Citation: Marianthi Logotheti, Eleftherios Pilalis, Nikolaos Venizelos, Fragiskos Kolisis, Aristotelis Chatziioannou. Development and validation of a skin fibroblast biomarker profile for schizophrenic patients[J]. AIMS Bioengineering, 2016, 3(4): 552-565. doi: 10.3934/bioeng.2016.4.552
[1] | Kahn RS, Sommer IE, Murray RM, et al. (2015) Schizophrenia. NRDP 1: 15067. |
[2] | Tandon R, Gaebel W, Barch DM, et al. (2013) Definition and description of schizophrenia in the DSM-5. Schizophr Res 150: 3–10. doi: 10.1016/j.schres.2013.05.028 |
[3] | American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5). Arlington: American Psychiatric Publishing. |
[4] | World Health Organization (2010) International Classification of Diseases, Tenth Revision. |
[5] | Alawieh A, Zaraket FA, Li JL, et al. (2012) Systems biology, bioinformatics, and biomarkers in neuropsychiatry. Front Neurosci 6: 187. |
[6] | Takahashi M, Hayashi H, Watanabe Y, et al. (2010) Diagnostic classification of schizophrenia by neural network analysis of blood–based gene expression signatures. Schizophr Res 119: 210–218. doi: 10.1016/j.schres.2009.12.024 |
[7] | Yousef M, Najami N, Abedallah L, et al. (2014) Computational approaches for biomarker discovery. JILSA 6: 153–161. doi: 10.4236/jilsa.2014.64012 |
[8] | Kotsiantis SB (2007) Supervised Machine Learning: A Review of Classification Techniques. Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies Emerging Artificial Intelligence Applications in Computer Engineering. Greece: IOS Press. 3–24. |
[9] | Kalman S, Garbett KA, Janka Z, et al. (2016) Human dermal fibroblasts in psychiatry research. Neuroscience 320: 105–121. doi: 10.1016/j.neuroscience.2016.01.067 |
[10] | Vumma R, Johansson J, Lewander T, et al. (2011) Tryptophan transport in human fibroblast cells-a functional characterization. Int J Tryptophan Res 4: 19–27. |
[11] | Cattane N, Minelli A, Milanesi E, et al. (2015) Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood. Plos One 10: e0116686. doi: 10.1371/journal.pone.0116686 |
[12] | Clelland CL, Read LL, Panek LJ, et al. (2013) Utilization of never-medicated bipolar disorder patients towards development and validation of a peripheral biomarker profile. Plos One 8: e69082. doi: 10.1371/journal.pone.0069082 |
[13] | Dooley EE (2004) National Center for Biotechnology Information. Environ Health Perspect 112: A674. |
[14] | Clough E, Barrett T (2016) The Gene Expression Omnibus Database. Methods Mol Biol 1418: 93–110. doi: 10.1007/978-1-4939-3578-9_5 |
[15] | Irizarry RA, Hobbs B, Collin F, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264. doi: 10.1093/biostatistics/4.2.249 |
[16] | Ritchie ME, Phipson B, Wu D, et al. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43: e47. doi: 10.1093/nar/gkv007 |
[17] | Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368–375. doi: 10.1093/bioinformatics/btf877 |
[18] | Koutsandreas T, Pilalis E, Vlachavas EI, et al. (2015) Making sense of the biological complexity through the platform-driven unification of the analytical and visualization tasks. IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE). Serbia: IEEE Computer Society. 1–6. |
[19] | Croft D, O'Kelly G, Wu G, et al. (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39: D691–697. doi: 10.1093/nar/gkq1018 |
[20] | Ashburner M, Ball CA, Blake JA, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29. |
[21] | Groza T, Kohler S, Moldenhauer D, et al. (2015) The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease. Am J Hum Genet 97: 111–124. doi: 10.1016/j.ajhg.2015.05.020 |
[22] | Smith CL, Eppig JT (2012) The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data. Mamm Genome 23: 653–668. doi: 10.1007/s00335-012-9421-3 |
[23] | Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20: 273–297. |
[24] | Dhawan M, Selvaraja S, Duan ZH (2010) Application of committee kNN classifiers for gene expression profile classification. Int J Bioinform Res Appl 6: 344–352. doi: 10.1504/IJBRA.2010.035998 |
[25] | Díaz-Uriarte R, Alvarez de Andrés S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7: 3. doi: 10.1186/1471-2105-7-3 |
[26] | Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Machine Learning 63: 3–42. doi: 10.1007/s10994-006-6226-1 |
