Editorial Special Issues

Drosophila models of cancer

  • Received: 18 December 2014 Accepted: 21 December 2014 Published: 09 February 2015
  • Citation: Helena E. Richardson. Drosophila models of cancer[J]. AIMS Genetics, 2015, 2(1): 97-103. doi: 10.3934/genet.2015.1.97

    Related Papers:



  • 加载中
    [1] Fortini ME, Skupski MP, Boguski MS, et al. (2000) A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 150: F23-30. doi: 10.1083/jcb.150.2.F23
    [2] Cheng L, Parsons LM, Richardson HE (2013) Modelling cancer in Drosophila – The next generation. (version 2.0). Encyclopedia Life Sciences (eLS Wiley). DOI: 10.1002/9780470015902.a0020862.pub2
    [3] Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6: 9-23.
    [4] Gonzalez C (2013) Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 13: 172-183. doi: 10.1038/nrc3461
    [5] Rudrapatna VA, Cagan RL, Das TK (2012) Drosophila cancer models. Dev Dyn 241: 107-118. doi: 10.1002/dvdy.22771
    [6] Brumby AM, Richardson HE (2005) Using Drosophila melanogaster to map human cancer pathways. Nat Rev Cancer 5: 626-639. doi: 10.1038/nrc1671
    [7] Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674. doi: 10.1016/j.cell.2011.02.013
    [8] Bangi E (2013) Drosophila at the intersection of infection, inflammation, and cancer. Front Cell Infect Microbiol 3: 103.
    [9] Pastor-Pareja JC, Xu T (2013) Dissecting social cell biology and tumors using Drosophila genetics. Annu Rev Genet 47: 51-74. doi: 10.1146/annurev-genet-110711-155414
    [10] Stefanatos RK, Vidal M (2011) Tumor invasion and metastasis in Drosophila: a bold past, a bright future. J Genet Genomics 38: 431-438. doi: 10.1016/j.jgg.2011.09.004
    [11] Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229: 27-33.
    [12] Patel PH, Edgar BA (2014) Tissue design: how Drosophila tumors remodel their neighborhood. Semin Cell Dev Biol 28: 86-95. doi: 10.1016/j.semcdb.2014.03.012
    [13] Trosko JE (2014) Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer? Anat Rec (Hoboken) 297: 161-173. doi: 10.1002/ar.22793
    [14] Suh DH, Kim HS, Kim B, et al. (2014) Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: A therapeutic implication. Biochem Pharmacol 92: 43-54. doi: 10.1016/j.bcp.2014.08.011
    [15] Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12: 23-38.
    [16] Januschke J, Gonzalez C (2008) Drosophila asymmetric division, polarity and cancer. Oncogene 27: 6994-7002. doi: 10.1038/onc.2008.349
    [17] Bell GP, Thompson BJ (2014) Colorectal cancer progression: lessons from Drosophila? Semin Cell Dev Biol 28: 70-77. doi: 10.1016/j.semcdb.2014.02.007
    [18] Janssens DH, Lee CY (2014) It takes two to tango, a dance between the cells of origin and cancer stem cells in the Drosophila larval brain. Semin Cell Dev Biol 28: 63-69. doi: 10.1016/j.semcdb.2014.03.006
    [19] Rosales-Nieves AE, Gonzalez-Reyes A (2014) Genetics and mechanisms of ovarian cancer: parallels between Drosophila and humans. Semin Cell Dev Biol 28: 104-109. doi: 10.1016/j.semcdb.2014.03.031
    [20] Spradling A, Fuller MT, Braun RE, et al. (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3: a002642.
    [21] Sousa-Nunes R, Somers WG (2013) Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Adv Exp Med Biol 786: 79-102. doi: 10.1007/978-94-007-6621-1_6
    [22] Bausek N (2013) JAK-STAT signaling in stem cells and their niches in Drosophila. JAKSTAT 2: e25686.
