Algorithm 1: Speciation clustering with dynamic cluster sizes |
Input: population P, cluster size set C |
Output: a set of species |
Sort P in ascending order according to fitness value; |
![]() |
Hydroxyapatite (HA)-based ceramics are widely used as artificial bone substitutes due to their advantageous biological properties, which include biocompatibility, biological affinity, bioactivity, ability to drive bone formation, integration into bone tissue and induction of bone regeneration (in certain conditions). Phototherapy in bone regeneration is a therapeutic approach that involves the use of light to stimulate and accelerate the process of repair and regeneration of bone tissue. There are two common forms of phototherapy used for this purpose: Low-Level Laser Therapy (LLLT) and LED (Light Emitting Diode) Therapy. Understanding the mechanisms of laser therapy and its effects combined with hydroxyapatite has gaps. Therefore, this review was designed based on the PICO strategy (P: problem; I: intervention; C: control; O: result) to analyze the relationship between PBM therapy and hydroxyapatite.
The bibliographic search, with the descriptors “hydroxyapatite AND low-level laser therapy” and “hydroxyapatite AND photobiomodulation” resulted in 43 articles in the PubMed/MEDLINE database, of which 1 was excluded for being a duplicate and another 33 due to inclusion/exclusion criteria, totaling 9 articles for qualitative analysis. In the Web of Science database, we obtained 40 articles, of which 7 were excluded for being duplicates, 1 for not having the full text available and another 17 due to inclusion/exclusion criteria, totaling 15 articles for qualitative analysis.
The most used biomaterial was composed of hydroxyapatite and β-tricalcium phosphate in a proportion of 70%–30%. In photobiomodulation, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 780 nm, followed by 808 nm.
The results indicated that the use of laser phototherapy improved the repair of bone defects grafted with the biomaterial, increasing the deposition of HA phosphate as indicated by biochemical estimators, spectroscopy and histological analyses.
Citation: Jéssica de Oliveira Rossi, Gabriel Tognon Rossi, Maria Eduarda Côrtes Camargo, Rogerio Leone Buchaim, Daniela Vieira Buchaim. Effects of the association between hydroxyapatite and photobiomodulation on bone regeneration[J]. AIMS Bioengineering, 2023, 10(4): 466-490. doi: 10.3934/bioeng.2023027
[1] | M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83 |
[2] | Zhen Yan, Shuijia Li, Wenyin Gong . An adaptive differential evolution with decomposition for photovoltaic parameter extraction. Mathematical Biosciences and Engineering, 2021, 18(6): 7363-7388. doi: 10.3934/mbe.2021364 |
[3] | Yukun Song, Yue Song, Yongjun Wu . Adaptive boundary control of an axially moving system with large acceleration/deceleration under the input saturation. Mathematical Biosciences and Engineering, 2023, 20(10): 18230-18247. doi: 10.3934/mbe.2023810 |
[4] | Hebing Zhang, Xiaojing Zheng . Invariable distribution of co-evolutionary complex adaptive systems with agent's behavior and local topological configuration. Mathematical Biosciences and Engineering, 2024, 21(2): 3229-3261. doi: 10.3934/mbe.2024143 |
[5] | Shihao Yuan, Hong Zhao, Jing Liu, Binjie Song . Self-organizing map based differential evolution with dynamic selection strategy for multimodal optimization problems. Mathematical Biosciences and Engineering, 2022, 19(6): 5968-5997. doi: 10.3934/mbe.2022279 |
[6] | Vladimir Djordjevic, Hongfeng Tao, Xiaona Song, Shuping He, Weinan Gao, Vladimir Stojanovic . Data-driven control of hydraulic servo actuator: An event-triggered adaptive dynamic programming approach. Mathematical Biosciences and Engineering, 2023, 20(5): 8561-8582. doi: 10.3934/mbe.2023376 |
[7] | Lingyu Wu, Zixu Li, Wanzhen Ge, Xinchao Zhao . An adaptive differential evolution algorithm with elite gaussian mutation and bare-bones strategy. Mathematical Biosciences and Engineering, 2022, 19(8): 8537-8553. doi: 10.3934/mbe.2022396 |
[8] | J. Ignacio Tello . On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences and Engineering, 2013, 10(1): 263-278. doi: 10.3934/mbe.2013.10.263 |
[9] | Yan Zhao, Jianli Yao, Jie Tian, Jiangbo Yu . Adaptive fixed-time stabilization for a class of nonlinear uncertain systems. Mathematical Biosciences and Engineering, 2023, 20(5): 8241-8260. doi: 10.3934/mbe.2023359 |
[10] | Alma Mašić, Hermann J. Eberl . On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria. Mathematical Biosciences and Engineering, 2014, 11(5): 1139-1166. doi: 10.3934/mbe.2014.11.1139 |
Hydroxyapatite (HA)-based ceramics are widely used as artificial bone substitutes due to their advantageous biological properties, which include biocompatibility, biological affinity, bioactivity, ability to drive bone formation, integration into bone tissue and induction of bone regeneration (in certain conditions). Phototherapy in bone regeneration is a therapeutic approach that involves the use of light to stimulate and accelerate the process of repair and regeneration of bone tissue. There are two common forms of phototherapy used for this purpose: Low-Level Laser Therapy (LLLT) and LED (Light Emitting Diode) Therapy. Understanding the mechanisms of laser therapy and its effects combined with hydroxyapatite has gaps. Therefore, this review was designed based on the PICO strategy (P: problem; I: intervention; C: control; O: result) to analyze the relationship between PBM therapy and hydroxyapatite.
The bibliographic search, with the descriptors “hydroxyapatite AND low-level laser therapy” and “hydroxyapatite AND photobiomodulation” resulted in 43 articles in the PubMed/MEDLINE database, of which 1 was excluded for being a duplicate and another 33 due to inclusion/exclusion criteria, totaling 9 articles for qualitative analysis. In the Web of Science database, we obtained 40 articles, of which 7 were excluded for being duplicates, 1 for not having the full text available and another 17 due to inclusion/exclusion criteria, totaling 15 articles for qualitative analysis.
The most used biomaterial was composed of hydroxyapatite and β-tricalcium phosphate in a proportion of 70%–30%. In photobiomodulation, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 780 nm, followed by 808 nm.
The results indicated that the use of laser phototherapy improved the repair of bone defects grafted with the biomaterial, increasing the deposition of HA phosphate as indicated by biochemical estimators, spectroscopy and histological analyses.
Many real-world applications can be transformed into nonlinear equations (NESs), such as physics [1], engineerings [2,3], economics [4], and so on. Generally, a NES contains multiple roots. Each root is equally important because it can provide multiple selections to the decision makers so that they can make a better decision [5]. In recent years, solving NESs have received widespread attention from researchers. However, it may cause the great challenge in mathematical field, especially to locate multiple roots in a single run.
Evolutionary algorithms (EAs) draw lessons from the evolution of biological operations in nature [6]. It includes the basic operations of population initialization, crossover mutation operator, retention mechanism, and so on. Among them, differential evolution (DE) [7] is a famous optimization technique and a versatile function optimizer. Due to its features of easy-to-implement and robust adaptability, DE has been widely applied for many optimization problems [8,9]. More specifically, Li et al. presented an enhanced adaptive DE algorithm to extract the parameters of photovoltaic models [10]. Mohanmed et al. designed a novel mutation strategy to enhance SHADE and LSHADE algorithm to solve the global numerical optimization [11]. Pierezan et al. proposed a modified self-adaptive differential evolution to deal with the static force capability optimization of humanoids robots [12]. Santos Coelho et al. presented a self-adaptive chaotic differential evolution algorithm using gamma distribution to solve unconstrained global optimization problem [13]. Li et al. hybrid differential evolution algorithm with modified CoDE and JADE to improve the performance of solving the global optimization problem [14]. Civicioglu et al. adopted bezier search differential evolution algorithm to solve the numerical function optimization [15]. Zhao et al. proposed a collaborative LSHADE algorithm with comprehensive learning mechanism to slove the non-separable optimization problem and obtained the competitive results [16].
In recent years, DE is often used to solve NESs because it is insensitive to the characteristics of NESs, such as non-convexity and discontinuity, it has been applied to solve NESs [17]. However, DE encounters following two dilemma: 1) due to the lack of diversity preserving mechanism, it hardly locates multiple roots in a single run; 2) although some DE variants can obtain multiple roots, they have the problems of parameter settings, such as cluster size [18], repulsion radius [19].
To effectively solve NESs, it is important to maintain the population diversity during the evolutionary process. Clustering is perceived to be an effective methods, which can pratition the whole population into different species [20]. Thus, some clustering-based methods have been developed to find the roots of NESs [18,21]. It requires to give the number of cluster in advance. Too small the number of clusters may lose some roots. In contrast, too large cluster number may obtain the roots with low accuracy since the algorithm cannot make full use of computational resources to exploit in each cluster. However, it is difficult to specify the appropriate number of clusters for different NESs.
Parameter control in evolutionary computation plays an important role to the robustness of the algorithm [22]. Recently, some adaptive or self-adaptive parameter control methods [23,24,25] have been proposed to dynamically control the parameters according to different fitness landscapes of optimization problems. These methods can significantly improve the search ability of DE, but most of them focus on global optimum. Thus, how to develop a self-adaptive strategy suited for NESs is still a problem to be solved.
After clustering, each subpopulation might gradually converge to a narrow range of space during the evolution process. If an individual fitness less than the threshold, it is considered as a candidate solution. By this stage, continuous optimization in this subpoulation prefers the exploitation, which is able to improve the quality of root. However, it is not conducive to the population diversity and wastes more computational resource to seek the same root. Therefore, it is an urgent issue to deal with the species contained the found root.
Based on the above considerations, we combine the species clustering with dynamic cluster sizes, niche adaptive parameter control, and re-initialization mechanism to locate multiple roots of NESs. The proposed method is referred as a clustering-based adaptive speciation differential evolution (CASDE). In CASDE, species clustering with dynamic cluster sizes can alleviate the trivial task to set the cluster number. Moreover, the adaptive parameter control is employed to dynamically adjust at the niche level, thereby improving the search efficiency of the algorithm. To verify the performance of our method, we select 30 NESs from the literature [26] as test suite. Experimental results demonstrate that our method obtains highly competitive results compared with other state-of-the-art methods.
The major contributions of this paper are summarized as follows:
● The species clustering with dynamic cluster sizes, niche adaptive parameter control, and re-initialization technique are combined together in a synergistic manner can greatly enhance the problem-solving capability. Among them, the species clustering with dynamic cluster sizes-maintaining the population diversity; niche adaptive parameter control-enhancing the exploitation performance in each species and avoiding trivial task to set parameters; and re-initiation technique-seeking the new roots with an reasonable using computational resource reasonably.
● The niche parameter adaptive method is proposed to ensure that the parameters can be changed according to different problem landscapes, so as to improve the efficiency of the algorithm.
● The effectiveness of the three different parts of components has been experimentally verified. The results show that these three parts combined together in a synergistic manner can greatly enhance the performance for solving NESs.
● To further evaluate the performance of CASDE, two cases of motor system are selected to measure the performance of the proposed approach. The results have been confirmed the effectiveness of CASDE on real-world problems.
The rest of this paper is summarized as follows. Section 2 introduces background knowledge about the transformed optimization problem, different evolution. Section 3 reviews the related work for solving NESs. In Section 4, the proposed CASDE is described in detail. The experimental results and discussion are respectively given in Section 5, follow by the discussion in Section 6. In Section 7, two practical problem are used to test the performance of the algorithm. Finally, Section 8 concludes this paper.
Generally, a NES can be expressed as follows:
E(x)={e1(x1,x2,…,xD)=0e2(x1,x2,…,xD)=0⋮en(x1,x2,…,xD)=0 | (2.1) |
where n is the number of equations, x=(x1,x2,…,xD) denotes a decision vector, x∈S, and S⊆RD is the search space. Generally,
S=[x_i,¯xi]m |
where i=1,⋯,D, x_i and ¯xi are the lower and upper bound of xi, respectively.
Before solving a NES with optimization algorithm, it is commonly transformed into a single-objective optimization problem:
minimizef(x)=n∑i=1e2i(x) | (2.2) |
Subsequently, solving NES is equivalent to find the global optimal of the transformed optimization problem in Eq (2.2).
Differential evolution (DE) adopts three operators, including mutation, crossover, and selection, to deal with the population during the search process. Generally, a population contains NP real-valued vectors: X={x1,x2,...,xNP}. NP is the population size.
Mutation operator is used to generate a mutant vector vi according to the parent population. Two well-known mutation strategies are shown below:
● "DE/rand/1"
vi=xr1+F⋅(xr2−xr3) | (2.3) |
● "DE/best/1"
vi=xbest+F⋅(xr2−xr3) | (2.4) |
r1,r2 and r3 respectively represent different random indices selected from the population, and they are distinct from the base index i. F is a scale factor that controls the size of difference vector. xbest is the best individual in current population.
The crossover operator generates the trial vectors by recomposing the current vector and the mutant vector. The trial vector x′i(j) is generated as follow:
x′i(j)={vi(j),if randj(0,1)≤CRi,jorj=jrandxi(j),otherwise | (2.5) |
where CRi,j∈(0,1) is the crossover rate; randj(0,1) is a random value within [0,1]; j={1,...,D}; jrand∈{1,2,...,D} represents a random index.
In original DE algorithm, greedy selection operator is employed to select the individual with better fitness value for a minimization problem. If the trial vector x′i is better than xi, xi is set to x′i; otherwise, xi keeps unchanged.
xi={x′i,if f(x′i)≤f(xi)xi,otherwise | (2.6) |
where f(⋅) is the objective function to be minimized.
Some stochastic approaches were proposed to solve NESs, which consist of three categories: multiobjective-optimization-based ones, single-objective-optimization-based ones, and constraint-optimization-based ones.
Multiobjective optimization can obtain a group of Pareto optimal solutions [27,28], which is similar to locate different roots of NESs. Therefore, more attention has been paid to the use of multiobjective optimization to solve NESs. In [29], a NES was first transformed into a multiobjective optimization problem, and then solve the optimization problem via a evolution algorithm. This kind of transformation technique ensures that multiple roots can be found in a single run. However, it may cause the curse of dimensionality if the number of equation is too large. To solve this problem, In [30], a bi-objective transformation technique was proposed to transform a NES into multiobjective optimization problems with two objectives. However, since only one decision variable is utilized to design the location function, it may lose several roots. For this purpose, Gong et al. [31] presented a weighted bi-objective transformation technique (A-WeB) for NESs. In [32], Naidu and Ojha employed a hybrid cooperative multiobjective optimization IWO to solve NESs, where multiple populations are used to deal with multiple objectives.
In general, a NES is usually transformed into a single-objective optimization problem, as shown in Eq (2.2). Two common methods are used to solve this problem: clustering-based methods and repulsion-based methods.
Clustering [20] can divide the population into different subpopulations, thus enabling the algorithm to search for more than one promising area. Clustering can maintain the diversity of population, so several researchers put forward clustering-based methods to locate multiple roots of NESs. In [18], the clustering technique was employed to separate the estimated locations of solutions, and then invasive weed optimization was used to calculate the exact solution in each cluster. In [33], Fuzzy Clustering Means combines Luus-Jaakola random search and the Nelder-Mead simplex method to solve NESs. In [21], Multistart and Minfinder methods based on clustering were applied for locating multiple roots of NESs.
The repulsion techniques can generate a repulsive regions around the obtained roots, which can increase the variety of population. Based on the repulsion techniques, several methods have been developed to solve NESs. In [34], repulsion technique combined with simulated annealing (SA) to compute critical points in binary systems. Henderson et al. [35] designed a combination of continuous SA and repulsion technique to locate multiple roots of double retrograde vaporization. In [18], a two-phase root-finder was developed to find the roots of NESs, in which invasive weed optimization located the exact roots while repulsion technique was used to preserve the population diversity. In [36], a biased random-key genetic algorithm (BRKGA) was carried out many times to detect the roots. In [19], the improved harmony search algorithm combined with the repulsion methods to solve NESs. In [26], a new approach consisting of the repulsion technique, adaptive parameter control, and diversity preserving mechanism, named RADE, was designed. Further, In [37], a general framework based on the dynamic repulsion technique and evolutionary algorithms (DR-JADE) is presented.
The third category is the constrained optimization transformation approach. It translates a NES into a constrained optimization problem:
{minn∑i=1|ei(x)|subject \; toei(x)≥0,i=1,2,...,n | (3.1) |
Based on this translated optimization problem, Kuri-Morales [38] developed a penalty function to handle constraints and used a genetic algorithm (GA) to locate the root. Pourrajabian et al. [39] combined augmented lagrangian function with GA to find the optimal solution.
Generally, the number of clustering should be given before the algorithm runs. However, it is difficult to set appropriate clustering number for NESs. Besides, after clustering, there are different subpopulations in the search space. Different subpopulations represent multiple promising regions that may have roots. Thus, how to improve the search ability in each subpopulation also needs further research. Moreover, as the search proceeds, each subpopulation will converge to a narrow range as the number of iterations increases. If a root is found in the subpopulation, continuous optimization of the subpopulation will result in loss of diversity and waste of computing resources. In addition, several researchers have adopted improved DE algorithm to solve NESs, which has gained extensive attention and improved the performance of problem solving [26,37]. For this reason, this paper still focuses on enhancing the DE algorithm by integrating other techniques in order to obtain satisfactory results.
Based on the above considerations, a re-initialization clustering-based adaptive differential evolution, named CASDE, is presented to solve NESs. In CASDE, a dynamical cluster sizing technique is employed to solve the problem that the number of clusters is difficult to set. Meanwhile, niche adaptive parameter setting is applied to improve the search ability in each subpopulation and avoid the trivial task of parameter settings. Moreover, the re-initialization mechanism will be triggered if a root has found in a subpopulation. For one thing, it can preserve the population diversity; for another, it is a benefit for exploration ability of the search algorithm and increases the probability to find new roots in other promising regions.