[27] | Lou W, Wang X, Chen F, et al. (2014) Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes. Plos One 9: e86703. doi: 10.1371/journal.pone.0086703 |
[28] | Breiman L (2001) Random Forests. Machine Learning 45: 5–32. doi: 10.1023/A:1010933404324 |
[29] | Freund Y, Schapire R (1999) A Short Introduction to Boosting. JSAI 14: 771–780. |
[30] | Mozos OM, Stachniss C, Burgard W (2005) Supervised Learning of Places from Range Data using AdaBoost. IEEE International Conference on Robotics and Automation. Spain. 1742–1747. |
[31] | Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13: 281–305. |
[32] | Pedregosa F, Varoquaux G, Gramfort A, et al. (2011) Scikit-learn: Machine Learning in Python. JMLR 12: 2825–2830. |
[33] | Zhang X, Lu X, Shi Q, et al. (2006) Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 7: 197. doi: 10.1186/1471-2105-7-197 |
[34] | Barnes MR, Huxley-Jones J, Maycox PR, et al. (2011) Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res 89: 1218–1227. doi: 10.1002/jnr.22647 |
[35] | Funk AJ, McCullumsmith RE, Haroutunian V, et al. (2012) Abnormal Activity of the MAPK- and cAMP-Associated Signaling Pathways in Frontal Cortical Areas in Postmortem Brain in Schizophrenia. Neuropsychopharmacology 37: 896–905. doi: 10.1038/npp.2011.267 |
[36] | Impey S, Obrietan K, Storm DR Making New Connections. Neuron 23: 11–14. |
[37] | Muly C (2002) Signal transduction abnormalities in schizophrenia: the cAMP system. Psychopharmacol Bull 36: 92–105. |
[38] | Xu J, Sun J, Chen J, et al. (2012) RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia. BMC Genomics 13 Suppl 8: S2. |
[39] | Horvath S, Mirnics K (2014) Immune system disturbances in schizophrenia. Biol Psychiatry 75: 316–323. doi: 10.1016/j.biopsych.2013.06.010 |
[40] | Toichi M, Kubota Y, Murai T, et al. (1999) The influence of psychotic states on the autonomic nervous system in schizophrenia. Int J Psychophysiol 31: 147–154. doi: 10.1016/S0167-8760(98)00047-6 |
[41] | Ward KE, Friedman L, Wise A, et al. (1996) Meta-analysis of brain and cranial size in schizophrenia. Schizophr Res 22: 197–213. doi: 10.1016/S0920-9964(96)00076-X |
[42] | Thompson PM, Stein JL, Medland SE, et al. (2014) The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 8: 153–182. |
[43] | van Erp TG, Hibar DP, Rasmussen JM, et al. (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21: 585. doi: 10.1038/mp.2015.118 |
[44] | Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology Berl 174: 151–162. |
[45] | Mahadik SP, Mukherjee S, Laev H, et al. (1991) Abnormal growth of skin fibroblasts from schizophrenic patients. Psychiatry Res 37: 309–320. doi: 10.1016/0165-1781(91)90066-X |
[46] | Mukherjee S, Mahadik SP, Schnur DB, et al. (1994) Abnormal growth of cultured skin fibroblasts associated with poor premorbid history in schizophrenic patients. Schizophr Res 13: 233–237. doi: 10.1016/0920-9964(94)90047-7 |
[47] | Chan MK, Krebs MO, Cox D, et al. (2015) Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl Psychiatry 5: e601. doi: 10.1038/tp.2015.91 |
[48] | Le-Niculescu H, Kurian SM, Yehyawi N, et al. (2008) Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14: 156–174. |
[49] | English JA, Fan Y, Focking M, et al. (2015) Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry 5: e663. doi: 10.1038/tp.2015.119 |
[50] | Ayalew M, Le-Niculescu H, Levey DF, et al. (2012) Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 17: 887–905. doi: 10.1038/mp.2012.37 |
[51] | Iwabuchi SJ, Liddle PF, Palaniyappan L (2013) Clinical Utility of Machine-Learning Approaches in Schizophrenia: Improving Diagnostic Confidence for Translational Neuroimaging. Frontiers in Psychiatry 4: 95. |
[52] | Irani F, Brensinger CM, Richard J, et al. (2012) Computerized Neurocognitive Test Performance in Schizophrenia: A Lifespan Analysis. Am J Geriatr Psychiatry 20: 41–52. |
[53] | Sinn P, Aulmann S, Wirtz R, et al. (2013) Multigene Assays for Classification, Prognosis, and Prediction in Breast Cancer: a Critical Review on the Background and Clinical Utility. GebFra 73: 932–940. |
[54] | Akin D, Manier DH, Sanders-Bush E, et al. (2004) Decreased Serotonin 5-HT2A Receptor-Stimulated Phosphoinositide Signaling in Fibroblasts from Melancholic Depressed Patients. Neuropsychopharmacology 29: 2081–2087. doi: 10.1038/sj.npp.1300505 |