinn LM, Secombe J, Hime GR (2013) Myc in stem cell behaviour: insights from Drosophila. Adv Exp Med Biol 786: 269-285. doi: 10.1007/978-94-007-6621-1_15 |
[41] | Johnston LA (2014) Socializing with MYC: cell competition in development and as a model for premalignant cancer. Cold Spring Harb Perspect Med 4: a014274. doi: 10.1101/cshperspect.a014274 |
[42] | Amoyel M, Bach EA (2014) Cell competition: how to eliminate your neighbours. Development 141: 988-1000. doi: 10.1242/dev.079129 |
[43] | Moreno E, Rhiner C (2014) Darwin's multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol 31C: 16-22. |
[44] | Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4: a008797. |
[45] | Portela M, Richardson HE (2013) Death takes a holiday-non-apoptotic role for caspases in cell migration and invasion. EMBO Rep 14: 107-108. doi: 10.1038/embor.2012.224 |
[46] | Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1: 46-54. doi: 10.1038/35094059 |
[47] | Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22: 287-309. doi: 10.1146/annurev.cellbio.22.010305.104315 |
[48] | Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147: 992-1009. doi: 10.1016/j.cell.2011.11.016 |
[49] | Hogan C (2012) Impact of interactions between normal and transformed epithelial cells and the relevance to cancer. Cell Mol Life Sci 69: 203-213. doi: 10.1007/s00018-011-0806-3 |
[50] | Hugo H, Ackland ML, Blick T, et al. (2007) Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 213: 374-383. doi: 10.1002/jcp.21223 |
[51] | Elsum I, Yates L, Humbert PO, et al. (2012) The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 53: 141-168. doi: 10.1042/bse0530141 |
[52] | Godde NJ, Galea RC, Elsum IA, et al. (2010) Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 15: 149-168. doi: 10.1007/s10911-010-9180-2 |
[53] | De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13: 97-110. doi: 10.1038/nrc3447 |
[54] | Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481: 287-294. doi: 10.1038/nature10760 |
[55] | Lee H (2014) How Chromosome Mis-Segregation Leads to Cancer: Lessons from Mouse Models. Mol Cells 37: 713-718. doi: 10.14348/molcells.2014.0233 |
[56] | Nam HJ, Naylor RM, van Deursen JM (2014) Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 25: 65-73. |
[57] | Hirabayashi S, Baranski TJ, Cagan RL (2013) Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154: 664-675. doi: 10.1016/j.cell.2013.06.030 |
[58] | Perez E, Das G, Bergmann A, et al. (2014) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene [Epub ahead of print]. |
[59] | Mulakkal NC, Nagy P, Takats S, et al. (2014) Autophagy in Drosophila: from historical studies to current knowledge. Biomed Res Int 2014: 273473. |
[60] | Ohsawa S, Sato Y, Enomoto M, et al. (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signaling in Drosophila. Nature 490: 547-551. doi: 10.1038/nature11452 |
[61] | Levayer R, Moreno E (2013) Mechanisms of cell competition: themes and variations. J Cell Biol 200: 689-698. doi: 10.1083/jcb.201301051 |
[62] | Willoughby LF, Schlosser T, Manning SA, et al. (2013) An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech 6: 521-529. doi: 10.1242/dmm.009985 |
[63] | Nagy P, Varga A, Kovacs AL, et al. (2014) How and why to study autophagy in Drosophila: It's more than just a garbage chute. Methods [Epub ahead of print]. |
[64] | Strohecker AM, White E (2014) Targeting mitochondrial metabolism by inhibiting autophagy in BRAF-driven cancers. Cancer Discov 4: 766-772. doi: 10.1158/2159-8290.CD-14-0196 |
[65] | Das TK, Sangodkar J, Negre N, et al. (2013) Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 32: 3184-3197. doi: 10.1038/onc.2012.326 |
[66] | Kadamb R, Mittal S, Bansal N, et al. (2013) Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 92: 237-246. doi: 10.1016/j.ejcb.2013.09.001 |
[67] | Zhang C, Liu B, Li G, et al. (2011) Extra sex combs, chromatin, and cancer: exploring epigenetic regulation and tumorigenesis in Drosophila. J Genet Genomics 38: 453-460. doi: 10.1016/j.jgg.2011.09.007 |
[68] | Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 38: 497-504. doi: 10.1016/j.jgg.2011.09.003 |
[69] | Gladstone M, Frederick B, Zheng D, et al. (2012) A translation inhibitor identified in a Drosophila screen enhances the effect of ionizing radiation and taxol in mammalian models of cancer. Dis Model Mech 5: 342-350. doi: 10.1242/dmm.008722 |
[70] | Markstein M, Dettorre S, Cho J, et al. (2014) Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc Natl Acad Sci U S A 111: 4530-4535. doi: 10.1073/pnas.1401160111 |
[71] | Das TK, Cagan RL (2013) A Drosophila approach to thyroid cancer therapeutics. Drug Discov Today Technol 10: e65-71. doi: 10.1016/j.ddtec.2012.09.004 |
[72] | Dar AC, Das TK, Shokat KM, et al. (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486: 80-84. doi: 10.1038/nature11127 |
[73] | Jaklevic B, Uyetake L, Lemstra W, et al. (2006) Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 174: 1963-1972. doi: 10.1534/genetics.106.064477 |
[74] | Edwards A, Gladstone M, Yoon P, et al. (2011) Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis Model Mech 4: 496-503. doi: 10.1242/dmm.006486 |
[75] | Gladstone M, Su TT (2011) Screening for radiation sensitizers of Drosophila checkpoint mutants. Methods Mol Biol 782: 105-117. doi: 10.1007/978-1-61779-273-1_9 |
[76] | Richardson HE, Willoughby L, Humbert PO (2015) Screening for anti-cancer drugs in Drosophila. Encyclopedia Life Sciences (eLS Wiley). DOI: 10.1002/9780470015902.a0022535 |