Citation: Chiara Ceresa, Maurizio Rinaldi, Letizia Fracchia. Synergistic activity of antifungal drugs and lipopeptide AC7 against Candida albicans biofilm on silicone[J]. AIMS Bioengineering, 2017, 4(2): 318-334. doi: 10.3934/bioeng.2017.2.318
[1] | Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. Fems Immunol Med Mic 59: 227–238. doi: 10.1111/j.1574-695X.2010.00665.x |
[2] | Fanning S, Mitchell AP (2012) Fungal biofilms. Plos Pathog, DOI:10.1371/journal.ppat.1002585. |
[3] | Lazzell AL, Chaturvedi AK, Pierce CG, et al. (2009) Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemot 64: 567–570. doi: 10.1093/jac/dkp242 |
[4] | Sardi JC, Scorzoni L, Bernardi T, et al. (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62: 10–24. doi: 10.1099/jmm.0.045054-0 |
[5] | Ramage G, Martınez P, Lopez RJL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. Fems Yeast Res 6: 979–986. doi: 10.1111/j.1567-1364.2006.00117.x |
[6] | Dominic RM, Shenoy S, Baliga S (2007) Candida biofilms in medical devices: evolving trends. Kathmandu Univ Med J 5: 431–436. |
[7] | Gow NA, van de Veerdonk FL, Brown AJ, et al. (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10: 112–122. |
[8] | Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36: 1–53. doi: 10.3109/10408410903241444 |
[9] | Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4: 119–128. doi: 10.4161/viru.22913 |
[10] | Ramage G, Rajendran R, Sherry L (2012) Fungal biofilm resistance. Int J Microbiol 2012: 1–14. |
[11] | Kojic EM, Darouiche RO (2004) Candida infections on medical devices. Clin Microbiol Rev 17: 255–267. doi: 10.1128/CMR.17.2.255-267.2004 |
[12] | Fracchia L, Banat JJ, Cavallo M, et al. (2015) Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng 2: 144–162. doi: 10.3934/bioeng.2015.3.144 |
[13] | Ceresa C, Rinaldi M, Chiono V, et al. (2016) Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Anton Van Leeuw 109: 1375–1388. doi: 10.1007/s10482-016-0736-z |
[14] | Rivardo F, Martinotti MG, Turner RJ, et al. (2011) Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Ag 37: 324–331. doi: 10.1016/j.ijantimicag.2010.12.011 |
[15] | Rivardo F, Martinotti MG, Turner RJ, et al. (2010) The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Can J Microbiol 56: 272–278. doi: 10.1139/W10-007 |
[16] | Rivardo F, Turner RJ, Allegrone G, et al. (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biot 83: 541–553. |
[17] | Busscher HJ, van Hoogmoed CG, Geertsema DGI, et al. (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl Environ Microb 63: 3810–3817. |
[18] | Rodriguez TJL, Arendrup MC, Barchiesi F, et al. (2008) EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infec 14: 398–405. |
[19] | Nweze EI, Ghannoum A, Chandra J, et al. (2012) Development of a 96-well catheter-based microdilution method to test antifungal susceptibility of Candida biofilms. J Antimicrob Chemot 67: 149–153. doi: 10.1093/jac/dkr429 |
[20] | Martins N, Ferreira IC, Barros L, et al. (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223–240. doi: 10.1007/s11046-014-9749-1 |
[21] | Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62: 915–921. |
[22] | Ruhnke M, Hartwig K, Kofla G (2008) New options for treatment of candidaemia in critically ill patients. Clin Microbiol Infec 14: 46–54. doi: 10.1111/j.1469-0691.2008.01981.x |
[23] | Lohner K (2014) Antimicrobial mechanisms: a sponge against fungal infections. Nat Chem Biol 10: 411–412. doi: 10.1038/nchembio.1518 |
[24] | Charlier C, Hart E, Lefort A, et al. (2006) Fluconazole for the management of invasive candidiasis: where do we stand after 15 years? J Antimicrob Chemot 57: 384–410. doi: 10.1093/jac/dki473 |
[25] | Liu S, Hou Y, Chen X, et al. (2014) Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Ag 43: 395–402. doi: 10.1016/j.ijantimicag.2013.12.009 |
[26] | Bonmatin JM, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity–structure relationships to design new bioactive agents. Comb Chem High T Sc 6: 541–556. |
[27] | Carrillo C, Teruel JA, Aranda FJ, et al. (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611: 91–97. doi: 10.1016/S0005-2736(03)00029-4 |
[28] | Deleu M, Paquot M, Nylander T (2005) Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. J Colloid Interf Sci 283: 358–365. doi: 10.1016/j.jcis.2004.09.036 |
[29] | Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94: 2667–2679. doi: 10.1529/biophysj.107.114090 |
[30] | Eeman M, Berquand A, Dufrêne YF, et al. (2006) Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization. Langmuir 22: 11337–11345. doi: 10.1021/la061969p |
[31] | Biniarz P, Baranowska G, Feder KJ, et al. (2015) The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Anton Van Leeuw 108: 343–353. doi: 10.1007/s10482-015-0486-3 |
[32] | Sriram MI, Kalishwaralal K, Deepak V, et al. (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloid Surface B 85: 174–181. doi: 10.1016/j.colsurfb.2011.02.026 |
[33] | Janek T, Łukaszewicz M, Krasowska A (2012) Anti-adhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12: 24. doi: 10.1186/1471-2180-12-24 |