    [23] Resende LP, Jones DL (2012) Local signaling within stem cell niches: insights from Drosophila. Curr Opin Cell Biol 24: 225-231. doi: 10.1016/j.ceb.2012.01.004
    [24] Papagiannouli F, Lohmann I (2012) Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 7: 723-736. doi: 10.1002/biot.201100352
    [25] Lee JEA, Parsons LM, Quinn LM (2014) MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS Genet 1: 81-98. doi: 10.3934/genet.2014.1.81
    [26] Ma X (2014) Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS Genet 1: 20-33. doi: 10.3934/genet.2014.1.20
    [27] Estella C, Baonza A (2015) Cell proliferation control by Notch signaling during imaginal discs development in Drosophila. AIMS Genet 2: 70-96. doi: 10.3934/genet.2015.1.70
    [28] Froldi F, Szuperak M, Cheng LY (2015) Neural stem cell derived tumourigenesis. AIMS Genet 2: 13-24. doi: 10.3934/genet.2015.1.13
    [29] La Marca JE, Somers WG (2014) The Drosophila gonads: models for stem cell proliferation, self-renewal and differentiation. AIMS Genet 1: 55-80. doi: 10.3934/genet.2014.1.55
    [30] Murray MJ (2015) Drosophila models of metastasis. AIMS Genet 2: 25-53. doi: 10.3934/genet.2015.1.25
    [31] Su TT (2015) Non-autonomous consequences of cell death and other perks of being metazoan. AIMS Genet 2: 54-69. doi: 10.3934/genet.2015.1.54
    [32] Liu D, Shaukat Z, Hussain R, et al. (2015) Drosophila as a model for chromosomal instability. AIMS Genet 2: 1-12. doi: 10.3934/genet.2015.1.1
    [33] Ntziachristos P, Lim JS, Sage J, et al. (2014) From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 25: 318-334. doi: 10.1016/j.ccr.2014.02.018
    [34] Dominguez M (2014) Oncogenic programmes and Notch activity: an 'organized crime'? Semin Cell Dev Biol 28: 78-85. doi: 10.1016/j.semcdb.2014.04.012
    [35] Grusche FA, Degoutin JL, Richardson HE, et al. (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350: 255-266. doi: 10.1016/j.ydbio.2010.11.020
    [36] Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13: 246-257. doi: 10.1038/nrc3458
    [37] Barron DA, Kagey JD (2014) The role of the Hippo pathway in human disease and tumorigenesis. Clin Transl Med 3: 25. doi: 10.1186/2001-1326-3-25
    [38] Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537-549. doi: 10.1038/nrc2694
    [39] Grifoni D, Bellosta P (2014) Drosophila Myc: A master regulator of cellular performance. Biochim Biophys Acta S1874-9399: 00188-6.
    [40] Quinn LM, Secombe J, Hime GR (2013) Myc in stem cell behaviour: insights from Drosophila. Adv Exp Med Biol 786: 269-285. doi: 10.1007/978-94-007-6621-1_15
    [41] Johnston LA (2014) Socializing with MYC: cell competition in development and as a model for premalignant cancer. Cold Spring Harb Perspect Med 4: a014274. doi: 10.1101/cshperspect.a014274
    [42] Amoyel M, Bach EA (2014) Cell competition: how to eliminate your neighbours. Development 141: 988-1000. doi: 10.1242/dev.079129
    [43] Moreno E, Rhiner C (2014) Darwin's multicellularity: from neurotrophic theories and cell competition to fitness fingerprints. Curr Opin Cell Biol 31C: 16-22.
    [44] Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4: a008797.
    [45] Portela M, Richardson HE (2013) Death takes a holiday-non-apoptotic role for caspases in cell migration and invasion. EMBO Rep 14: 107-108. doi: 10.1038/embor.2012.224
    [46] Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1: 46-54. doi: 10.1038/35094059
    [47] Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22: 287-309. doi: 10.1146/annurev.cellbio.22.010305.104315
    [48] Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147: 992-1009. doi: 10.1016/j.cell.2011.11.016
    [49] Hogan C (2012) Impact of interactions between normal and transformed epithelial cells and the relevance to cancer. Cell Mol Life Sci 69: 203-213. doi: 10.1007/s00018-011-0806-3
    [50] Hugo H, Ackland ML, Blick T, et al. (2007) Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 213: 374-383. doi: 10.1002/jcp.21223
    [51] Elsum I, Yates L, Humbert PO, et al. (2012) The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 53: 141-168. doi: 10.1042/bse0530141
    [52] Godde NJ, Galea RC, Elsum IA, et al. (2010) Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 15: 149-168. doi: 10.1007/s10911-010-9180-2
    [53] De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13: 97-110. doi: 10.1038/nrc3447
    [54] Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481: 287-294. doi: 10.1038/nature10760
    [55] Lee H (2014) How Chromosome Mis-Segregation Leads to Cancer: Lessons from Mouse Models. Mol Cells 37: 713-718. doi: 10.14348/molcells.2014.0233
    [56] Nam HJ, Naylor RM, van Deursen JM (2014) Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 25: 65-73.