In [40], a speciation clustering was proposed to divide the population into different subpopulations. To reduce the sensitivity of the cluster size, dynamic cluster sizing technique [41] was introduced into speciation clustering. The effectiveness of this simple scheme was verified by experiments.
The process of dynamic clustering size (DCS) is outlined in Algorithm 1. First, the population is sorted according to fitness value in ascending order. Second, a random integer M is selected from the cluster size set C. Based on such integer, M−1 individuals that is close to species seed are combined with the species seed to form a species. Finally, the algorithm divides the whole population into a number of species with M individuals. It is noted that M is a random integer selected from C.
Algorithm 1: Speciation clustering with dynamic cluster sizes |
Input: population P, cluster size set C |
Output: a set of species |
Sort P in ascending order according to fitness value; |
![]() |
After clustering, different subpopulations contain different promising regions, which have different landscape characteristics in the search space. To improve the search ability and avoid the trivial task of parameter settings in the subpopulations, a niche adaptive differential evolution is proposed in this section.
At each generation, the crossover rate CRi,j of each individual xi in cluster j is independently generated according to a normal distribution of mean CRj and standard deviation 0.1
CRi,j=randn(μCR,0.1) | (4.1) |
and truncated to [0, 1], μCR is updated as follows:
μCR=(1−c)⋅μCR+c⋅meanL(SCRj) | (4.2) |
where c is constant number between 0 and 1; SCRj is the set of the crossover rates CRi,j in each species. meanL(.) is the Lehmer mean
meanL(SCRj)=∑S2CRj∑SCRj | (4.3) |
Similarly, the mutation factor Fi,j of each individual xi in species j is independently generated according to a Cauchy distribution.
Fi,j=randc(μF,0.1) | (4.4) |
It is regenerated if Fi,j≤0 or truncated to be 1 if Fi,j≥1. The parameter μF updates as follow:
μF=(1−c)⋅μF+c⋅meanA(SFj) | (4.5) |
where meanA(.) is the arithmetic mean; and SFj is the set of mutation factor Fi,j at each species.
Comparison with JADE [24], we modify the parameter adaptive method to some extent. SFj does update via arithmetic mean whereas SCRj is used Lehmer mean to revise. The reasons are two-fold: i) the adaptation SFj put a greater emphasis on normal mutation factor by using the arithmetic mean instead of a Lehmer mean. The arithmetic mean is helpful to propagate average mutation factors, which improve the exploitation ability in each species; ii) to improve population diversity in the species and avoid trapping in local optima, Lehmer mean is used to update SCRj.
As the algorithm proceeding, the candidate solution can be found in the subpopulation. Continuous optimization in such subpopulation may pays more attention to exploitation rather than exploration. It may lead to loss of population diversity and waste of computational resource. Therefore, the reinitialization mechanism is used to solve this problem.
If a subpopulation locates a root, it is considered as convergence during the run. The root is stored into a archive A. Subsequently, all of the individuals in the subpopulation will reinitialize for maintaining population diversity. Additionally, F and CR of each individual are respectively set to 0.5 and 0.9.
It is worth mentioning that our approach may find the same root during the run. Thus, a method to update the archive is employed to avoid encountering this dilemma. Algorithm 2 outlines the process of updating the archive. In Algorithm 2, x∗ is one of the root in A, and ϵ is a small fixed value to avoid storing the same root in A. In this paper, ϵ is set to 0.01.
In reinitialization mechanism, we initialize the entire subpopulation instead of the found root, which has two advantages. On the one hand, it can use computational resource efficiently and benefit population diversity. On the other hand, to some extent, this mechanism prevents the remaining individuals in the subpopulation from continuing to locate the same root.
Algorithm 2: Archive updating |
Input: Solution x and ϵ>0 |
Output: The updated archive A |
![]() |
The framework of CASDE is outlined in Algorithm 3. One iteration in CASDE includes following steps:
Step 1: Dividing population (in line 7). Algorithm 1 partitions the population into multiple subpopulations.
Step 2: Generating new individuals (in lines 9-20). Each individual generates new offspring based on three operations: mutation, crossover, and selection.
Step 3: Updating the information (in line 21). μF and μCR in j-th species are modified through Eqs (4.5) and (4.2).
Step 4: Updating the archive (in line 24). If a root is located, it will be stored in the archive.
Step 5: Reinitializating the subpopulation (in lines 25, 26). All individuals in such subpopulation are reinitialized; Fi,j and CRi,j of each individual are also respectively set to 0.5 and 0.9.
The above iteration is repeated until the termination criterion was met.
It is worth mentioning that a hybrid mutation strategy ("DE/rand/1" and "DE/best/1") is used to generate the mutation vectors (in lines 12-15). The reason is that the hybrid strategy can balance the ability of exploration and exploitation to some extent and improve the search ability of the algorithm.
Algorithm 3: The framework of CASDE |
Input:Control parameters: NP, NFE, NFEsmax |
Output:The final archive A |
Set NFE=0 and the archive A=∅; |
Randomly generate the population P; |
F and CR of each individual in P are set to 0.5 and 0.9; |
Calculate the fitness value of x via Eq (2.2) |
NFE=NFE+NP |
![]() |
In this section, we mainly focuses on experimental results and analysis, including the impact of different parts in CASDE, comparing CASDE with state-of-the-art methods.
To evaluate the performance of different methods, frequently-used NESs (F01-F30) benchmark problems are selected as a test suite. They have different characteristics, and some derive from real-world applications, such as multiple steady states problem (F08) [42], robot kinematics problem (F17) [43], and molecular conformation (F23) [44]. The test problems are briefly introduced in Table 1.
Prob. | D | LE | NE | NoR | NFEsmax |
F01 | 20 | 0 | 2 | 2 | 50, 000 |
F02 | 2 | 1 | 1 | 11 | 50, 000 |
F03 | 2 | 0 | 2 | 15 | 50, 000 |
F04 | 2 | 0 | 0 | 13 | 50, 000 |
F05 | 10 | 0 | 10 | 1 | 50, 000 |
F06 | 2 | 1 | 1 | 8 | 50, 000 |
F07 | 2 | 0 | 2 | 2 | 50, 000 |
F08 | 2 | 0 | 2 | 7 | 50, 000 |
F09 | 5 | 4 | 1 | 3 | 100, 000 |
F10 | 3 | 0 | 3 | 2 | 50, 000 |
F11 | 2 | 0 | 2 | 4 | 50, 000 |
F12 | 2 | 0 | 2 | 10 | 50, 000 |
F13 | 3 | 0 | 3 | 12 | 50, 000 |
F14 | 2 | 0 | 2 | 9 | 50, 000 |
F15 | 2 | 0 | 2 | 2 | 50, 000 |
F16 | 2 | 0 | 2 | 13 | 50, 000 |
F17 | 8 | 1 | 7 | 16 | 100, 000 |
F18 | 2 | 0 | 2 | 6 | 50, 000 |
F19 | 20 | 19 | 1 | 2 | 200, 000 |
F20 | 3 | 0 | 3 | 7 | 50, 000 |
F21 | 2 | 0 | 2 | 4 | 50, 000 |
F22 | 2 | 0 | 2 | 6 | 50, 000 |
F23 | 3 | 0 | 3 | 16 | 500, 000 |
F24 | 3 | 0 | 3 | 8 | 100, 000 |
F25 | 3 | 0 | 3 | 2 | 50, 000 |
F26 | 2 | 0 | 2 | 2 | 50, 000 |
F27 | 2 | 0 | 2 | 3 | 50, 000 |
F28 | 2 | 0 | 2 | 2 | 50, 000 |
F29 | 3 | 0 | 3 | 5 | 50, 000 |
F30 | 2 | 0 | 2 | 4 | 50, 000 |
To evaluate the effectiveness of algorithms, two performance Metrics in [26] : (Root ratio (RR) and Success Rate (SR)), are employed in this paper.
● Root ratio (RR): It is the ratio of found roots number to total roots number over multiple runs within NFEsmax:
RR=Nr∑i=1Nf,iNoR⋅Nr | (5.1) |
where Nr is the number of runs; Nf,i is the found roots number in the i-th run; NoR is the total roots number of a NES.
● Success rate (SR): It is the ratio of successful runs* to total runs :
* A successful run is considered as a run where all known optima of a NES are found.
SR=Nr,sNr | (5.2) |
where Nr,s is the number of successful runs.
CASDE contains three parts, i.e., dynamic clustering sizes, niche adaptive parameter control, and the re-initialization mechanism. This subsection mainly dedicates to discuss the impact of different parts of CASDE on performance of solving NESs.
1) CASDE. The dynamic clustering sizes, niche adaptive parameter control, and the re-initialization mechanism were combined.
2) DCS-DE. It is the algorithm that DE combines with dynamic clustering sizes.
3) CASDE/DA. The re-initialization mechanism was removed from CASDE;
4) CASDE/DR. The niche adaptive parameter control was removed from CASDE. F and CR were respectively set to 0.5 and 0.9;
5) CASDE/AR. The dynamic clustering sizes were not used in CASDE. The clustering size were set to 5.
The detailed experiment result in terms of RR and SR is shown in Table A1. It is obvious that CASDE obtained the best average RR value, i.e., 0.9951 and the best average SR value, i.e., 0.9556. Additionally, CASDE successfully solves 26 out of 30 NESs over 30 independent runs. In contrast, CASDE/AR, CASDE/DR, CASDE/DA and DCS-DE. successfully solve 23, 20, 15, 13 NESs over 30 independent runs, respectively.
The statistical test results acquired by the multiple-problem Wilcoxon's test are showed in Table 3. In addition, the ranking results obtained from the Friedman's test are shown in Table 2. From Table 3, CASDE consistently offers significantly better results than CASDE/DR, CASDE/DA, and DCS-DE due to the fact that p-values are less than 0.05 in all the cases. Additionally, CASDE also obtains the best ranking as shown in Table 2. In what follows, we try to analyze the influence of different parts of CASDE on the performance of solving NESs.
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 2.3667 | 2.3500 |
CASDE/AR | 2.5500 | 2.5333 |
CASDE/DR | 3.0667 | 3.0333 |
CASDE/DA | 3.3167 | 3.3667 |
DCS-DE | 3.7000 | 3.7167 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE/AR | 265.5 | 199.5 | 4.90E-01 | 260.5 | 204.5 | 5.57E-01 |
CASDE/DR | 337.0 | 128.0 | 3.07E-02 | 345.0 | 120.0 | 1.42E-02 |
CASDE/DA | 378.5 | 86.5 | 1.36E-03 | 378.5 | 86.5 | 1.28E-03 |
DCS-DE | 393.0 | 72.0 | 4.99E-04 | 394.5 | 70.5 | 2.93E-04 |
● DCS-DE: from Table A1, DCS-DE can successfully solve 13 out of 30 NESs, i.e., F01, F05, F06, F09-F11, F18, F20, F21, F26-F30. However, one feature of them is that they contain a small number of the known roots. For example, the known roots of this kind of NESs are no more than 8. Thus, DCS-DE is more suitable for solving these NESs.
● CASDE/DA: The combination of dynamic clustering size and niche adaptive parameter control can improve the performance of the algorithm to some extent. As shown in Table A1, RR and SR values obtained by CASDE/DA were higher than DCS-DE.
● CASDE/DR: From Table A1, the re-initialization method can improve the performance of the algorithm. For example, RR and SR values obtained by CASDE/DR were 0.9365 and 0.8156, respectively, significantly higher than those obtained by DCS-DE.
● CASDE/AR: Similarly, the combination of niche adaptive parameter control and re-initialization mechanism can also improve the performance of the algorithm.
● CASDE: It obtains the best RR and SR values. The reasons are as follows: 1) dynamic clustering size can reduce the sensitivity of clustering number and maintain population diversity; 2) niche adaptive parameter control reduces the tedious task of parameter settings and improves the search ability of the algorithm; 3) the re-initialization mechanism can improve the population diversity and detect the new roots.
CASDE is compared with the following state-of-the-art algorithms:
● Decomposition-based differential evolution with reinitialization: DDE/R.
● A weighted biobjective transformation technique for NESs: A-WeB [45].
● Repulsion-based adaptive differential evolution: RADE [26].
● Dynamic repulsion-based evolutionary algorithms: DREA [37].
● Fuzzy neighborhood-based DE with orientation: FONDE [46].
● Evolutionary multiobjective optimization-based multimodal optimization: EMO-MMO [47].
● Niching technique integrated with CMA-ES [48]: N-CMA-ES.
● Niching integrated with JADE [24]: N-JADE.
● Niching integrated with coyote algorithm [49]: N-COA.
The parameter settings are given in Table 4. All experiments are run 30 times for fair comparison. In addition, the advantage of CMA-ES, JADE and COA are to find the global optimal. In order to improve the performance of solving NESs, we combine niche techniques with these algorithms.
Method | Parameter settings |
CASDE | NP=100,F=0.5,CR=0.9,C={5,6,7,8,9,10} |
DDE/R | NP=100,F=0.5,CR=0.9,t=20,ℓ=20 |
MONES | NP=100,Hm=NP |
A-WeB | NP=100,Hm=NP |
RADE | NP=100,Hm=200 |
DREA | NP=10,uCR=0.5,uF=0.5,c=0.1 |
MODFA | NP=100,α=0.23,β0=1,δ=0.98,γ=1 |
FONDE | NP=100,F=0.5,CR=0.9,m=11 |
Self-CCDE | NP=100,CRm=0.5 |
Self-CSDE | NP=100,CRm=0.5 |
EMO-MMO | NP=100,η=0.1,m=20,ϕ=0 |
ANDE | NP=100,F=0.9,CR=0.1 |
CMA-ES | μ=5,λ=10 |
JADE | uCR=0.5,uF=0.5,c=0.1 |
COA | Np=20,Nc=5 |
Tables A2 and A3 in 8 show the detailed results of RR and SR. Additionally, the statistical results obtained by the Friedman test and the Wilcoxon test give in Tables 5 and 6, respectively. It is obvious that CASDE obtains the highest average values in both RR (0.9951) and SR (0.9556). Moreover, compared with other methods, it also achieves the highest ranking in Table 5. Meanwhile, from Table 6 obtained by the Wilcoxon test, CASDE significantly exceeds other methods in terms of RR and SR except DDE/R and FONDE since all p−values are less than 0.05.
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 4.1500 | 4.1167 |
DDE/R | 4.4667 | 4.6500 |
A-WeB | 8.2333 | 8.1333 |
RADE | 6.1500 | 6.3500 |
DREA | 6.1167 | 6.5833 |
FONDE | 4.6333 | 4.5833 |
EMO-MMO | 9.9167 | 10.6167 |
N-CMA-ES | 11.1333 | 10.6167 |
N-JADE | 9.8667 | 9.7667 |
N-COA | 9.8833 | 10.1833 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
DDE/R | 275.5 | 189.5 | 3.46E-01 | 242.0 | 193.0 | 3.85E-01 |
A-WeB | 426.0 | 39.0 | 6.30E-05 | 411.0 | 54.0 | 1.04E-04 |
RADE | 375.0 | 90.0 | 3.19E-03 | 377.0 | 88.0 | 2.78E-03 |
DREA | 332.5 | 132.5 | 3.87E-02 | 345.0 | 120.0 | 1.42E-02 |
FONDE | 321.0 | 144.0 | 5.42E-02 | 319.0 | 149.0 | 5.92E-02 |
EMO-MMO | 436.5 | 28.5 | 5.01E-06 | 447.0 | 18.0 | 1.02E-06 |
N-CMA-ES | 439.5 | 25.5 | 7.01E-06 | 439.5 | 25.5 | 0.00E+00 |
N-JADE | 437.5 | 27.5 | 1.90E-05 | 437.5 | 27.5 | 0.00E+00 |
N-COA | 437.5 | 27.5 | 2.3E-04 | 437.5 | 27.5 | 0.00E+00 |
Moreover, the results† obtained by Nemenyi test are listed in Table 7. We can observe the results of the best classified algorithms in the competition, like CASDE, we see that there are significant differences with algorithms like A-WeB, RADE, EMO-MMO, N-CMA-ES, N-JADE and N-COA but this difference is not significant for DDE/R, RADE, DREA, FONDE, and ANDE. More specific, CASDE has better performance than DDE/R, RADE, DREA, FONDE, and ANDE according to the results achieved by the Friedman test and the Wilcoxon test.
† In order to save space, we will only list the comparison between CASDE and other methods
CASDE | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-JADE | N-COA | |
CASDE | 7.65E-01 | 2.67E-04 | 4.28E-02 | 7.67E-02 | 5.91E-01 | 0.00E+00 | 0.00E+00 | 3.00E-06 | 0.00E+00 | |
DDE/R | 7.65E-01 | 8.16E-04 | 8.41E-02 | 1.42E-01 | 8.14E-01 | 1.00E-06 | 0.00E+00 | 1.20E-06 | 2.01E-06 | |
A-WeB | 2.67E-04 | 8.16E-04 | 1.05E-01 | 6.06E-02 | 1.86E-03 | 1.35E-01 | 2.51E-02 | 3.06E-01 | 1.65E-01 | |
RADE | 4.28E-02 | 8.41E-02 | 1.05E-01 | 7.98E-01 | 1.35E-01 | 1.85E-03 | 1.14E-04 | 8.20E-03 | 2.64E-03 | |
DREA | 7.67E-02 | 1.42E-01 | 6.06E-02 | 7.98E-01 | 2.16E-01 | 7.56E-04 | 3.90E-05 | 3.73E-03 | 1.10E-03 | |
FONDE | 5.91E-01 | 8.14E-01 | 1.86E-03 | 1.35E-01 | 2.16E-01 | 4.00E-06 | 0.00E+00 | 3.50E-05 | 7.01E-06 | |
EMO-MMO | 0.00E+00 | 1.00E-06 | 1.35E-01 | 1.85E-03 | 7.56E-04 | 4.00E-06 | 4.55E-01 | 6.31E-01 | 9.15E-01 | |
N-CMA-ES | 0.00E+00 | 0.00E+00 | 2.51E-02 | 1.14E-04 | 3.90E-05 | 0.00E+00 | 4.55E-01 | 2.24E-01 | 3.9E-01 | |
N-JADE | 3.00E-06 | 1.20E-06 | 3.06E-01 | 8.20E-03 | 3.73E-03 | 3.50E-05 | 6.31E-01 | 2.24E-01 | 7.17E-01 | |
N-COA | 0.00E+00 | 2.01E-06 | 1.65E-01 | 2.64E-03 | 1.10E-03 | 7.01E-06 | 9.15E-01 | 3.9E-01 | 7.17E-01 |
As shown in Section 5.2, the superior performance of CASDE has been evaluated. In this section, the influence of fixed clustering size, the impact of different parameter settings, and different mutation operators are studied.
An important aspect concerning CASDE is the clustering size. Therefore, this section mainly discusses the impact of different clustering sizes on CASDE.
To make it simple, we respectively set the fixed sizes as 5, 10, 20, which is for the precise division. They are employed to replace the dynamic clustering size previously used in CASDE. Therefore, three CASDE variants, i.e., CASDE-5, CASDE-10 and CASDE-20, are developed‡.
‡ The only difference between CASDE and CASDE-5 (CASDE-10, CASDE-20) is the clustering size, all other settings remain the same.
The detailed experiment results are shown in Table A4 for both RR and SR in the supplementary file. From Table A4, compared with CASDE-5, CASDE-10, and CASDE-20, CASDE also obtains the best average RR and SR values. Furthermore, the case where the fixed clustering size is equal to 20 is worth discussing. This large clustering size leads to a small number of species. Therefore, it is not conductive to solving the NESs contained many roots. From Table A4, it can be seen that CASDE-20 successfully solve 16 out of 30 NESs over 30 independent runs. One characteristic of these NESs is that they contain few roots. In contrast, if the NESs has many roots, such as F03, F04, F13, F16, F17, F23, and F24, CASDE-20 is difficult in locating all the roots in a single run.
The statical results from the Friedman test and Wilcoxon test are shown in Tables 8 and 9. We can see clearly that CASDE achieves the best ranking value from Table 8. Meanwhile, from Table 9, CASDE significantly outperforms CASDE-20 at α=0.05 for RR and SR.
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 2.1500 | 2.1500 |
CASDE-5 | 2.4000 | 2.3833 |
CASDE-10 | 2.3300 | 2.3500 |
CASDE-20 | 3.1167 | 3.1167 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE-5 | 265.5 | 199.5 | 4.91E-01 | 260.5 | 204.5 | 5.57E-01 |
CASDE-10 | 285.0 | 150.0 | 1.41E-01 | 285.0 | 150.0 | 1.41E-01 |
CASDE-20 | 397.0 | 68.0 | 6.89E-04 | 397.0 | 68.0 | 4.95E-04 |
Based on the above analysis, comparison with the fixed clustering size, the dynamic clustering size is able to improve the performance of algorithm. Besides, dynamic clustering sizes alleviates the trivial task to give the proper clustering size for different NESs problems.
To improve the search ability and avoid the trivial tasks of parameter setting, niche adaptive parameter setting is used in CASDE. In this subsection, we verify the effect of the static parameter settings (F and CR) on the performance of CASDE. Therefore, the adaptive parameter setting is removed from the CASDE, and nine diverse sets of parameters are used in CASDE, i.e., (F=0.1,CR=0.1), (F=0.1,CR=0.5), (F=0.1,CR=0.9), (F=0.5,CR=0.1), (F=0.5,CR=0.5), (F=0.5,CR=0.9), (F=0.9,CR=0.1), (F=0.9,CR=0.5), and (F=0.9,CR=0.9). For fair comparison, all parameters are consistent with CASDE.
The detailed results based on RR and SR values are respectively shown in Tables A5 and A6 in the supplementary material. Additionally, the average ranking obtained by the Friedman test are reported in Table 10 and the results derived from the Wilcoxon test are shown in Tabel 11.
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 4.3333 | 4.2667 |
F=0.1, CR=0.1 | 7.3000 | 6.4333 |
F=0.1, CR=0.5 | 4.8833 | 4.8833 |
F=0.1, CR=0.9 | 4.6833 | 4.6167 |
F=0.5, CR=0.1 | 6.4167 | 6.2833 |
F=0.5, CR=0.5 | 4.6500 | 4.8333 |
F=0.5, CR=0.9 | 4.3500 | 4.6000 |
F=0.9, CR=0.1 | 7.8500 | 7.6330 |
F=0.9, CR=0.5 | 5.4167 | 5.4000 |
F=0.9, CR=0.9 | 5.1167 | 5.2833 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
F=0.1, CR=0.1 | 396.0 | 39.0 | 1.04E-04 | 413.0 | 52.0 | 1.13E-04 |
F=0.1, CR=0.5 | 261.5 | 173.5 | 3.35E-01 | 282.5 | 152.5 | 1.55E-01 |
F=0.1, CR=0.9 | 260.0 | 175.0 | 3.52E-01 | 288.0 | 177.0 | 2.49E-01 |
F=0.5, CR=0.1 | 367.0 | 68.0 | 1.14E-03 | 367.0 | 68.0 | 7.49E-04 |
F=0.5, CR=0.5 | 260.0 | 175.0 | 3.52E-01 | 288.0 | 177.0 | 2.49E-01 |
F=0.5, CR=0.9 | 233.0 | 202.0 | 7.29E-01 | 263.0 | 202.0 | 5.23E-01 |
F=0.9, CR=0.1 | 407.5 | 27.5 | 3.01E-05 | 407.5 | 27.5 | 1.13E-05 |
F=0.9, CR=0.5 | 311.5 | 153.5 | 1.01E-01 | 317.0 | 148.0 | 7.80E-02 |
F=0.9, CR=0.9 | 283.0 | 152.0 | 1.53E-01 | 317.0 | 148.0 | 7.80E-02 |
From Tables A5 and A6, we can see that (F=0.1,CR=0.9) get the higher average RR and SR values over 30 independent runs. Besides, different parameters can influence the performance of RCDE for solving NESs. For example, three sets of parameters, such as (F=0.1,CR=0.1), (F=0.5,CR=0.1), and (F=0.9,CR=0.1) obtain poor results due to a small CR value. Therefore, we can conclude that the parameter settings has significant impact on the CASDE. Its optimal value is difficult to give in advance and problem-dependent.
From Table 10, CASDE get the highest ranking for RR and SR via the Friedman test. Moreover, Table 11 shows that CASDE is better than the static parameter settings, because it can obtain higher R+ than R− values in all cases. In general, the proposed niche adaptive parameter setting is effective. More importantly, it can avoid setting the proper values of F and CR for different NESs.
In CASDE, "DE/rand/1" and "DE/best/1" as shown in Eqs (2.3) and (2.4) are selected randomly during the search process. The hybrid mutation strategy can contribute to the balance of exploration and exploitation. In this subsection, we replace the hybrid mutation strategy with single mutation operator to evaluate the effectiveness of CASDE. To this end, we focus on two CASDE variants: 1) CASDE-1, i.e., CASDE with "DE/rand/1"; 2) CASDE-2, i.e., CASDE with "DE/best/1". The parameter settings are remained the same for two CASDE variants.
The detailed experiment results are shown in Table A7 in the supplement file. Compared with CASDE-1 and CASDE-2, CASDE obtains the highest average RR and SR values. In addition, several interesting phenomena appear in the experiment results. For F04, F12, and F23, CASDE obtains better RR and SR values than CASDE-1; for F13, CASDE-1 gets the best result; whereas CASDE-2 shows the best performance for F16. Therefore, different test instances require reasonable use of mutation operators to improve the effectiveness of algorithm. Hence, this hybrid strategy is used to remedy the drawback to some extent.
The statistical results derived from Friedman and Wilcoxon test are reported in Tables 12 and 13. We can observe that CASDE achieves the best ranking from Table 12. Meanwhile, from Table 13, CASDE is better than CASDE-1 and CASDE-2. settings, because it can obtain higher R+ than R− values in all cases.
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 1.9167 | 1.916 |
CASDE-1 | 2.1333 | 2.1333 |
CASDE-2 | 1.9500 | 1.9500 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE-1 | 286.0 | 179.0 | ≥0.2 | 287.0 | 178.0 | ≥0.2 |
CASDE-2 | 232.5 | 202.5 | ≥0.2 | 232.5 | 202.5 | ≥0.2 |
In the previous experimental results, the superiority of CASDE is verified. In this section, the effectiveness of CASDE on real-world problems is studied. Two cases of motor system [50] are selected to measure the performance of CASDE.
1) Case-1. This case mainly focuses on the solution of internal variables in steady-state operation of synchronous generator with magnetic saturation. For example, saturation characteristics of a synchronous generator, s=0.0476E12q, synchronous reactance xd=xq=2.264, reactance of armature reaction xad=xaq=2.104, field winding self-inductance xF=2.209, field winding resistance rF=0.0008, stator resistance r=0.02, steady state operation active power P=0.8, whereas reactive power Q=0.4, terminal voltage U=1.0∠0. It needs to calculate the internal variables of the unit.
Firstly, the following equation can be derived from the relationship between the internal variables during the steady-state operation of the synchronous generator and the saturation factor of the magnetic circuit:
{tgδ=P⋅xq−Q⋅rU+P⋅r+Q⋅xqUq=Ucosδid=Isin(δ+φ)iq=Icos(δ+φ)if=Uq+iq⋅r+id⋅xdxadI∑=√(if−id)2+i2qs=0.0476E12qxad(sa)(1+s)=xad(un)xad(sa)I∑=Eq | (7.1) |
where δ is power angle; φ denotes power factor angle; Eq is the air gap voltage; xad(sa) and xad(un) respectively illustrate saturated direct axis armature reactive reactance and Unsaturated direct axis armature reactive reactance; I∑ is resultant current, and s is saturation factor.
Let: x1=tgδ2, x2=I∑, x3=xad(sa), x4=id, x5=Uq, x6=iq, x7=if, x8=Eq. Thus, the motor problem can be transformed into a NES:
{e1(x)=0.8(x21+x1−1)x3+0.12x21+2.16x1−0.12=0e2(x)=(1+x21)x4+0.4x21−1.6x1−0.4=0e3(x)=(1+x21)x5+x21−1=0e4x)=(1+x21)x6+0.8(x21+x1−1)=0e5(x)=x3x7−0.02x6−x5−x3x4−0.16x4=0e6(x)=x27−2x4x7+x26+x24−x22=0e7(x)=x8−x2x3=0e8(x)=0.0476x3x128+x3−2.104=0 |
where xi_min=[−3,−1,−2,−1,−1,−0.5,−1.5,−1.5];xi_max=[1,1,2,1,1,0.5,1.5,1.5]; i denotes i-th dimension; xi_min and xi_max are the lower and upper bounds of xi. It has four roots as shown in Table 14.
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | |
1 | 0.378136 | 0.583102 | 1.863559 | 0.829251 | 0.749801 | 0.335176 | 1.306394 | 1.086646 |
2 | 0.378136 | -0.583102 | 1.863559 | 0.829251 | 0.749801 | 0.335176 | 1.306394 | -1.086646 |
3 | -2.644550 | 0.583102 | 1.863559 | -0.829251 | -0.749801 | -0.335176 | -1.306394 | 1.086646 |
4 | -2.644550 | -0.583102 | 1.863559 | -0.829251 | -0.749801 | -0.335176 | -1.306394 | -1.086646 |
2) Case-2. It is used to solve the circuit model parameters of synchronous generator d-axis equivalent circuit. Several known parameters of a synchronous generator are described as follows: xd=1.803, x′d=0.442, x∗d=0.328, T′d=1.497s, T∗d=0.035s, rF=0.000856, xe=0.232. The work is to calculate the parameters of D - axis equivalent circuit model (Canay model). Follow this, the equations can be obtained according to equivalent circuit model:
{xde=xd−xex∗de=x∗d−xeT′deT∗dexde=x∗de(T′doT∗do)x′de[x∗de(T′do+T∗do)−T∗de(xde+x∗de)]=xdex∗de(T′de−T∗de)bxad=xd−xerFb2=r′Fcex′Foe(xde−x′de)=xdex′der′Foe(T′deω0)=x′Foe(T′de+T′de)xde=xd(T′d+T∗d)−xe(T′do+T∗do) | (7.2) |
Let: x1=x′de, x2=T′de, x3=T∗de, x4=xe, x5=xde, x6=x∗de, x7=b, x8=r′Fce, x9=x′Fce. Application Case-2 can be transformed into a NES as follow:
{e1(x)=x5+x4−1.803=0e2(x)=(x2+x3)x5+6.19116x4−1.803(1.497+0.035)=0e3(x)=x6+x4−0.328=0e4(x)=0.28801x6−x2x3x5=0e5(x)=(−6.19116x1+x1x3+x2x5−x3x5)x6+x1x3x5=0e6(x)=1.571x7+x4−1.803=0e7(x)=x8−0.000856x27=0e8(x)=(x5−x1)x9−x1x5=0e9(x)=x9−377x2x8=0 |
where xi_min=[−0.5,−1,−1,−1,1,−1,−1,0,−1],xi_max=[0.5,1,1,1,2,1,1,1,1]; i denotes i-th dimension; xi_min and xi_max are the lower and upper bounds of xi. It has two roots as shown in Table 15.
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | |
1 | 0.128764 | 0.495929 | 0.000000 | 0.328000 | 1.475000 | 0.000000 | 0.938892 | 0.000755 | 0.141080 |
2 | -0.100030 | -0.427811 | 0.097650 | 0.514846 | 1.288154 | -0.186846 | 0.819958 | 0.000576 | -0.092822 |
3 | 0.138229 | 0.528951 | 0.003490 | 0.318482 | 1.484517 | 0.009517 | 0.944950 | 0.000764 | 0.152422 |
4 | 0.000000 | 0.000000 | 0.495929 | 0.328000 | 1.475000 | 0.000000 | 0.938892 | 0.000754 | 0.000000 |
In this subsection, CASDE is compared with the above ten methods, the parameter settings shown in Table 4. To make a fair comparison, each method is executed over 30 runs. For the two problems, NFEsmax=200,000.
The detailed results are reported in Tables 16 and 17, where the best results are listed in bold. It can be observed that CASDE obtains the highest average RR values, i.e., 0.9750 and the highest average SR values, i.e., 0.9000. Thus, comparison with other ten methods, our proposed approach, CASDE, is effective and efficient for solving the two motor systems problems.
Prob. | CASDE | DDE/R | A-WeB | RADE | DREA | MODFA | FONDE | Self-CCDE | Self-CSDE | EMO-MMO | ANDE |
F01 | 0.9500 | 0.5333 | 0.5250 | 0.5333 | 0.5000 | 0.0000 | 0.5000 | 0.5625 | 0.5250 | 0.3000 | 0.5333 |
F02 | 1.0000 | 0.6667 | 0.3667 | 0.9583 | 0.3750 | 0.0000 | 0.9250 | 0.9125 | 0.7125 | 0.0750 | 0.2667 |
Avg. | 0.9750 | 0.6000 | 0.4459 | 0.7458 | 0.4375 | 0.0000 | 0.7125 | 0.7375 | 0.6188 | 0.1875 | 0.4000 |
Prob. | CASDE | DDE/R | A-WeB | RADE | DREA | MODFA | FONDE | Self-CCDE | Self-CSDE | EMO-MMO | ANDE |
F01 | 0.8000 | 0.0000 | 0.0333 | 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.1000 | 0.0500 | 0.0667 | 0.0667 |
F02 | 1.0000 | 0.2667 | 0.0667 | 0.8667 | 0.0000 | 0.0000 | 0.7667 | 0.8500 | 0.3000 | 0.0000 | 0.0000 |
Avg. | 0.9000 | 0.1333 | 0.0500 | 0.4833 | 0.0000 | 0.0000 | 0.3833 | 0.4750 | 0.1750 | 0.0333 | 0.0000 |
Solving NESs is a very challenging task due to the fact that it needs to locate multiple roots of NESs in a single run. To address this issue, we propose a re-initialization clustering-based adaptive differential evolution, named CASDE, in which the dynamic clustering sizes, niche adaptive parameter control, and re-initialization mechanism were combined together to solve NESs effectively. The performance of CASDE was verified by 30 NESs selected from the literature. Experimental results demonstrated that CASDE is able to locate multiple roots in a single run. In addition, comparison with other state-of-the-art methods, our approach also obtains significant performance. Moreover, we execute extensive experiments to analyze the performance of our approach, as well as the effectiveness of different parts of CASDEand the influence of different parameter settings. From the experiments, we can testify that CASDE can be considered as an effective alternative to solve NESs.
In the near future, we plan to use the fusion of reinforcement learning and evolutionary algorithm to solve NESs. By evaluating the actions using different strategies and parameters in a certain environment, the algorithm will have the characteristic of autonomous decision. Moreover, we will employ CASDE to solve other complex re-world NESs.
This work was partly supported by the Natural Science Foundation of GuangXi Province under Grant No. 2020GXNSFAA297174 and the High-level Talents Research Project of Beibu Gulf under Grant No. 2020KYQD06.
The authors declare no conflict of interest.
Prob. | RR | SR | ||||||||
CASDE | CASDE/AR | CASDE/DR | CASDE/DA | DCS-DE | CASDE | CASDE/AR | CASDE/DR | CASDE/DA | DCS-DE | |
F01 | 1.0000 | 0.8667 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 0.7333 | 1.0000 | 0.9333 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9515 | 0.9273 | 1.0000 | 1.0000 | 1.0000 | 0.6667 | 0.4667 |
F03 | 1.0000 | 1.0000 | 1.0000 | 0.9911 | 0.9733 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 0.6000 |
F04 | 1.0000 | 1.0000 | 0.7538 | 0.8103 | 0.7949 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0667 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.9667 | 0.9667 | 0.8833 | 1.0000 | 1.0000 | 0.7333 | 0.7333 | 0.3333 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9905 | 0.9619 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 0.7333 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9933 | 0.9467 | 0.8667 | 0.8667 | 0.9333 | 0.9667 | 0.7333 | 0.2000 | 0.2000 |
F13 | 0.9167 | 0.9778 | 0.9333 | 0.9500 | 0.9556 | 0.4667 | 0.7667 | 0.4667 | 0.6667 | 0.6000 |
F14 | 1.0000 | 1.0000 | 0.9926 | 0.9481 | 0.9259 | 1.0000 | 1.0000 | 0.9333 | 0.5333 | 0.4000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 |
F16 | 0.9744 | 1.0000 | 0.7026 | 0.9128 | 0.9641 | 0.6667 | 1.0000 | 0.0000 | 0.0667 | 0.6000 |
F17 | 1.0000 | 0.6125 | 0.9542 | 0.8750 | 0.7417 | 1.0000 | 0.0000 | 0.4667 | 0.0667 | 0.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.8833 | 1.0000 | 1.0000 | 0.4333 | 1.0000 | 0.7667 | 1.0000 | 1.0000 | 0.3333 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9889 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 |
F23 | 0.9750 | 0.8979 | 0.2583 | 0.4000 | 0.3875 | 0.6000 | 0.0333 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 0.8917 | 0.9167 | 1.0000 | 1.0000 | 1.0000 | 0.1333 | 0.3333 |
F25 | 1.0000 | 0.9667 | 0.6000 | 1.0000 | 0.9333 | 1.0000 | 0.9333 | 0.2000 | 1.0000 | 0.8667 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.9867 | 0.9867 | 0.9867 | 1.0000 | 1.0000 | 0.9333 | 0.9333 | 0.9333 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg | 0.9951 | 0.9733 | 0.9365 | 0.9169 | 0.8880 | 0.9556 | 0.9067 | 0.8156 | 0.7244 | 0.6800 |
Prob | CASDE | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-JADE | N-ACO |
F01 | 1.0000 | 0.9333 | 0.6200 | 1.0000 | 0.0000 | 1.0000 | 0.5000 | 0.2667 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 0.9970 | 1.0000 | 0.8455 | 1.0000 | 0.8545 | 0.8909 |
F03 | 1.0000 | 1.0000 | 0.9573 | 0.9960 | 0.9578 | 1.0000 | 0.9267 | 0.9511 | 0.9156 | 0.7067 |
F04 | 1.0000 | 1.0000 | 1.0000 | 0.9015 | 1.0000 | 0.9600 | 0.7500 | 0.1333 | 0.2103 | 0.7795 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.9400 | 0.9900 | 0.9583 | 0.9975 | 0.3625 | 0.0083 | 0.2250 | 0.9750 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 0.8371 | 0.9971 | 1.0000 | 1.0000 | 0.8500 | 0.5333 | 0.6095 | 0.7905 |
F09 | 1.0000 | 0.9778 | 0.8933 | 0.9700 | 1.0000 | 1.0000 | 0.1167 | 0.8667 | 0.9778 | 0.4222 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3250 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9750 | 0.4167 | 1.0000 | 1.0000 |
F12 | 0.9867 | 1.0000 | 0.8880 | 0.6310 | 0.8767 | 0.8640 | 0.8000 | 0.2267 | 0.2800 | 0.6067 |
F13 | 0.9167 | 0.7278 | 0.0933 | 0.8908 | 0.9167 | 0.7383 | 0.5167 | 0.3056 | 0.2778 | 0.5944 |
F14 | 1.0000 | 1.0000 | 0.9733 | 0.9867 | 1.0000 | 1.0000 | 0.4333 | 0.0296 | 0.2296 | 0.9185 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 | 0.9333 | 0.5000 | 0.5000 |
F16 | 0.9744 | 1.0000 | 1.0000 | 0.9954 | 1.0000 | 1.0000 | 1.0000 | 0.5846 | 0.6205 | 0.3744 |
F17 | 1.0000 | 1.0000 | 0.6688 | 0.9444 | 1.0000 | 0.9850 | 0.5406 | 0.0833 | 0.7458 | 0.0000 |
F18 | 1.0000 | 1.0000 | 0.9433 | 1.0000 | 1.0000 | 1.0000 | 0.9917 | 0.9778 | 0.9778 | 1.0000 |
F19 | 1.0000 | 0.9000 | 0.6200 | 0.7950 | 0.0000 | 0.9300 | 0.3250 | 0.4333 | 1.0000 | 0.6667 |
F20 | 1.0000 | 1.0000 | 0.9514 | 1.0000 | 1.0000 | 1.0000 | 0.9571 | 0.9905 | 0.7714 | 0.5714 |
F21 | 1.0000 | 1.0000 | 0.9950 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 0.9889 | 0.9778 | 1.0000 |
F23 | 0.9750 | 0.9417 | 0.1563 | 0.5619 | 0.7979 | 0.9100 | 0.5219 | 0.1250 | 0.1250 | 0.1250 |
F24 | 1.0000 | 1.0000 | 0.8550 | 0.9988 | 0.9125 | 1.0000 | 0.8063 | 1.0000 | 0.9917 | 0.7583 |
F25 | 1.0000 | 1.0000 | 0.2360 | 0.8350 | 1.0000 | 1.0000 | 0.3500 | 0.0000 | 0.2667 | 0.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 0.9967 | 1.0000 | 1.0000 | 0.8667 | 0.6667 | 0.7556 | 0.6889 |
F28 | 1.0000 | 1.0000 | 0.9400 | 1.0000 | 1.0000 | 1.0000 | 0.9250 | 0.0333 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.9320 | 0.9940 | 0.9533 | 0.9960 | 0.2000 | 0.9067 | 0.9733 | 0.6000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 1.0000 | 0.6333 |
Avg. | 0.9951 | 0.9827 | 0.8500 | 0.9491 | 0.8957 | 0.9794 | 0.7290 | 0.6148 | 0.7429 | 0.7201 |
Prob. | casde | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-LSHADE | N-ACO |
F01 | 1.0000 | 0.8667 | 0.3600 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9000 | 0.9300 | 1.0000 | 0.2000 | 1.0000 | 0.2000 | 0.2000 |
F03 | 1.0000 | 1.0000 | 0.5800 | 0.9500 | 0.4600 | 1.0000 | 0.3000 | 0.4000 | 0.2667 | 0.0000 |
F04 | 1.0000 | 1.0000 | 1.0000 | 0.3100 | 1.0000 | 0.5200 | 0.3500 | 0.0000 | 0.0000 | 0.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.6000 | 0.9300 | 0.6600 | 0.9800 | 0.1000 | 0.0000 | 0.0000 | 0.8000 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 0.1200 | 0.9800 | 1.0000 | 1.0000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F09 | 1.0000 | 0.9333 | 0.6800 | 0.9100 | 1.0000 | 1.0000 | 0.0000 | 0.6000 | 0.9333 | 0.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.0667 | 1.0000 | 1.0000 |
F12 | 0.9333 | 1.0000 | 0.2800 | 0.0000 | 0.0300 | 0.2800 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F13 | 0.4667 | 0.0000 | 0.0000 | 0.1900 | 0.2600 | 0.0200 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F14 | 1.0000 | 1.0000 | 0.7600 | 0.8900 | 1.0000 | 1.0000 | 0.2000 | 0.0000 | 0.0000 | 0.4000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.8667 | 0.0000 | 0.0000 |
F16 | 0.6667 | 1.0000 | 1.0000 | 0.9400 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
F17 | 1.0000 | 1.0000 | 0.0000 | 0.4300 | 0.0300 | 0.7600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F18 | 1.0000 | 1.0000 | 0.6600 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.8667 | 0.8667 | 1.0000 |
F19 | 1.0000 | 0.8000 | 0.2400 | 0.6900 | 0.0000 | 0.8600 | 0.1500 | 0.2667 | 1.0000 | 0.5333 |
F20 | 1.0000 | 1.0000 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 0.7500 | 0.9333 | 0.0667 | 0.0000 |
F21 | 1.0000 | 1.0000 | 0.9800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.9333 | 0.8667 | 1.0000 |
F23 | 0.6000 | 0.3333 | 0.0000 | 0.0000 | 0.0000 | 0.2800 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 0.1400 | 0.9900 | 0.4300 | 1.0000 | 0.0000 | 1.0000 | 0.9333 | 0.0000 |
F25 | 1.0000 | 1.0000 | 0.0200 | 0.6700 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 1.0000 | 1.0000 | 0.7000 | 0.2667 | 0.2667 | 0.0667 |
F28 | 1.0000 | 1.0000 | 0.8800 | 1.0000 | 1.0000 | 1.0000 | 0.9000 | 0.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.6600 | 0.9700 | 0.7600 | 0.9800 | 0.0000 | 0.5333 | 0.8667 | 0.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 0.0667 |
AVG. | 0.9556 | 0.9311 | 0.6553 | 0.8247 | 0.7187 | 0.8893 | 0.4633 | 0.4556 | 0.5089 | 0.4022 |
Prob. | RR | SR | ||||||
CASDE | CASDE-5 | CASDE-10 | CASDE-20 | CASDE | CASDE-5 | CASDE-10 | CASDE-20 | |
F01 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 1.0000 | 0.7333 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9879 | 1.0000 | 1.0000 | 1.0000 | 0.8667 |
F03 | 1.0000 | 1.0000 | 1.0000 | 0.7533 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F04 | 1.0000 | 1.0000 | 0.9974 | 0.7103 | 1.0000 | 1.0000 | 0.9667 | 0.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 1.0000 | 0.8417 | 1.0000 | 1.0000 | 1.0000 | 0.0667 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9952 | 1.0000 | 1.0000 | 1.0000 | 0.9667 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9933 | 0.9733 | 0.8567 | 0.9333 | 0.9667 | 0.8667 | 0.2000 |
F13 | 0.9167 | 0.9778 | 0.8667 | 0.5472 | 0.4667 | 0.7667 | 0.1333 | 0.0000 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.8185 | 1.0000 | 1.0000 | 1.0000 | 0.0333 |
F15 | 1.0000 | 1.0000 | 1.0000 | 0.9167 | 1.0000 | 1.0000 | 1.0000 | 0.8333 |
F16 | 0.9744 | 1.0000 | 0.7487 | 0.4513 | 0.6667 | 1.0000 | 0.0000 | 0.0000 |
F17 | 1.0000 | 0.6125 | 1.0000 | 0.7750 | 1.0000 | 0.0000 | 1.0000 | 0.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.8833 | 1.0000 | 1.0000 | 1.0000 | 0.7667 | 1.0000 | 1.0000 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 0.8000 |
F23 | 0.9750 | 0.8979 | 0.9417 | 0.7875 | 0.6000 | 0.0333 | 0.1667 | 0.0000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 0.1875 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F25 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg. | 0.9951 | 0.9733 | 0.9843 | 0.8865 | 0.9556 | 0.9067 | 0.9044 | 0.6589 |
Prob. | F=0.1 | F=0.5 | F=0.9 | ||||||
CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | |
F01 | 0.4667 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 0.7282 | 1.0000 | 1.0000 | 0.5692 | 1.0000 | 1.0000 | 0.4872 | 0.9897 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 0.9833 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 0.9833 | 0.9917 |
F07 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9810 | 1.0000 | 1.0000 | 0.9810 | 1.0000 | 1.0000 |
F09 | 0.0000 | 0.9667 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F10 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 0.5833 | 1.0000 | 1.0000 | 0.9167 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | 1.0000 |
F12 | 0.9533 | 0.9933 | 0.9867 | 0.8800 | 0.9667 | 1.0000 | 0.8667 | 1.0000 | 1.0000 |
F13 | 0.4722 | 0.5333 | 0.5778 | 0.8056 | 0.8500 | 0.8444 | 0.8778 | 0.9500 | 0.9944 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.9852 | 1.0000 | 1.0000 | 0.9111 | 0.9926 | 1.0000 |
F15 | 0.8333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 0.9667 |
F16 | 0.9744 | 1.0000 | 1.0000 | 0.9026 | 0.9897 | 1.0000 | 0.7641 | 0.7897 | 0.7692 |
F17 | 0.9917 | 1.0000 | 1.0000 | 0.9917 | 1.0000 | 1.0000 | 0.8875 | 0.9542 | 0.9583 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 0.0000 | 0.7000 | 0.9667 | 0.0000 | 0.4667 | 0.4667 | 0.0000 | 0.0000 | 0.0333 |
F20 | 0.9905 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9714 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9889 | 1.0000 | 1.0000 |
F23 | 0.4458 | 0.7417 | 0.8917 | 0.2792 | 0.7458 | 0.7458 | 0.2167 | 0.5292 | 0.8583 |
F24 | 1.0000 | 1.0000 | 0.9250 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 0.2333 | 1.0000 | 1.0000 | 0.2667 | 0.9667 | 0.9667 | 0.1333 | 0.9667 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 0.5000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 |
F29 | 0.9600 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 1.0000 | 1.0000 |
Avg. | 0.7928 | 0.9623 | 0.9783 | 0.8359 | 0.9662 | 0.9675 | 0.8056 | 0.9385 | 0.9191 |
Prob. | F=0.1 | F=0.5 | F=0.9 | ||||||
CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | |
F01 | 0.2000 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 0.8667 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 0.8667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6000 | 0.8667 | 0.9333 |
F07 | 0.4000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 |
F09 | 0.0000 | 0.9333 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F10 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 0.0667 | 1.0000 | 1.0000 | 0.6667 | 1.0000 | 1.0000 | 0.3333 | 1.0000 | 1.0000 |
F12 | 0.6667 | 0.9333 | 0.9333 | 0.4000 | 0.8000 | 1.0000 | 0.4000 | 1.0000 | 1.0000 |
F13 | 0.0000 | 0.0000 | 0.0000 | 0.1333 | 0.0667 | 0.0667 | 0.2000 | 0.5333 | 0.9333 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.4000 | 0.9333 | 1.0000 |
F15 | 0.7333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 0.9333 |
F16 | 0.6667 | 1.0000 | 1.0000 | 0.1333 | 0.8667 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
F17 | 0.8667 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.0667 | 0.4000 | 0.4000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 0.0000 | 0.6000 | 0.9333 | 0.0000 | 0.2000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F20 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F23 | 0.0000 | 0.0000 | 0.1333 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 0.4000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 0.0667 | 1.0000 | 1.0000 | 0.0667 | 0.9333 | 0.9333 | 0.0000 | 0.9333 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F29 | 0.8000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6667 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
Avg. | 0.6400 | 0.9133 | 0.9133 | 0.7000 | 0.8956 | 0.9067 | 0.6022 | 0.8511 | 0.8400 |
Prob. | RR | SR | ||||
CASDE | CASDE-1 | CASDE-2 | CASDE | CASDE-1 | CASDE-2 | |
F01 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 1.0000 | 0.9897 | 1.0000 | 1.0000 | 0.8667 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9667 | 0.9867 | 0.9333 | 0.8000 | 0.9333 |
F13 | 0.9167 | 0.9833 | 0.8778 | 0.4667 | 0.8000 | 0.1333 |
F14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F16 | 0.9744 | 0.9538 | 0.9897 | 0.6667 | 0.4000 | 0.8667 |
F17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.6000 | 1.0000 | 1.0000 | 0.6000 | 1.0000 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F23 | 0.9750 | 0.9125 | 0.9292 | 0.6000 | 0.0667 | 0.2000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg. | 0.9951 | 0.9802 | 0.9928 | 0.9556 | 0.9178 | 0.9378 |
[1] |
de Oliveira Gonçalves JB, Buchaim DV, de Souza Bueno CR, et al. (2016) Effects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant. J Photochem Photobiol 162: 663-668. https://doi.org/10.1016/j.jphotobiol.2016.07.023 ![]() |
[2] |
Magri AMP, Parisi JR, de Andrade ALM, et al. (2021) Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies. J Biomed Mater Res A 109: 1765-1775. https://doi.org/10.1002/jbm.a.37170 ![]() |
[3] |
Gillman CE, Jayasuriya AC (2021) FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng 130: 112466. https://doi.org/10.1016/j.msec.2021.112466 ![]() |
[4] |
Campana V, Milano G, Pagano E, et al. (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25: 2445-2461. https://doi.org/10.1007/s10856-014-5240-2 ![]() |
[5] |
Baldwin P, Li DJ, Auston DA, et al. (2019) Autograft, allograft, and bone graft substitutes: Clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma 33: 203-213. https://doi.org/10.1097/BOT.0000000000001420 ![]() |
[6] |
Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10: S96-S101. https://doi.org/10.1007/s005860100282 ![]() |
[7] |
Hing KA (2004) Bone repair in the twenty–first century: biology, chemistry or engineering?. Phil Trans R Soc A 362: 2821-2850. https://doi.org/10.1098/rsta.2004.1466 ![]() |
[8] |
Campion CR, Ball SL, Clarke DL, et al. (2013) Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes. J Mater Sci Mater Med 24: 597-610. https://doi.org/10.1007/s10856-012-4833-x ![]() |
[9] |
Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157: 259-278. https://doi.org/10.1097/00003086-198106000-00037 ![]() |
[10] |
Mendelson BC, Jacobson SR, Lavoipierre AM, et al. (2010) The fate of porous hydroxyapatite granules used in facial skeletal augmentation. Aesthetic Plast Surg 34: 455-461. https://doi.org/10.1007/s00266-010-9473-2 ![]() |
[11] |
Kattimani VS, Kondaka S, Lingamaneni KP (2016) Hydroxyapatite–past, present, and future in bone regeneration. Bone Tissue Regen Insights 7: BTRI.S36138. https://doi.org/10.4137/BTRI.S36138 ![]() |
[12] |
Hamblin MR (2016) Photobiomodulation or low-level laser therapy. J Biophotonics 9: 1122-1124. https://doi.org/10.1002/jbio.201670113 ![]() |
[13] |
Reis CHB, Buchaim DV, Ortiz AC, et al. (2022) Application of fibrin associated with photobiomodulation as a promising strategy to improve regeneration in tissue engineering: a systematic review. Polymers 14: 3150. https://doi.org/10.3390/polym14153150 ![]() |
[14] |
Santos CM da C, Pimenta CA de M, Nobre MRC (2007) The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem 15: 508-511. https://doi.org/10.1590/s0104-11692007000300023 ![]() |
[15] |
Moher D, Liberati A, Tetzlaff J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6: e1000097. https://doi.org/10.1371/journal.pmed.1000097 ![]() |
[16] | de Carvalho FB, Aciole GTS, Aciole JMS, et al. (2011) Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopy study. Proc. SPIE 7887, Mechanisms for Low-Light Therapy VI: 78870T 7887: 157-162. https://doi.org/10.1117/12.874288 |
[17] |
dos Santos Aciole JM, dos Santos Aciole GT, Soares LGP, et al. (2011) Bone repair on fractures treated with osteosynthesis, ir laser, bone graft and guided bone regeneration: histomorfometric study. AIP Conference Proceedings American Institute of Physics 1364: 60-65. https://doi.org/10.1063/1.3626913 ![]() |
[18] |
Soares LGP, Marques AMC, Guarda MG, et al. (2014) Influence of the λ780nm laser light on the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular hydroxylapatite+Beta-Calcium triphosphate. J Photochem Photobiol B 131: 16-23. https://doi.org/10.1016/j.jphotobiol.2013.12.015 ![]() |
[19] | Soares LGP, Marques AMC, Aciole JMS, et al. (2014) Assessment laser phototherapy on bone defects grafted or not with biphasic synthetic micro-granular HA + β-Tricalcium phosphate: histological study in an animal model. Proc. SPIE 8932, Mechanisms for Low-Light Therapy IX. SPIE 8932: 207-212. https://doi.org/10.1117/12.2036872 |
[20] |
de Castro ICV, Rosa CB, dos Reis Júnior JA, et al. (2014) Assessment of the use of LED phototherapy on bone defects grafted with hydroxyapatite on rats with iron-deficiency anemia and nonanemic: a Raman spectroscopy analysis. Lasers Med Sci 29: 1607-1615. https://doi.org/10.1007/s10103-014-1562-z ![]() |
[21] |
Soares LGP, Marques AMC, Guarda MG, et al. (2014) Raman spectroscopic study of the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular HA + β-calcium triphosphate irradiated or not with λ850 nm LED light. Lasers Med Sci 29: 1927-1936. https://doi.org/10.1007/s10103-014-1601-9 ![]() |
[22] |
Soares LGP, Marques AMC, Barbosa AFS, et al. (2014) Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser. Lasers Med Sci 29: 1539-1550. https://doi.org/10.1007/s10103-013-1297-2 ![]() |
[23] |
Pinheiro ALB, Soares LGP, Marques AMC, et al. (2017) Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy. Lasers Med Sci 32: 663-672. https://doi.org/10.1007/s10103-017-2165-2 ![]() |
[24] |
Pinheiro ALB, Soares LGP, Marques AMC, et al. (2014) Raman ratios on the repair of grafted surgical bone defects irradiated or not with laser (λ780nm) or LED (λ850nm). J Photochem Photobiol B 138: 146-154. https://doi.org/10.1016/j.jphotobiol.2014.05.022 ![]() |
[25] |
Pinheiro ALB, Aciole GTS, Ramos TA, et al. (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a histological and histomorphometric study on rabbits. Lasers Med Sci 29: 279-288. https://doi.org/10.1007/s10103-013-1339-9 ![]() |
[26] | Pinheiro ALB, Soares LGP, Marques AMC, et al. (2014) Raman and histological study of the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA+ β-calcium triphosphate and irradiated or not with λ780 nm laser. Mechanisms for Low-Light Therapy IX. SPIE 8932: 148-155. https://doi.org/10.1117/12.2036867 |
[27] |
Pinheiro ALB, Santos NRS, Oliveira PC, et al. (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: a comparative laser fluorescence and Raman spectral study on rabbits. Lasers Med Sci 28: 815-822. https://doi.org/10.1007/s10103-012-1166-4 ![]() |
[28] |
Soares LGP, Marques AMC, Aciole JMS, et al. (2014) Do laser/LED phototherapies influence the outcome of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-tricalcium phosphate? A Raman spectroscopy study. Lasers Med Sci 29: 1575-1584. https://doi.org/10.1007/s10103-014-1563-y ![]() |
[29] | Soares LGGP, Aciole JMS, Aciole GTS, et al. (2013) Raman study of the effect of LED light on grafted bone defects. Proc. SPIE 8569, Mechanisms for Low-Light Therapy VIII. SPIE 8569: 102-109. https://doi.org/10.1117/12.2002584 |
[30] |
Pinheiro ALB, Santos NRS, Oliveira PC, et al. (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci 28: 513-518. https://doi.org/10.1007/s10103-012-1096-1 ![]() |
[31] |
Reis CHB, Buchaim RL, Pomini KT, et al. (2022) Effects of a Biocomplex Formed by Two Scaffold Biomaterials, Hydroxyapatite/Tricalcium Phosphate Ceramic and Fibrin Biopolymer, with Photobiomodulation, on Bone Repair. Polymers 14: 2075. https://doi.org/10.3390/polym14102075 ![]() |
[32] |
de Oliveira GJPL, Pinotti FE, Aroni MAT, et al. (2021) Effect of different low-level intensity laser therapy (LLLT) irradiation protocols on the osseointegration of implants placed in grafted areas. J Appl Oral Sci 29: e20200647. https://doi.org/10.1590/1678-7757-2020-0647 ![]() |
[33] |
de Oliveira GJPL, Aroni MAT, Pinotti FE, et al. (2020) Low-level laser therapy (LLLT) in sites grafted with osteoconductive bone substitutes improves osseointegration. Lasers Med Sci 35: 1519-1529. https://doi.org/10.1007/s10103-019-02943-w ![]() |
[34] |
Theodoro LH, Rocha GS, Ribeiro Junior VL, et al. (2018) Bone formed after maxillary sinus floor augmentation by bone autografting with hydroxyapatite and low-level laser therapy: A randomized controlled trial with histomorphometrical and immunohistochemical analyses. Implant Dent 27: 547-554. https://doi.org/10.1097/ID.0000000000000801 ![]() |
[35] |
de Oliveira GJPL, Aroni MAT, Medeiros MC, et al. (2018) Effect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. In vivo study in rats. Lasers Surg Med 50: 651-660. https://doi.org/10.1002/lsm.22787 ![]() |
[36] |
Alan H, Vardi N, Özgür C, et al. (2015) Comparison of the Effects of Low-Level Laser Therapy and Ozone Therapy on Bone Healing. J Craniofac Surg 26: e396-e400. https://doi.org/10.1097/SCS.0000000000001871 ![]() |
[37] |
Pinheiro ALB, Martinez Gerbi ME, de Assis Limeira F, et al. (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24: 234-240. https://doi.org/10.1007/s10103-008-0556-0 ![]() |
[38] |
Dalapria V, Marcos RL, Bussadori SK, et al. (2022) LED photobiomodulation therapy combined with biomaterial as a scaffold promotes better bone quality in the dental alveolus in an experimental extraction model. Lasers Med Sci 37: 1583-1592. https://doi.org/10.1007/s10103-021-03407-w ![]() |
[39] |
Franco GR, Laraia IO, Maciel AAW, et al. (2013) Effects of chronic passive smoking on the regeneration of rat femoral defects filled with hydroxyapatite and stimulated by laser therapy. Injury 44: 908-913. https://doi.org/10.1016/j.injury.2012.12.022 ![]() |
[40] |
Pomini KT, Cestari TM, Santos German ÍJ, et al. (2019) Influence of experimental alcoholism on the repair process of bone defects filled with beta-tricalcium phosphate. Drug Alcohol Depend 197: 315-325. https://doi.org/10.1016/j.drugalcdep.2018.12.031 ![]() |
[41] | Tanishka T, Anjali B, Shefali M, et al. (2023) An insight into the biomaterials used in craniofacial tissue engineering inclusive of regenerative dentistry. AIMS Bioengineering 10: 153-174. https://doi.org/10.3934/bioeng.2023011 |
[42] | Jing X, Ding Q, Wu Q, et al. (2021) Magnesium-based materials in orthopaedics: material properties and animal models. Biomater Transl 2: 197-213. https://doi.org/10.12336/biomatertransl.2021.03.004 |
[43] | Steijvers E, Ghei A, Xia Z (2022) Manufacturing artificial bone allografts: a perspective. Biomater Transl 3: 65-80. https://doi.org/10.12336/biomatertransl.2022.01.007 |
[44] | Tai A, Landao-Bassonga E, Chen Z, et al. (2023) Systematic evaluation of three porcine-derived collagen membranes for guided bone regeneration. Biomater Transl 4: 41-50. https://doi.org/10.12336/biomatertransl.2023.01.006 |
[45] |
Della Coletta BB, Jacob TB, Moreira LAC, et al. (2021) Photobiomodulation therapy on the guided bone regeneration process in defects filled by biphasic calcium phosphate associated with fibrin biopolymer. Molecules 26: 847. https://doi.org/10.3390/molecules26040847 ![]() |
[46] |
Ono N (2022) The mechanism of bone repair: Stem cells in the periosteum dedicated to bridging a large gap. Cell Rep Med 3: 100807. https://doi.org/10.1016/j.xcrm.2022.100807 ![]() |
[47] |
Wang Y, Zhang H, Hu Y, et al. (2022) Bone repair biomaterials: a perspective from immunomodulation. Adv Funct Mater 32: 2208639. https://doi.org/10.1002/adfm.202208639 ![]() |
[48] |
Han L, Mengmeng L, Tao Z, et al. (2022) Engineered bacterial extracellular vesicles for osteoporosis therapy. Chem Eng J 450: 138309. https://doi.org/10.1016/j.cej.2022.138309 ![]() |
[49] |
de Moraes R, Plepis AMdG, Martins VdCA, et al. (2023) Viability of collagen matrix grafts associated with nanohydroxyapatite and elastin in bone repair in the experimental condition of ovariectomy. Int J Mol Sci 24: 15727. https://doi.org/10.3390/ijms242115727 ![]() |
1. | Junhua Ku, Shuijia Li, Wenyin Gong, Photovoltaic models parameter estimation via an enhanced Rao-1 algorithm, 2021, 19, 1551-0018, 1128, 10.3934/mbe.2022052 |
Algorithm 1: Speciation clustering with dynamic cluster sizes |
Input: population P, cluster size set C |
Output: a set of species |
Sort P in ascending order according to fitness value; |
![]() |
Algorithm 2: Archive updating |
Input: Solution x and ϵ>0 |
Output: The updated archive A |
![]() |
Algorithm 3: The framework of CASDE |
Input:Control parameters: NP, NFE, NFEsmax |
Output:The final archive A |
Set NFE=0 and the archive A=∅; |
Randomly generate the population P; |
F and CR of each individual in P are set to 0.5 and 0.9; |
Calculate the fitness value of x via Eq (2.2) |
NFE=NFE+NP |
![]() |
Prob. | D | LE | NE | NoR | NFEsmax |
F01 | 20 | 0 | 2 | 2 | 50, 000 |
F02 | 2 | 1 | 1 | 11 | 50, 000 |
F03 | 2 | 0 | 2 | 15 | 50, 000 |
F04 | 2 | 0 | 0 | 13 | 50, 000 |
F05 | 10 | 0 | 10 | 1 | 50, 000 |
F06 | 2 | 1 | 1 | 8 | 50, 000 |
F07 | 2 | 0 | 2 | 2 | 50, 000 |
F08 | 2 | 0 | 2 | 7 | 50, 000 |
F09 | 5 | 4 | 1 | 3 | 100, 000 |
F10 | 3 | 0 | 3 | 2 | 50, 000 |
F11 | 2 | 0 | 2 | 4 | 50, 000 |
F12 | 2 | 0 | 2 | 10 | 50, 000 |
F13 | 3 | 0 | 3 | 12 | 50, 000 |
F14 | 2 | 0 | 2 | 9 | 50, 000 |
F15 | 2 | 0 | 2 | 2 | 50, 000 |
F16 | 2 | 0 | 2 | 13 | 50, 000 |
F17 | 8 | 1 | 7 | 16 | 100, 000 |
F18 | 2 | 0 | 2 | 6 | 50, 000 |
F19 | 20 | 19 | 1 | 2 | 200, 000 |
F20 | 3 | 0 | 3 | 7 | 50, 000 |
F21 | 2 | 0 | 2 | 4 | 50, 000 |
F22 | 2 | 0 | 2 | 6 | 50, 000 |
F23 | 3 | 0 | 3 | 16 | 500, 000 |
F24 | 3 | 0 | 3 | 8 | 100, 000 |
F25 | 3 | 0 | 3 | 2 | 50, 000 |
F26 | 2 | 0 | 2 | 2 | 50, 000 |
F27 | 2 | 0 | 2 | 3 | 50, 000 |
F28 | 2 | 0 | 2 | 2 | 50, 000 |
F29 | 3 | 0 | 3 | 5 | 50, 000 |
F30 | 2 | 0 | 2 | 4 | 50, 000 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 2.3667 | 2.3500 |
CASDE/AR | 2.5500 | 2.5333 |
CASDE/DR | 3.0667 | 3.0333 |
CASDE/DA | 3.3167 | 3.3667 |
DCS-DE | 3.7000 | 3.7167 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE/AR | 265.5 | 199.5 | 4.90E-01 | 260.5 | 204.5 | 5.57E-01 |
CASDE/DR | 337.0 | 128.0 | 3.07E-02 | 345.0 | 120.0 | 1.42E-02 |
CASDE/DA | 378.5 | 86.5 | 1.36E-03 | 378.5 | 86.5 | 1.28E-03 |
DCS-DE | 393.0 | 72.0 | 4.99E-04 | 394.5 | 70.5 | 2.93E-04 |
Method | Parameter settings |
CASDE | NP=100,F=0.5,CR=0.9,C={5,6,7,8,9,10} |
DDE/R | NP=100,F=0.5,CR=0.9,t=20,ℓ=20 |
MONES | NP=100,Hm=NP |
A-WeB | NP=100,Hm=NP |
RADE | NP=100,Hm=200 |
DREA | NP=10,uCR=0.5,uF=0.5,c=0.1 |
MODFA | NP=100,α=0.23,β0=1,δ=0.98,γ=1 |
FONDE | NP=100,F=0.5,CR=0.9,m=11 |
Self-CCDE | NP=100,CRm=0.5 |
Self-CSDE | NP=100,CRm=0.5 |
EMO-MMO | NP=100,η=0.1,m=20,ϕ=0 |
ANDE | NP=100,F=0.9,CR=0.1 |
CMA-ES | μ=5,λ=10 |
JADE | uCR=0.5,uF=0.5,c=0.1 |
COA | Np=20,Nc=5 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 4.1500 | 4.1167 |
DDE/R | 4.4667 | 4.6500 |
A-WeB | 8.2333 | 8.1333 |
RADE | 6.1500 | 6.3500 |
DREA | 6.1167 | 6.5833 |
FONDE | 4.6333 | 4.5833 |
EMO-MMO | 9.9167 | 10.6167 |
N-CMA-ES | 11.1333 | 10.6167 |
N-JADE | 9.8667 | 9.7667 |
N-COA | 9.8833 | 10.1833 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
DDE/R | 275.5 | 189.5 | 3.46E-01 | 242.0 | 193.0 | 3.85E-01 |
A-WeB | 426.0 | 39.0 | 6.30E-05 | 411.0 | 54.0 | 1.04E-04 |
RADE | 375.0 | 90.0 | 3.19E-03 | 377.0 | 88.0 | 2.78E-03 |
DREA | 332.5 | 132.5 | 3.87E-02 | 345.0 | 120.0 | 1.42E-02 |
FONDE | 321.0 | 144.0 | 5.42E-02 | 319.0 | 149.0 | 5.92E-02 |
EMO-MMO | 436.5 | 28.5 | 5.01E-06 | 447.0 | 18.0 | 1.02E-06 |
N-CMA-ES | 439.5 | 25.5 | 7.01E-06 | 439.5 | 25.5 | 0.00E+00 |
N-JADE | 437.5 | 27.5 | 1.90E-05 | 437.5 | 27.5 | 0.00E+00 |
N-COA | 437.5 | 27.5 | 2.3E-04 | 437.5 | 27.5 | 0.00E+00 |
CASDE | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-JADE | N-COA | |
CASDE | 7.65E-01 | 2.67E-04 | 4.28E-02 | 7.67E-02 | 5.91E-01 | 0.00E+00 | 0.00E+00 | 3.00E-06 | 0.00E+00 | |
DDE/R | 7.65E-01 | 8.16E-04 | 8.41E-02 | 1.42E-01 | 8.14E-01 | 1.00E-06 | 0.00E+00 | 1.20E-06 | 2.01E-06 | |
A-WeB | 2.67E-04 | 8.16E-04 | 1.05E-01 | 6.06E-02 | 1.86E-03 | 1.35E-01 | 2.51E-02 | 3.06E-01 | 1.65E-01 | |
RADE | 4.28E-02 | 8.41E-02 | 1.05E-01 | 7.98E-01 | 1.35E-01 | 1.85E-03 | 1.14E-04 | 8.20E-03 | 2.64E-03 | |
DREA | 7.67E-02 | 1.42E-01 | 6.06E-02 | 7.98E-01 | 2.16E-01 | 7.56E-04 | 3.90E-05 | 3.73E-03 | 1.10E-03 | |
FONDE | 5.91E-01 | 8.14E-01 | 1.86E-03 | 1.35E-01 | 2.16E-01 | 4.00E-06 | 0.00E+00 | 3.50E-05 | 7.01E-06 | |
EMO-MMO | 0.00E+00 | 1.00E-06 | 1.35E-01 | 1.85E-03 | 7.56E-04 | 4.00E-06 | 4.55E-01 | 6.31E-01 | 9.15E-01 | |
N-CMA-ES | 0.00E+00 | 0.00E+00 | 2.51E-02 | 1.14E-04 | 3.90E-05 | 0.00E+00 | 4.55E-01 | 2.24E-01 | 3.9E-01 | |
N-JADE | 3.00E-06 | 1.20E-06 | 3.06E-01 | 8.20E-03 | 3.73E-03 | 3.50E-05 | 6.31E-01 | 2.24E-01 | 7.17E-01 | |
N-COA | 0.00E+00 | 2.01E-06 | 1.65E-01 | 2.64E-03 | 1.10E-03 | 7.01E-06 | 9.15E-01 | 3.9E-01 | 7.17E-01 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 2.1500 | 2.1500 |
CASDE-5 | 2.4000 | 2.3833 |
CASDE-10 | 2.3300 | 2.3500 |
CASDE-20 | 3.1167 | 3.1167 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE-5 | 265.5 | 199.5 | 4.91E-01 | 260.5 | 204.5 | 5.57E-01 |
CASDE-10 | 285.0 | 150.0 | 1.41E-01 | 285.0 | 150.0 | 1.41E-01 |
CASDE-20 | 397.0 | 68.0 | 6.89E-04 | 397.0 | 68.0 | 4.95E-04 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 4.3333 | 4.2667 |
F=0.1, CR=0.1 | 7.3000 | 6.4333 |
F=0.1, CR=0.5 | 4.8833 | 4.8833 |
F=0.1, CR=0.9 | 4.6833 | 4.6167 |
F=0.5, CR=0.1 | 6.4167 | 6.2833 |
F=0.5, CR=0.5 | 4.6500 | 4.8333 |
F=0.5, CR=0.9 | 4.3500 | 4.6000 |
F=0.9, CR=0.1 | 7.8500 | 7.6330 |
F=0.9, CR=0.5 | 5.4167 | 5.4000 |
F=0.9, CR=0.9 | 5.1167 | 5.2833 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
F=0.1, CR=0.1 | 396.0 | 39.0 | 1.04E-04 | 413.0 | 52.0 | 1.13E-04 |
F=0.1, CR=0.5 | 261.5 | 173.5 | 3.35E-01 | 282.5 | 152.5 | 1.55E-01 |
F=0.1, CR=0.9 | 260.0 | 175.0 | 3.52E-01 | 288.0 | 177.0 | 2.49E-01 |
F=0.5, CR=0.1 | 367.0 | 68.0 | 1.14E-03 | 367.0 | 68.0 | 7.49E-04 |
F=0.5, CR=0.5 | 260.0 | 175.0 | 3.52E-01 | 288.0 | 177.0 | 2.49E-01 |
F=0.5, CR=0.9 | 233.0 | 202.0 | 7.29E-01 | 263.0 | 202.0 | 5.23E-01 |
F=0.9, CR=0.1 | 407.5 | 27.5 | 3.01E-05 | 407.5 | 27.5 | 1.13E-05 |
F=0.9, CR=0.5 | 311.5 | 153.5 | 1.01E-01 | 317.0 | 148.0 | 7.80E-02 |
F=0.9, CR=0.9 | 283.0 | 152.0 | 1.53E-01 | 317.0 | 148.0 | 7.80E-02 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 1.9167 | 1.916 |
CASDE-1 | 2.1333 | 2.1333 |
CASDE-2 | 1.9500 | 1.9500 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE-1 | 286.0 | 179.0 | ≥0.2 | 287.0 | 178.0 | ≥0.2 |
CASDE-2 | 232.5 | 202.5 | ≥0.2 | 232.5 | 202.5 | ≥0.2 |
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | |
1 | 0.378136 | 0.583102 | 1.863559 | 0.829251 | 0.749801 | 0.335176 | 1.306394 | 1.086646 |
2 | 0.378136 | -0.583102 | 1.863559 | 0.829251 | 0.749801 | 0.335176 | 1.306394 | -1.086646 |
3 | -2.644550 | 0.583102 | 1.863559 | -0.829251 | -0.749801 | -0.335176 | -1.306394 | 1.086646 |
4 | -2.644550 | -0.583102 | 1.863559 | -0.829251 | -0.749801 | -0.335176 | -1.306394 | -1.086646 |
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | |
1 | 0.128764 | 0.495929 | 0.000000 | 0.328000 | 1.475000 | 0.000000 | 0.938892 | 0.000755 | 0.141080 |
2 | -0.100030 | -0.427811 | 0.097650 | 0.514846 | 1.288154 | -0.186846 | 0.819958 | 0.000576 | -0.092822 |
3 | 0.138229 | 0.528951 | 0.003490 | 0.318482 | 1.484517 | 0.009517 | 0.944950 | 0.000764 | 0.152422 |
4 | 0.000000 | 0.000000 | 0.495929 | 0.328000 | 1.475000 | 0.000000 | 0.938892 | 0.000754 | 0.000000 |
Prob. | CASDE | DDE/R | A-WeB | RADE | DREA | MODFA | FONDE | Self-CCDE | Self-CSDE | EMO-MMO | ANDE |
F01 | 0.9500 | 0.5333 | 0.5250 | 0.5333 | 0.5000 | 0.0000 | 0.5000 | 0.5625 | 0.5250 | 0.3000 | 0.5333 |
F02 | 1.0000 | 0.6667 | 0.3667 | 0.9583 | 0.3750 | 0.0000 | 0.9250 | 0.9125 | 0.7125 | 0.0750 | 0.2667 |
Avg. | 0.9750 | 0.6000 | 0.4459 | 0.7458 | 0.4375 | 0.0000 | 0.7125 | 0.7375 | 0.6188 | 0.1875 | 0.4000 |
Prob. | CASDE | DDE/R | A-WeB | RADE | DREA | MODFA | FONDE | Self-CCDE | Self-CSDE | EMO-MMO | ANDE |
F01 | 0.8000 | 0.0000 | 0.0333 | 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.1000 | 0.0500 | 0.0667 | 0.0667 |
F02 | 1.0000 | 0.2667 | 0.0667 | 0.8667 | 0.0000 | 0.0000 | 0.7667 | 0.8500 | 0.3000 | 0.0000 | 0.0000 |
Avg. | 0.9000 | 0.1333 | 0.0500 | 0.4833 | 0.0000 | 0.0000 | 0.3833 | 0.4750 | 0.1750 | 0.0333 | 0.0000 |
Prob. | RR | SR | ||||||||
CASDE | CASDE/AR | CASDE/DR | CASDE/DA | DCS-DE | CASDE | CASDE/AR | CASDE/DR | CASDE/DA | DCS-DE | |
F01 | 1.0000 | 0.8667 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 0.7333 | 1.0000 | 0.9333 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9515 | 0.9273 | 1.0000 | 1.0000 | 1.0000 | 0.6667 | 0.4667 |
F03 | 1.0000 | 1.0000 | 1.0000 | 0.9911 | 0.9733 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 0.6000 |
F04 | 1.0000 | 1.0000 | 0.7538 | 0.8103 | 0.7949 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0667 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.9667 | 0.9667 | 0.8833 | 1.0000 | 1.0000 | 0.7333 | 0.7333 | 0.3333 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9905 | 0.9619 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 0.7333 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9933 | 0.9467 | 0.8667 | 0.8667 | 0.9333 | 0.9667 | 0.7333 | 0.2000 | 0.2000 |
F13 | 0.9167 | 0.9778 | 0.9333 | 0.9500 | 0.9556 | 0.4667 | 0.7667 | 0.4667 | 0.6667 | 0.6000 |
F14 | 1.0000 | 1.0000 | 0.9926 | 0.9481 | 0.9259 | 1.0000 | 1.0000 | 0.9333 | 0.5333 | 0.4000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 |
F16 | 0.9744 | 1.0000 | 0.7026 | 0.9128 | 0.9641 | 0.6667 | 1.0000 | 0.0000 | 0.0667 | 0.6000 |
F17 | 1.0000 | 0.6125 | 0.9542 | 0.8750 | 0.7417 | 1.0000 | 0.0000 | 0.4667 | 0.0667 | 0.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.8833 | 1.0000 | 1.0000 | 0.4333 | 1.0000 | 0.7667 | 1.0000 | 1.0000 | 0.3333 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9889 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 |
F23 | 0.9750 | 0.8979 | 0.2583 | 0.4000 | 0.3875 | 0.6000 | 0.0333 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 0.8917 | 0.9167 | 1.0000 | 1.0000 | 1.0000 | 0.1333 | 0.3333 |
F25 | 1.0000 | 0.9667 | 0.6000 | 1.0000 | 0.9333 | 1.0000 | 0.9333 | 0.2000 | 1.0000 | 0.8667 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.9867 | 0.9867 | 0.9867 | 1.0000 | 1.0000 | 0.9333 | 0.9333 | 0.9333 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg | 0.9951 | 0.9733 | 0.9365 | 0.9169 | 0.8880 | 0.9556 | 0.9067 | 0.8156 | 0.7244 | 0.6800 |
Prob | CASDE | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-JADE | N-ACO |
F01 | 1.0000 | 0.9333 | 0.6200 | 1.0000 | 0.0000 | 1.0000 | 0.5000 | 0.2667 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 0.9970 | 1.0000 | 0.8455 | 1.0000 | 0.8545 | 0.8909 |
F03 | 1.0000 | 1.0000 | 0.9573 | 0.9960 | 0.9578 | 1.0000 | 0.9267 | 0.9511 | 0.9156 | 0.7067 |
F04 | 1.0000 | 1.0000 | 1.0000 | 0.9015 | 1.0000 | 0.9600 | 0.7500 | 0.1333 | 0.2103 | 0.7795 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.9400 | 0.9900 | 0.9583 | 0.9975 | 0.3625 | 0.0083 | 0.2250 | 0.9750 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 0.8371 | 0.9971 | 1.0000 | 1.0000 | 0.8500 | 0.5333 | 0.6095 | 0.7905 |
F09 | 1.0000 | 0.9778 | 0.8933 | 0.9700 | 1.0000 | 1.0000 | 0.1167 | 0.8667 | 0.9778 | 0.4222 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3250 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9750 | 0.4167 | 1.0000 | 1.0000 |
F12 | 0.9867 | 1.0000 | 0.8880 | 0.6310 | 0.8767 | 0.8640 | 0.8000 | 0.2267 | 0.2800 | 0.6067 |
F13 | 0.9167 | 0.7278 | 0.0933 | 0.8908 | 0.9167 | 0.7383 | 0.5167 | 0.3056 | 0.2778 | 0.5944 |
F14 | 1.0000 | 1.0000 | 0.9733 | 0.9867 | 1.0000 | 1.0000 | 0.4333 | 0.0296 | 0.2296 | 0.9185 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 | 0.9333 | 0.5000 | 0.5000 |
F16 | 0.9744 | 1.0000 | 1.0000 | 0.9954 | 1.0000 | 1.0000 | 1.0000 | 0.5846 | 0.6205 | 0.3744 |
F17 | 1.0000 | 1.0000 | 0.6688 | 0.9444 | 1.0000 | 0.9850 | 0.5406 | 0.0833 | 0.7458 | 0.0000 |
F18 | 1.0000 | 1.0000 | 0.9433 | 1.0000 | 1.0000 | 1.0000 | 0.9917 | 0.9778 | 0.9778 | 1.0000 |
F19 | 1.0000 | 0.9000 | 0.6200 | 0.7950 | 0.0000 | 0.9300 | 0.3250 | 0.4333 | 1.0000 | 0.6667 |
F20 | 1.0000 | 1.0000 | 0.9514 | 1.0000 | 1.0000 | 1.0000 | 0.9571 | 0.9905 | 0.7714 | 0.5714 |
F21 | 1.0000 | 1.0000 | 0.9950 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 0.9889 | 0.9778 | 1.0000 |
F23 | 0.9750 | 0.9417 | 0.1563 | 0.5619 | 0.7979 | 0.9100 | 0.5219 | 0.1250 | 0.1250 | 0.1250 |
F24 | 1.0000 | 1.0000 | 0.8550 | 0.9988 | 0.9125 | 1.0000 | 0.8063 | 1.0000 | 0.9917 | 0.7583 |
F25 | 1.0000 | 1.0000 | 0.2360 | 0.8350 | 1.0000 | 1.0000 | 0.3500 | 0.0000 | 0.2667 | 0.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 0.9967 | 1.0000 | 1.0000 | 0.8667 | 0.6667 | 0.7556 | 0.6889 |
F28 | 1.0000 | 1.0000 | 0.9400 | 1.0000 | 1.0000 | 1.0000 | 0.9250 | 0.0333 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.9320 | 0.9940 | 0.9533 | 0.9960 | 0.2000 | 0.9067 | 0.9733 | 0.6000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 1.0000 | 0.6333 |
Avg. | 0.9951 | 0.9827 | 0.8500 | 0.9491 | 0.8957 | 0.9794 | 0.7290 | 0.6148 | 0.7429 | 0.7201 |
Prob. | casde | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-LSHADE | N-ACO |
F01 | 1.0000 | 0.8667 | 0.3600 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9000 | 0.9300 | 1.0000 | 0.2000 | 1.0000 | 0.2000 | 0.2000 |
F03 | 1.0000 | 1.0000 | 0.5800 | 0.9500 | 0.4600 | 1.0000 | 0.3000 | 0.4000 | 0.2667 | 0.0000 |
F04 | 1.0000 | 1.0000 | 1.0000 | 0.3100 | 1.0000 | 0.5200 | 0.3500 | 0.0000 | 0.0000 | 0.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.6000 | 0.9300 | 0.6600 | 0.9800 | 0.1000 | 0.0000 | 0.0000 | 0.8000 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 0.1200 | 0.9800 | 1.0000 | 1.0000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F09 | 1.0000 | 0.9333 | 0.6800 | 0.9100 | 1.0000 | 1.0000 | 0.0000 | 0.6000 | 0.9333 | 0.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.0667 | 1.0000 | 1.0000 |
F12 | 0.9333 | 1.0000 | 0.2800 | 0.0000 | 0.0300 | 0.2800 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F13 | 0.4667 | 0.0000 | 0.0000 | 0.1900 | 0.2600 | 0.0200 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F14 | 1.0000 | 1.0000 | 0.7600 | 0.8900 | 1.0000 | 1.0000 | 0.2000 | 0.0000 | 0.0000 | 0.4000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.8667 | 0.0000 | 0.0000 |
F16 | 0.6667 | 1.0000 | 1.0000 | 0.9400 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
F17 | 1.0000 | 1.0000 | 0.0000 | 0.4300 | 0.0300 | 0.7600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F18 | 1.0000 | 1.0000 | 0.6600 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.8667 | 0.8667 | 1.0000 |
F19 | 1.0000 | 0.8000 | 0.2400 | 0.6900 | 0.0000 | 0.8600 | 0.1500 | 0.2667 | 1.0000 | 0.5333 |
F20 | 1.0000 | 1.0000 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 0.7500 | 0.9333 | 0.0667 | 0.0000 |
F21 | 1.0000 | 1.0000 | 0.9800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.9333 | 0.8667 | 1.0000 |
F23 | 0.6000 | 0.3333 | 0.0000 | 0.0000 | 0.0000 | 0.2800 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 0.1400 | 0.9900 | 0.4300 | 1.0000 | 0.0000 | 1.0000 | 0.9333 | 0.0000 |
F25 | 1.0000 | 1.0000 | 0.0200 | 0.6700 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 1.0000 | 1.0000 | 0.7000 | 0.2667 | 0.2667 | 0.0667 |
F28 | 1.0000 | 1.0000 | 0.8800 | 1.0000 | 1.0000 | 1.0000 | 0.9000 | 0.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.6600 | 0.9700 | 0.7600 | 0.9800 | 0.0000 | 0.5333 | 0.8667 | 0.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 0.0667 |
AVG. | 0.9556 | 0.9311 | 0.6553 | 0.8247 | 0.7187 | 0.8893 | 0.4633 | 0.4556 | 0.5089 | 0.4022 |
Prob. | RR | SR | ||||||
CASDE | CASDE-5 | CASDE-10 | CASDE-20 | CASDE | CASDE-5 | CASDE-10 | CASDE-20 | |
F01 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 1.0000 | 0.7333 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9879 | 1.0000 | 1.0000 | 1.0000 | 0.8667 |
F03 | 1.0000 | 1.0000 | 1.0000 | 0.7533 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F04 | 1.0000 | 1.0000 | 0.9974 | 0.7103 | 1.0000 | 1.0000 | 0.9667 | 0.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 1.0000 | 0.8417 | 1.0000 | 1.0000 | 1.0000 | 0.0667 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9952 | 1.0000 | 1.0000 | 1.0000 | 0.9667 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9933 | 0.9733 | 0.8567 | 0.9333 | 0.9667 | 0.8667 | 0.2000 |
F13 | 0.9167 | 0.9778 | 0.8667 | 0.5472 | 0.4667 | 0.7667 | 0.1333 | 0.0000 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.8185 | 1.0000 | 1.0000 | 1.0000 | 0.0333 |
F15 | 1.0000 | 1.0000 | 1.0000 | 0.9167 | 1.0000 | 1.0000 | 1.0000 | 0.8333 |
F16 | 0.9744 | 1.0000 | 0.7487 | 0.4513 | 0.6667 | 1.0000 | 0.0000 | 0.0000 |
F17 | 1.0000 | 0.6125 | 1.0000 | 0.7750 | 1.0000 | 0.0000 | 1.0000 | 0.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.8833 | 1.0000 | 1.0000 | 1.0000 | 0.7667 | 1.0000 | 1.0000 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 0.8000 |
F23 | 0.9750 | 0.8979 | 0.9417 | 0.7875 | 0.6000 | 0.0333 | 0.1667 | 0.0000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 0.1875 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F25 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg. | 0.9951 | 0.9733 | 0.9843 | 0.8865 | 0.9556 | 0.9067 | 0.9044 | 0.6589 |
Prob. | F=0.1 | F=0.5 | F=0.9 | ||||||
CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | |
F01 | 0.4667 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 0.7282 | 1.0000 | 1.0000 | 0.5692 | 1.0000 | 1.0000 | 0.4872 | 0.9897 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 0.9833 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 0.9833 | 0.9917 |
F07 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9810 | 1.0000 | 1.0000 | 0.9810 | 1.0000 | 1.0000 |
F09 | 0.0000 | 0.9667 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F10 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 0.5833 | 1.0000 | 1.0000 | 0.9167 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | 1.0000 |
F12 | 0.9533 | 0.9933 | 0.9867 | 0.8800 | 0.9667 | 1.0000 | 0.8667 | 1.0000 | 1.0000 |
F13 | 0.4722 | 0.5333 | 0.5778 | 0.8056 | 0.8500 | 0.8444 | 0.8778 | 0.9500 | 0.9944 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.9852 | 1.0000 | 1.0000 | 0.9111 | 0.9926 | 1.0000 |
F15 | 0.8333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 0.9667 |
F16 | 0.9744 | 1.0000 | 1.0000 | 0.9026 | 0.9897 | 1.0000 | 0.7641 | 0.7897 | 0.7692 |
F17 | 0.9917 | 1.0000 | 1.0000 | 0.9917 | 1.0000 | 1.0000 | 0.8875 | 0.9542 | 0.9583 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 0.0000 | 0.7000 | 0.9667 | 0.0000 | 0.4667 | 0.4667 | 0.0000 | 0.0000 | 0.0333 |
F20 | 0.9905 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9714 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9889 | 1.0000 | 1.0000 |
F23 | 0.4458 | 0.7417 | 0.8917 | 0.2792 | 0.7458 | 0.7458 | 0.2167 | 0.5292 | 0.8583 |
F24 | 1.0000 | 1.0000 | 0.9250 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 0.2333 | 1.0000 | 1.0000 | 0.2667 | 0.9667 | 0.9667 | 0.1333 | 0.9667 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 0.5000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 |
F29 | 0.9600 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 1.0000 | 1.0000 |
Avg. | 0.7928 | 0.9623 | 0.9783 | 0.8359 | 0.9662 | 0.9675 | 0.8056 | 0.9385 | 0.9191 |
Prob. | F=0.1 | F=0.5 | F=0.9 | ||||||
CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | |
F01 | 0.2000 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 0.8667 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 0.8667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6000 | 0.8667 | 0.9333 |
F07 | 0.4000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 |
F09 | 0.0000 | 0.9333 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F10 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 0.0667 | 1.0000 | 1.0000 | 0.6667 | 1.0000 | 1.0000 | 0.3333 | 1.0000 | 1.0000 |
F12 | 0.6667 | 0.9333 | 0.9333 | 0.4000 | 0.8000 | 1.0000 | 0.4000 | 1.0000 | 1.0000 |
F13 | 0.0000 | 0.0000 | 0.0000 | 0.1333 | 0.0667 | 0.0667 | 0.2000 | 0.5333 | 0.9333 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.4000 | 0.9333 | 1.0000 |
F15 | 0.7333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 0.9333 |
F16 | 0.6667 | 1.0000 | 1.0000 | 0.1333 | 0.8667 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
F17 | 0.8667 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.0667 | 0.4000 | 0.4000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 0.0000 | 0.6000 | 0.9333 | 0.0000 | 0.2000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F20 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F23 | 0.0000 | 0.0000 | 0.1333 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 0.4000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 0.0667 | 1.0000 | 1.0000 | 0.0667 | 0.9333 | 0.9333 | 0.0000 | 0.9333 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F29 | 0.8000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6667 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
Avg. | 0.6400 | 0.9133 | 0.9133 | 0.7000 | 0.8956 | 0.9067 | 0.6022 | 0.8511 | 0.8400 |
Prob. | RR | SR | ||||
CASDE | CASDE-1 | CASDE-2 | CASDE | CASDE-1 | CASDE-2 | |
F01 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 1.0000 | 0.9897 | 1.0000 | 1.0000 | 0.8667 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9667 | 0.9867 | 0.9333 | 0.8000 | 0.9333 |
F13 | 0.9167 | 0.9833 | 0.8778 | 0.4667 | 0.8000 | 0.1333 |
F14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F16 | 0.9744 | 0.9538 | 0.9897 | 0.6667 | 0.4000 | 0.8667 |
F17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.6000 | 1.0000 | 1.0000 | 0.6000 | 1.0000 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F23 | 0.9750 | 0.9125 | 0.9292 | 0.6000 | 0.0667 | 0.2000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg. | 0.9951 | 0.9802 | 0.9928 | 0.9556 | 0.9178 | 0.9378 |
Algorithm 1: Speciation clustering with dynamic cluster sizes |
Input: population P, cluster size set C |
Output: a set of species |
Sort P in ascending order according to fitness value; |
![]() |
Algorithm 2: Archive updating |
Input: Solution x and ϵ>0 |
Output: The updated archive A |
![]() |
Algorithm 3: The framework of CASDE |
Input:Control parameters: NP, NFE, NFEsmax |
Output:The final archive A |
Set NFE=0 and the archive A=∅; |
Randomly generate the population P; |
F and CR of each individual in P are set to 0.5 and 0.9; |
Calculate the fitness value of x via Eq (2.2) |
NFE=NFE+NP |
![]() |
Prob. | D | LE | NE | NoR | NFEsmax |
F01 | 20 | 0 | 2 | 2 | 50, 000 |
F02 | 2 | 1 | 1 | 11 | 50, 000 |
F03 | 2 | 0 | 2 | 15 | 50, 000 |
F04 | 2 | 0 | 0 | 13 | 50, 000 |
F05 | 10 | 0 | 10 | 1 | 50, 000 |
F06 | 2 | 1 | 1 | 8 | 50, 000 |
F07 | 2 | 0 | 2 | 2 | 50, 000 |
F08 | 2 | 0 | 2 | 7 | 50, 000 |
F09 | 5 | 4 | 1 | 3 | 100, 000 |
F10 | 3 | 0 | 3 | 2 | 50, 000 |
F11 | 2 | 0 | 2 | 4 | 50, 000 |
F12 | 2 | 0 | 2 | 10 | 50, 000 |
F13 | 3 | 0 | 3 | 12 | 50, 000 |
F14 | 2 | 0 | 2 | 9 | 50, 000 |
F15 | 2 | 0 | 2 | 2 | 50, 000 |
F16 | 2 | 0 | 2 | 13 | 50, 000 |
F17 | 8 | 1 | 7 | 16 | 100, 000 |
F18 | 2 | 0 | 2 | 6 | 50, 000 |
F19 | 20 | 19 | 1 | 2 | 200, 000 |
F20 | 3 | 0 | 3 | 7 | 50, 000 |
F21 | 2 | 0 | 2 | 4 | 50, 000 |
F22 | 2 | 0 | 2 | 6 | 50, 000 |
F23 | 3 | 0 | 3 | 16 | 500, 000 |
F24 | 3 | 0 | 3 | 8 | 100, 000 |
F25 | 3 | 0 | 3 | 2 | 50, 000 |
F26 | 2 | 0 | 2 | 2 | 50, 000 |
F27 | 2 | 0 | 2 | 3 | 50, 000 |
F28 | 2 | 0 | 2 | 2 | 50, 000 |
F29 | 3 | 0 | 3 | 5 | 50, 000 |
F30 | 2 | 0 | 2 | 4 | 50, 000 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 2.3667 | 2.3500 |
CASDE/AR | 2.5500 | 2.5333 |
CASDE/DR | 3.0667 | 3.0333 |
CASDE/DA | 3.3167 | 3.3667 |
DCS-DE | 3.7000 | 3.7167 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE/AR | 265.5 | 199.5 | 4.90E-01 | 260.5 | 204.5 | 5.57E-01 |
CASDE/DR | 337.0 | 128.0 | 3.07E-02 | 345.0 | 120.0 | 1.42E-02 |
CASDE/DA | 378.5 | 86.5 | 1.36E-03 | 378.5 | 86.5 | 1.28E-03 |
DCS-DE | 393.0 | 72.0 | 4.99E-04 | 394.5 | 70.5 | 2.93E-04 |
Method | Parameter settings |
CASDE | NP=100,F=0.5,CR=0.9,C={5,6,7,8,9,10} |
DDE/R | NP=100,F=0.5,CR=0.9,t=20,ℓ=20 |
MONES | NP=100,Hm=NP |
A-WeB | NP=100,Hm=NP |
RADE | NP=100,Hm=200 |
DREA | NP=10,uCR=0.5,uF=0.5,c=0.1 |
MODFA | NP=100,α=0.23,β0=1,δ=0.98,γ=1 |
FONDE | NP=100,F=0.5,CR=0.9,m=11 |
Self-CCDE | NP=100,CRm=0.5 |
Self-CSDE | NP=100,CRm=0.5 |
EMO-MMO | NP=100,η=0.1,m=20,ϕ=0 |
ANDE | NP=100,F=0.9,CR=0.1 |
CMA-ES | μ=5,λ=10 |
JADE | uCR=0.5,uF=0.5,c=0.1 |
COA | Np=20,Nc=5 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 4.1500 | 4.1167 |
DDE/R | 4.4667 | 4.6500 |
A-WeB | 8.2333 | 8.1333 |
RADE | 6.1500 | 6.3500 |
DREA | 6.1167 | 6.5833 |
FONDE | 4.6333 | 4.5833 |
EMO-MMO | 9.9167 | 10.6167 |
N-CMA-ES | 11.1333 | 10.6167 |
N-JADE | 9.8667 | 9.7667 |
N-COA | 9.8833 | 10.1833 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
DDE/R | 275.5 | 189.5 | 3.46E-01 | 242.0 | 193.0 | 3.85E-01 |
A-WeB | 426.0 | 39.0 | 6.30E-05 | 411.0 | 54.0 | 1.04E-04 |
RADE | 375.0 | 90.0 | 3.19E-03 | 377.0 | 88.0 | 2.78E-03 |
DREA | 332.5 | 132.5 | 3.87E-02 | 345.0 | 120.0 | 1.42E-02 |
FONDE | 321.0 | 144.0 | 5.42E-02 | 319.0 | 149.0 | 5.92E-02 |
EMO-MMO | 436.5 | 28.5 | 5.01E-06 | 447.0 | 18.0 | 1.02E-06 |
N-CMA-ES | 439.5 | 25.5 | 7.01E-06 | 439.5 | 25.5 | 0.00E+00 |
N-JADE | 437.5 | 27.5 | 1.90E-05 | 437.5 | 27.5 | 0.00E+00 |
N-COA | 437.5 | 27.5 | 2.3E-04 | 437.5 | 27.5 | 0.00E+00 |
CASDE | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-JADE | N-COA | |
CASDE | 7.65E-01 | 2.67E-04 | 4.28E-02 | 7.67E-02 | 5.91E-01 | 0.00E+00 | 0.00E+00 | 3.00E-06 | 0.00E+00 | |
DDE/R | 7.65E-01 | 8.16E-04 | 8.41E-02 | 1.42E-01 | 8.14E-01 | 1.00E-06 | 0.00E+00 | 1.20E-06 | 2.01E-06 | |
A-WeB | 2.67E-04 | 8.16E-04 | 1.05E-01 | 6.06E-02 | 1.86E-03 | 1.35E-01 | 2.51E-02 | 3.06E-01 | 1.65E-01 | |
RADE | 4.28E-02 | 8.41E-02 | 1.05E-01 | 7.98E-01 | 1.35E-01 | 1.85E-03 | 1.14E-04 | 8.20E-03 | 2.64E-03 | |
DREA | 7.67E-02 | 1.42E-01 | 6.06E-02 | 7.98E-01 | 2.16E-01 | 7.56E-04 | 3.90E-05 | 3.73E-03 | 1.10E-03 | |
FONDE | 5.91E-01 | 8.14E-01 | 1.86E-03 | 1.35E-01 | 2.16E-01 | 4.00E-06 | 0.00E+00 | 3.50E-05 | 7.01E-06 | |
EMO-MMO | 0.00E+00 | 1.00E-06 | 1.35E-01 | 1.85E-03 | 7.56E-04 | 4.00E-06 | 4.55E-01 | 6.31E-01 | 9.15E-01 | |
N-CMA-ES | 0.00E+00 | 0.00E+00 | 2.51E-02 | 1.14E-04 | 3.90E-05 | 0.00E+00 | 4.55E-01 | 2.24E-01 | 3.9E-01 | |
N-JADE | 3.00E-06 | 1.20E-06 | 3.06E-01 | 8.20E-03 | 3.73E-03 | 3.50E-05 | 6.31E-01 | 2.24E-01 | 7.17E-01 | |
N-COA | 0.00E+00 | 2.01E-06 | 1.65E-01 | 2.64E-03 | 1.10E-03 | 7.01E-06 | 9.15E-01 | 3.9E-01 | 7.17E-01 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 2.1500 | 2.1500 |
CASDE-5 | 2.4000 | 2.3833 |
CASDE-10 | 2.3300 | 2.3500 |
CASDE-20 | 3.1167 | 3.1167 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE-5 | 265.5 | 199.5 | 4.91E-01 | 260.5 | 204.5 | 5.57E-01 |
CASDE-10 | 285.0 | 150.0 | 1.41E-01 | 285.0 | 150.0 | 1.41E-01 |
CASDE-20 | 397.0 | 68.0 | 6.89E-04 | 397.0 | 68.0 | 4.95E-04 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 4.3333 | 4.2667 |
F=0.1, CR=0.1 | 7.3000 | 6.4333 |
F=0.1, CR=0.5 | 4.8833 | 4.8833 |
F=0.1, CR=0.9 | 4.6833 | 4.6167 |
F=0.5, CR=0.1 | 6.4167 | 6.2833 |
F=0.5, CR=0.5 | 4.6500 | 4.8333 |
F=0.5, CR=0.9 | 4.3500 | 4.6000 |
F=0.9, CR=0.1 | 7.8500 | 7.6330 |
F=0.9, CR=0.5 | 5.4167 | 5.4000 |
F=0.9, CR=0.9 | 5.1167 | 5.2833 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
F=0.1, CR=0.1 | 396.0 | 39.0 | 1.04E-04 | 413.0 | 52.0 | 1.13E-04 |
F=0.1, CR=0.5 | 261.5 | 173.5 | 3.35E-01 | 282.5 | 152.5 | 1.55E-01 |
F=0.1, CR=0.9 | 260.0 | 175.0 | 3.52E-01 | 288.0 | 177.0 | 2.49E-01 |
F=0.5, CR=0.1 | 367.0 | 68.0 | 1.14E-03 | 367.0 | 68.0 | 7.49E-04 |
F=0.5, CR=0.5 | 260.0 | 175.0 | 3.52E-01 | 288.0 | 177.0 | 2.49E-01 |
F=0.5, CR=0.9 | 233.0 | 202.0 | 7.29E-01 | 263.0 | 202.0 | 5.23E-01 |
F=0.9, CR=0.1 | 407.5 | 27.5 | 3.01E-05 | 407.5 | 27.5 | 1.13E-05 |
F=0.9, CR=0.5 | 311.5 | 153.5 | 1.01E-01 | 317.0 | 148.0 | 7.80E-02 |
F=0.9, CR=0.9 | 283.0 | 152.0 | 1.53E-01 | 317.0 | 148.0 | 7.80E-02 |
Algorithm | Ranking (RR) | Ranking (SR) |
CASDE | 1.9167 | 1.916 |
CASDE-1 | 2.1333 | 2.1333 |
CASDE-2 | 1.9500 | 1.9500 |
VS | RR | SR | ||||
R+ | R− | p-value | R+ | R− | p-value | |
CASDE-1 | 286.0 | 179.0 | ≥0.2 | 287.0 | 178.0 | ≥0.2 |
CASDE-2 | 232.5 | 202.5 | ≥0.2 | 232.5 | 202.5 | ≥0.2 |
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | |
1 | 0.378136 | 0.583102 | 1.863559 | 0.829251 | 0.749801 | 0.335176 | 1.306394 | 1.086646 |
2 | 0.378136 | -0.583102 | 1.863559 | 0.829251 | 0.749801 | 0.335176 | 1.306394 | -1.086646 |
3 | -2.644550 | 0.583102 | 1.863559 | -0.829251 | -0.749801 | -0.335176 | -1.306394 | 1.086646 |
4 | -2.644550 | -0.583102 | 1.863559 | -0.829251 | -0.749801 | -0.335176 | -1.306394 | -1.086646 |
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | |
1 | 0.128764 | 0.495929 | 0.000000 | 0.328000 | 1.475000 | 0.000000 | 0.938892 | 0.000755 | 0.141080 |
2 | -0.100030 | -0.427811 | 0.097650 | 0.514846 | 1.288154 | -0.186846 | 0.819958 | 0.000576 | -0.092822 |
3 | 0.138229 | 0.528951 | 0.003490 | 0.318482 | 1.484517 | 0.009517 | 0.944950 | 0.000764 | 0.152422 |
4 | 0.000000 | 0.000000 | 0.495929 | 0.328000 | 1.475000 | 0.000000 | 0.938892 | 0.000754 | 0.000000 |
Prob. | CASDE | DDE/R | A-WeB | RADE | DREA | MODFA | FONDE | Self-CCDE | Self-CSDE | EMO-MMO | ANDE |
F01 | 0.9500 | 0.5333 | 0.5250 | 0.5333 | 0.5000 | 0.0000 | 0.5000 | 0.5625 | 0.5250 | 0.3000 | 0.5333 |
F02 | 1.0000 | 0.6667 | 0.3667 | 0.9583 | 0.3750 | 0.0000 | 0.9250 | 0.9125 | 0.7125 | 0.0750 | 0.2667 |
Avg. | 0.9750 | 0.6000 | 0.4459 | 0.7458 | 0.4375 | 0.0000 | 0.7125 | 0.7375 | 0.6188 | 0.1875 | 0.4000 |
Prob. | CASDE | DDE/R | A-WeB | RADE | DREA | MODFA | FONDE | Self-CCDE | Self-CSDE | EMO-MMO | ANDE |
F01 | 0.8000 | 0.0000 | 0.0333 | 0.1000 | 0.0000 | 0.0000 | 0.0000 | 0.1000 | 0.0500 | 0.0667 | 0.0667 |
F02 | 1.0000 | 0.2667 | 0.0667 | 0.8667 | 0.0000 | 0.0000 | 0.7667 | 0.8500 | 0.3000 | 0.0000 | 0.0000 |
Avg. | 0.9000 | 0.1333 | 0.0500 | 0.4833 | 0.0000 | 0.0000 | 0.3833 | 0.4750 | 0.1750 | 0.0333 | 0.0000 |
Prob. | RR | SR | ||||||||
CASDE | CASDE/AR | CASDE/DR | CASDE/DA | DCS-DE | CASDE | CASDE/AR | CASDE/DR | CASDE/DA | DCS-DE | |
F01 | 1.0000 | 0.8667 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 0.7333 | 1.0000 | 0.9333 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9515 | 0.9273 | 1.0000 | 1.0000 | 1.0000 | 0.6667 | 0.4667 |
F03 | 1.0000 | 1.0000 | 1.0000 | 0.9911 | 0.9733 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 0.6000 |
F04 | 1.0000 | 1.0000 | 0.7538 | 0.8103 | 0.7949 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0667 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.9667 | 0.9667 | 0.8833 | 1.0000 | 1.0000 | 0.7333 | 0.7333 | 0.3333 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9905 | 0.9619 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 0.7333 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9933 | 0.9467 | 0.8667 | 0.8667 | 0.9333 | 0.9667 | 0.7333 | 0.2000 | 0.2000 |
F13 | 0.9167 | 0.9778 | 0.9333 | 0.9500 | 0.9556 | 0.4667 | 0.7667 | 0.4667 | 0.6667 | 0.6000 |
F14 | 1.0000 | 1.0000 | 0.9926 | 0.9481 | 0.9259 | 1.0000 | 1.0000 | 0.9333 | 0.5333 | 0.4000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 |
F16 | 0.9744 | 1.0000 | 0.7026 | 0.9128 | 0.9641 | 0.6667 | 1.0000 | 0.0000 | 0.0667 | 0.6000 |
F17 | 1.0000 | 0.6125 | 0.9542 | 0.8750 | 0.7417 | 1.0000 | 0.0000 | 0.4667 | 0.0667 | 0.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.8833 | 1.0000 | 1.0000 | 0.4333 | 1.0000 | 0.7667 | 1.0000 | 1.0000 | 0.3333 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9889 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 |
F23 | 0.9750 | 0.8979 | 0.2583 | 0.4000 | 0.3875 | 0.6000 | 0.0333 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 0.8917 | 0.9167 | 1.0000 | 1.0000 | 1.0000 | 0.1333 | 0.3333 |
F25 | 1.0000 | 0.9667 | 0.6000 | 1.0000 | 0.9333 | 1.0000 | 0.9333 | 0.2000 | 1.0000 | 0.8667 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.9867 | 0.9867 | 0.9867 | 1.0000 | 1.0000 | 0.9333 | 0.9333 | 0.9333 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg | 0.9951 | 0.9733 | 0.9365 | 0.9169 | 0.8880 | 0.9556 | 0.9067 | 0.8156 | 0.7244 | 0.6800 |
Prob | CASDE | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-JADE | N-ACO |
F01 | 1.0000 | 0.9333 | 0.6200 | 1.0000 | 0.0000 | 1.0000 | 0.5000 | 0.2667 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 0.9970 | 1.0000 | 0.8455 | 1.0000 | 0.8545 | 0.8909 |
F03 | 1.0000 | 1.0000 | 0.9573 | 0.9960 | 0.9578 | 1.0000 | 0.9267 | 0.9511 | 0.9156 | 0.7067 |
F04 | 1.0000 | 1.0000 | 1.0000 | 0.9015 | 1.0000 | 0.9600 | 0.7500 | 0.1333 | 0.2103 | 0.7795 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.9400 | 0.9900 | 0.9583 | 0.9975 | 0.3625 | 0.0083 | 0.2250 | 0.9750 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 0.8371 | 0.9971 | 1.0000 | 1.0000 | 0.8500 | 0.5333 | 0.6095 | 0.7905 |
F09 | 1.0000 | 0.9778 | 0.8933 | 0.9700 | 1.0000 | 1.0000 | 0.1167 | 0.8667 | 0.9778 | 0.4222 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3250 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9750 | 0.4167 | 1.0000 | 1.0000 |
F12 | 0.9867 | 1.0000 | 0.8880 | 0.6310 | 0.8767 | 0.8640 | 0.8000 | 0.2267 | 0.2800 | 0.6067 |
F13 | 0.9167 | 0.7278 | 0.0933 | 0.8908 | 0.9167 | 0.7383 | 0.5167 | 0.3056 | 0.2778 | 0.5944 |
F14 | 1.0000 | 1.0000 | 0.9733 | 0.9867 | 1.0000 | 1.0000 | 0.4333 | 0.0296 | 0.2296 | 0.9185 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 | 0.9333 | 0.5000 | 0.5000 |
F16 | 0.9744 | 1.0000 | 1.0000 | 0.9954 | 1.0000 | 1.0000 | 1.0000 | 0.5846 | 0.6205 | 0.3744 |
F17 | 1.0000 | 1.0000 | 0.6688 | 0.9444 | 1.0000 | 0.9850 | 0.5406 | 0.0833 | 0.7458 | 0.0000 |
F18 | 1.0000 | 1.0000 | 0.9433 | 1.0000 | 1.0000 | 1.0000 | 0.9917 | 0.9778 | 0.9778 | 1.0000 |
F19 | 1.0000 | 0.9000 | 0.6200 | 0.7950 | 0.0000 | 0.9300 | 0.3250 | 0.4333 | 1.0000 | 0.6667 |
F20 | 1.0000 | 1.0000 | 0.9514 | 1.0000 | 1.0000 | 1.0000 | 0.9571 | 0.9905 | 0.7714 | 0.5714 |
F21 | 1.0000 | 1.0000 | 0.9950 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 0.9889 | 0.9778 | 1.0000 |
F23 | 0.9750 | 0.9417 | 0.1563 | 0.5619 | 0.7979 | 0.9100 | 0.5219 | 0.1250 | 0.1250 | 0.1250 |
F24 | 1.0000 | 1.0000 | 0.8550 | 0.9988 | 0.9125 | 1.0000 | 0.8063 | 1.0000 | 0.9917 | 0.7583 |
F25 | 1.0000 | 1.0000 | 0.2360 | 0.8350 | 1.0000 | 1.0000 | 0.3500 | 0.0000 | 0.2667 | 0.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 0.9967 | 1.0000 | 1.0000 | 0.8667 | 0.6667 | 0.7556 | 0.6889 |
F28 | 1.0000 | 1.0000 | 0.9400 | 1.0000 | 1.0000 | 1.0000 | 0.9250 | 0.0333 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.9320 | 0.9940 | 0.9533 | 0.9960 | 0.2000 | 0.9067 | 0.9733 | 0.6000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 1.0000 | 0.6333 |
Avg. | 0.9951 | 0.9827 | 0.8500 | 0.9491 | 0.8957 | 0.9794 | 0.7290 | 0.6148 | 0.7429 | 0.7201 |
Prob. | casde | DDE/R | A-WeB | RADE | DREA | FONDE | EMO-MMO | N-CMA-ES | N-LSHADE | N-ACO |
F01 | 1.0000 | 0.8667 | 0.3600 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9000 | 0.9300 | 1.0000 | 0.2000 | 1.0000 | 0.2000 | 0.2000 |
F03 | 1.0000 | 1.0000 | 0.5800 | 0.9500 | 0.4600 | 1.0000 | 0.3000 | 0.4000 | 0.2667 | 0.0000 |
F04 | 1.0000 | 1.0000 | 1.0000 | 0.3100 | 1.0000 | 0.5200 | 0.3500 | 0.0000 | 0.0000 | 0.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 0.6000 | 0.9300 | 0.6600 | 0.9800 | 0.1000 | 0.0000 | 0.0000 | 0.8000 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 0.1200 | 0.9800 | 1.0000 | 1.0000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F09 | 1.0000 | 0.9333 | 0.6800 | 0.9100 | 1.0000 | 1.0000 | 0.0000 | 0.6000 | 0.9333 | 0.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.0667 | 1.0000 | 1.0000 |
F12 | 0.9333 | 1.0000 | 0.2800 | 0.0000 | 0.0300 | 0.2800 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F13 | 0.4667 | 0.0000 | 0.0000 | 0.1900 | 0.2600 | 0.0200 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F14 | 1.0000 | 1.0000 | 0.7600 | 0.8900 | 1.0000 | 1.0000 | 0.2000 | 0.0000 | 0.0000 | 0.4000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.8667 | 0.0000 | 0.0000 |
F16 | 0.6667 | 1.0000 | 1.0000 | 0.9400 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
F17 | 1.0000 | 1.0000 | 0.0000 | 0.4300 | 0.0300 | 0.7600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F18 | 1.0000 | 1.0000 | 0.6600 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.8667 | 0.8667 | 1.0000 |
F19 | 1.0000 | 0.8000 | 0.2400 | 0.6900 | 0.0000 | 0.8600 | 0.1500 | 0.2667 | 1.0000 | 0.5333 |
F20 | 1.0000 | 1.0000 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 0.7500 | 0.9333 | 0.0667 | 0.0000 |
F21 | 1.0000 | 1.0000 | 0.9800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9500 | 0.9333 | 0.8667 | 1.0000 |
F23 | 0.6000 | 0.3333 | 0.0000 | 0.0000 | 0.0000 | 0.2800 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 0.1400 | 0.9900 | 0.4300 | 1.0000 | 0.0000 | 1.0000 | 0.9333 | 0.0000 |
F25 | 1.0000 | 1.0000 | 0.0200 | 0.6700 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 1.0000 | 1.0000 | 0.7000 | 0.2667 | 0.2667 | 0.0667 |
F28 | 1.0000 | 1.0000 | 0.8800 | 1.0000 | 1.0000 | 1.0000 | 0.9000 | 0.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 0.6600 | 0.9700 | 0.7600 | 0.9800 | 0.0000 | 0.5333 | 0.8667 | 0.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 0.0667 |
AVG. | 0.9556 | 0.9311 | 0.6553 | 0.8247 | 0.7187 | 0.8893 | 0.4633 | 0.4556 | 0.5089 | 0.4022 |
Prob. | RR | SR | ||||||
CASDE | CASDE-5 | CASDE-10 | CASDE-20 | CASDE | CASDE-5 | CASDE-10 | CASDE-20 | |
F01 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 1.0000 | 0.7333 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 0.9879 | 1.0000 | 1.0000 | 1.0000 | 0.8667 |
F03 | 1.0000 | 1.0000 | 1.0000 | 0.7533 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F04 | 1.0000 | 1.0000 | 0.9974 | 0.7103 | 1.0000 | 1.0000 | 0.9667 | 0.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 1.0000 | 0.8417 | 1.0000 | 1.0000 | 1.0000 | 0.0667 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9952 | 1.0000 | 1.0000 | 1.0000 | 0.9667 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9933 | 0.9733 | 0.8567 | 0.9333 | 0.9667 | 0.8667 | 0.2000 |
F13 | 0.9167 | 0.9778 | 0.8667 | 0.5472 | 0.4667 | 0.7667 | 0.1333 | 0.0000 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.8185 | 1.0000 | 1.0000 | 1.0000 | 0.0333 |
F15 | 1.0000 | 1.0000 | 1.0000 | 0.9167 | 1.0000 | 1.0000 | 1.0000 | 0.8333 |
F16 | 0.9744 | 1.0000 | 0.7487 | 0.4513 | 0.6667 | 1.0000 | 0.0000 | 0.0000 |
F17 | 1.0000 | 0.6125 | 1.0000 | 0.7750 | 1.0000 | 0.0000 | 1.0000 | 0.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.8833 | 1.0000 | 1.0000 | 1.0000 | 0.7667 | 1.0000 | 1.0000 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 0.8000 |
F23 | 0.9750 | 0.8979 | 0.9417 | 0.7875 | 0.6000 | 0.0333 | 0.1667 | 0.0000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 0.1875 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F25 | 1.0000 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg. | 0.9951 | 0.9733 | 0.9843 | 0.8865 | 0.9556 | 0.9067 | 0.9044 | 0.6589 |
Prob. | F=0.1 | F=0.5 | F=0.9 | ||||||
CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | |
F01 | 0.4667 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 0.7282 | 1.0000 | 1.0000 | 0.5692 | 1.0000 | 1.0000 | 0.4872 | 0.9897 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 0.9833 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 0.9833 | 0.9917 |
F07 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.9810 | 1.0000 | 1.0000 | 0.9810 | 1.0000 | 1.0000 |
F09 | 0.0000 | 0.9667 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F10 | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 0.5833 | 1.0000 | 1.0000 | 0.9167 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | 1.0000 |
F12 | 0.9533 | 0.9933 | 0.9867 | 0.8800 | 0.9667 | 1.0000 | 0.8667 | 1.0000 | 1.0000 |
F13 | 0.4722 | 0.5333 | 0.5778 | 0.8056 | 0.8500 | 0.8444 | 0.8778 | 0.9500 | 0.9944 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.9852 | 1.0000 | 1.0000 | 0.9111 | 0.9926 | 1.0000 |
F15 | 0.8333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 0.9667 |
F16 | 0.9744 | 1.0000 | 1.0000 | 0.9026 | 0.9897 | 1.0000 | 0.7641 | 0.7897 | 0.7692 |
F17 | 0.9917 | 1.0000 | 1.0000 | 0.9917 | 1.0000 | 1.0000 | 0.8875 | 0.9542 | 0.9583 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 0.0000 | 0.7000 | 0.9667 | 0.0000 | 0.4667 | 0.4667 | 0.0000 | 0.0000 | 0.0333 |
F20 | 0.9905 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9714 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9889 | 1.0000 | 1.0000 |
F23 | 0.4458 | 0.7417 | 0.8917 | 0.2792 | 0.7458 | 0.7458 | 0.2167 | 0.5292 | 0.8583 |
F24 | 1.0000 | 1.0000 | 0.9250 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 0.2333 | 1.0000 | 1.0000 | 0.2667 | 0.9667 | 0.9667 | 0.1333 | 0.9667 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 0.5000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 | 0.5000 | 1.0000 | 1.0000 |
F29 | 0.9600 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9833 | 1.0000 | 1.0000 |
Avg. | 0.7928 | 0.9623 | 0.9783 | 0.8359 | 0.9662 | 0.9675 | 0.8056 | 0.9385 | 0.9191 |
Prob. | F=0.1 | F=0.5 | F=0.9 | ||||||
CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | CR=0.1 | CR=0.5 | CR=0.9 | |
F01 | 0.2000 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 0.8667 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 0.8667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6000 | 0.8667 | 0.9333 |
F07 | 0.4000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 |
F09 | 0.0000 | 0.9333 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F10 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 0.0667 | 1.0000 | 1.0000 | 0.6667 | 1.0000 | 1.0000 | 0.3333 | 1.0000 | 1.0000 |
F12 | 0.6667 | 0.9333 | 0.9333 | 0.4000 | 0.8000 | 1.0000 | 0.4000 | 1.0000 | 1.0000 |
F13 | 0.0000 | 0.0000 | 0.0000 | 0.1333 | 0.0667 | 0.0667 | 0.2000 | 0.5333 | 0.9333 |
F14 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.4000 | 0.9333 | 1.0000 |
F15 | 0.7333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 0.9333 |
F16 | 0.6667 | 1.0000 | 1.0000 | 0.1333 | 0.8667 | 1.0000 | 0.0000 | 0.0000 | 0.0000 |
F17 | 0.8667 | 1.0000 | 1.0000 | 0.8667 | 1.0000 | 1.0000 | 0.0667 | 0.4000 | 0.4000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 0.0000 | 0.6000 | 0.9333 | 0.0000 | 0.2000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 |
F20 | 0.9333 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
F23 | 0.0000 | 0.0000 | 0.1333 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
F24 | 1.0000 | 1.0000 | 0.4000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 0.0667 | 1.0000 | 1.0000 | 0.0667 | 0.9333 | 0.9333 | 0.0000 | 0.9333 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
F29 | 0.8000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.6667 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9333 | 1.0000 | 1.0000 |
Avg. | 0.6400 | 0.9133 | 0.9133 | 0.7000 | 0.8956 | 0.9067 | 0.6022 | 0.8511 | 0.8400 |
Prob. | RR | SR | ||||
CASDE | CASDE-1 | CASDE-2 | CASDE | CASDE-1 | CASDE-2 | |
F01 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F02 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F03 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F04 | 1.0000 | 0.9897 | 1.0000 | 1.0000 | 0.8667 | 1.0000 |
F05 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F06 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F07 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F08 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F09 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F12 | 0.9867 | 0.9667 | 0.9867 | 0.9333 | 0.8000 | 0.9333 |
F13 | 0.9167 | 0.9833 | 0.8778 | 0.4667 | 0.8000 | 0.1333 |
F14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F16 | 0.9744 | 0.9538 | 0.9897 | 0.6667 | 0.4000 | 0.8667 |
F17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F19 | 1.0000 | 0.6000 | 1.0000 | 1.0000 | 0.6000 | 1.0000 |
F20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F21 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F22 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F23 | 0.9750 | 0.9125 | 0.9292 | 0.6000 | 0.0667 | 0.2000 |
F24 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F25 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F26 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F27 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F28 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F29 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
F30 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Avg. | 0.9951 | 0.9802 | 0.9928 | 0.9556 | 0.9178 | 0.9378 |