    [57] Hirabayashi S, Baranski TJ, Cagan RL (2013) Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell 154: 664-675. doi: 10.1016/j.cell.2013.06.030
    [58] Perez E, Das G, Bergmann A, et al. (2014) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene [Epub ahead of print].
    [59] Mulakkal NC, Nagy P, Takats S, et al. (2014) Autophagy in Drosophila: from historical studies to current knowledge. Biomed Res Int 2014: 273473.
    [60] Ohsawa S, Sato Y, Enomoto M, et al. (2012) Mitochondrial defect drives non-autonomous tumour progression through Hippo signaling in Drosophila. Nature 490: 547-551. doi: 10.1038/nature11452
    [61] Levayer R, Moreno E (2013) Mechanisms of cell competition: themes and variations. J Cell Biol 200: 689-698. doi: 10.1083/jcb.201301051
    [62] Willoughby LF, Schlosser T, Manning SA, et al. (2013) An in vivo large-scale chemical screening platform using Drosophila for anti-cancer drug discovery. Dis Model Mech 6: 521-529. doi: 10.1242/dmm.009985
    [63] Nagy P, Varga A, Kovacs AL, et al. (2014) How and why to study autophagy in Drosophila: It's more than just a garbage chute. Methods [Epub ahead of print].
    [64] Strohecker AM, White E (2014) Targeting mitochondrial metabolism by inhibiting autophagy in BRAF-driven cancers. Cancer Discov 4: 766-772. doi: 10.1158/2159-8290.CD-14-0196
    [65] Das TK, Sangodkar J, Negre N, et al. (2013) Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 32: 3184-3197. doi: 10.1038/onc.2012.326
    [66] Kadamb R, Mittal S, Bansal N, et al. (2013) Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 92: 237-246. doi: 10.1016/j.ejcb.2013.09.001
    [67] Zhang C, Liu B, Li G, et al. (2011) Extra sex combs, chromatin, and cancer: exploring epigenetic regulation and tumorigenesis in Drosophila. J Genet Genomics 38: 453-460. doi: 10.1016/j.jgg.2011.09.007
    [68] Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 38: 497-504. doi: 10.1016/j.jgg.2011.09.003
    [69] Gladstone M, Frederick B, Zheng D, et al. (2012) A translation inhibitor identified in a Drosophila screen enhances the effect of ionizing radiation and taxol in mammalian models of cancer. Dis Model Mech 5: 342-350. doi: 10.1242/dmm.008722
    [70] Markstein M, Dettorre S, Cho J, et al. (2014) Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc Natl Acad Sci U S A 111: 4530-4535. doi: 10.1073/pnas.1401160111
    [71] Das TK, Cagan RL (2013) A Drosophila approach to thyroid cancer therapeutics. Drug Discov Today Technol 10: e65-71. doi: 10.1016/j.ddtec.2012.09.004
    [72] Dar AC, Das TK, Shokat KM, et al. (2012) Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486: 80-84. doi: 10.1038/nature11127
    [73] Jaklevic B, Uyetake L, Lemstra W, et al. (2006) Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila. Genetics 174: 1963-1972. doi: 10.1534/genetics.106.064477
    [74] Edwards A, Gladstone M, Yoon P, et al. (2011) Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis Model Mech 4: 496-503. doi: 10.1242/dmm.006486
    [75] Gladstone M, Su TT (2011) Screening for radiation sensitizers of Drosophila checkpoint mutants. Methods Mol Biol 782: 105-117. doi: 10.1007/978-1-61779-273-1_9
    [76] Richardson HE, Willoughby L, Humbert PO (2015) Screening for anti-cancer drugs in Drosophila. Encyclopedia Life Sciences (eLS Wiley). DOI: 10.1002/9780470015902.a0022535
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4154) PDF downloads(1130) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog