Research article Special Issues

Impact of pseudoplastic and dilatants behavior of Reiner-Philippoff nanofluid on peristaltic motion with heat and mass transfer analysis in a tapered channel

  • Received: 28 September 2022 Revised: 15 November 2022 Accepted: 11 December 2022 Published: 11 January 2023
  • MSC : 35Q79, 76A05, 80A05

  • The main goal of this article is to investigate the effects of pseudoplastic, and dilatants behavior of non-Newtonian based nanofluid on peristaltic motion in an asymmetric tapered channel. Buongiorno's nanofluid model is considered for the study to investigate the heat and mass transfer analysis. The Reiner-Philippoff fluid model is considered to depict the non-Newtonian characteristics of the fluid. The Reiner Philippoff fluid model is the most challenging model among other non-Newtonian fluid models in such a way that shear stress and velocity gradient are non-linearly proportional to each other in this model. This model also represents the implicit relation between stress and deformation rate. The governing equations are based on the dispersion model for nanofluid which incorporates the effects of thermophoretic and Brownian diffusions. The governing equations are simplified in the account of the small Reynolds number and long wavelength assumptions. The solution of the equations is retrieved numerically by the help of built in ND-Solve function of MATHEMATICA software. The sound effects of Reiner-Philippoff based nanofluid on the behavior of velocity and temperature profiles of the fluid, streamlines, pressure gradient fields, and concentration of the nanoparticles are discussed thoroughly. The interesting behavior of Reiner-Philippoff fluid for two limiting shear stress cases when shear stress parameter is very small and very large, for which Reiner-Philippoff fluid behaves like a Newtonian fluid, is also verified. It is observed that fluid flow changes its properties from dilatants fluid to Newtonian and from Newtonian to pseudoplastic fluid by varying the Reiner-Philippoff fluid parameter. According to the findings, the temperature graphs rise against higher thermophoretic diffusion and Brownian motion parameters and falls with higher Prandtl number. Further, the impacts of all the significant parameters are investigated briefly by mathematically as well as graphically.

    Citation: Muhammad Tahir, Yasir Khan, Adeel Ahmad. Impact of pseudoplastic and dilatants behavior of Reiner-Philippoff nanofluid on peristaltic motion with heat and mass transfer analysis in a tapered channel[J]. AIMS Mathematics, 2023, 8(3): 7115-7141. doi: 10.3934/math.2023359

    Related Papers:

  • The main goal of this article is to investigate the effects of pseudoplastic, and dilatants behavior of non-Newtonian based nanofluid on peristaltic motion in an asymmetric tapered channel. Buongiorno's nanofluid model is considered for the study to investigate the heat and mass transfer analysis. The Reiner-Philippoff fluid model is considered to depict the non-Newtonian characteristics of the fluid. The Reiner Philippoff fluid model is the most challenging model among other non-Newtonian fluid models in such a way that shear stress and velocity gradient are non-linearly proportional to each other in this model. This model also represents the implicit relation between stress and deformation rate. The governing equations are based on the dispersion model for nanofluid which incorporates the effects of thermophoretic and Brownian diffusions. The governing equations are simplified in the account of the small Reynolds number and long wavelength assumptions. The solution of the equations is retrieved numerically by the help of built in ND-Solve function of MATHEMATICA software. The sound effects of Reiner-Philippoff based nanofluid on the behavior of velocity and temperature profiles of the fluid, streamlines, pressure gradient fields, and concentration of the nanoparticles are discussed thoroughly. The interesting behavior of Reiner-Philippoff fluid for two limiting shear stress cases when shear stress parameter is very small and very large, for which Reiner-Philippoff fluid behaves like a Newtonian fluid, is also verified. It is observed that fluid flow changes its properties from dilatants fluid to Newtonian and from Newtonian to pseudoplastic fluid by varying the Reiner-Philippoff fluid parameter. According to the findings, the temperature graphs rise against higher thermophoretic diffusion and Brownian motion parameters and falls with higher Prandtl number. Further, the impacts of all the significant parameters are investigated briefly by mathematically as well as graphically.



    加载中


    [1] G. B. Thurston, N. M. Henderson, M. Jeng, Effects of erythrocytapheresis transfusion on the viscoelasticity of sickle cell blood, Clin. Hemorheol. Microcirc., 30 (2004), 83–97.
    [2] H. A. Baieth, S. Hamza, Comparative examination of constitutive equations for apparent viscosity of human blood, Egypt. J. Biophys. Biomed. Eng., 7 (2006), 85–96.
    [3] G. Pedrzzetti, L. Zavatto, F. Domenichini, A. Tortoriello, Pulstile flow inside moderately elastic arteries, its modeling and effects of elasticity, Comput. Methods Biomec. Biomed. Eng., 5 (2002), 219–231. http://doi.org/10.1080/10255840212874
    [4] G. Pontrelli, Nonlinear problems in arterial flows, Nonlinear Anal., 47 (2001), 4905–4915. https://doi.org/10.1016/S0362-546X(01)00603-4 doi: 10.1016/S0362-546X(01)00603-4
    [5] F. J. Walburn, D. J. Scnech, A constitutive equation for whole human blood, Biorheology, 13 (1976), 201–210. https://doi.org/10.3233/bir-1976-13307 doi: 10.3233/bir-1976-13307
    [6] T. W. Latham, Fluid motion in a peristaltic pump, In: Massachusetts Institute of Technology, Massachusetts Institute of Technology, 1966.
    [7] A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, Peristaltic pumping with long wavelengths at low Reynolds number, J. Fluid Mech., 37 (1969), 799–825. https://doi.org/10.1017/S0022112069000899 doi: 10.1017/S0022112069000899
    [8] D. Tripathi, Study of transient peristaltic heat flow through a finite porous channel, Math. Comput. Model., 57 (2013), 1270–1283. https://doi.org/10.1016/j.mcm.2012.10.030 doi: 10.1016/j.mcm.2012.10.030
    [9] T. Hayat, N. Ali, S. Asghar, Hall effects on peristaltic flow of a Maxwell fluid in a porous medium, Phys. Lett. A, 363 (2007) 397–403. https://doi.org/10.1016/j.physleta.2006.10.104 doi: 10.1016/j.physleta.2006.10.104
    [10] S. A. Hussein, S. E. Ahmed, A. A. Arafa, Electrokinetic peristaltic bioconvective Jeffrey nanofluid flow with activation energy for binary chemical reaction, radiation and variable fluid properties, ZAMMZ. Angew. Math. Me., 2022, e202200284. https://doi.org/10.1002/zamm.202200284 doi: 10.1002/zamm.202200284
    [11] M. G. Reddy, K. V. Reddy, O. D. Makinde, Hydromagnetic peristaltic motion of a reacting and radiating couple stress fluid in an inclined asymmetric channel filled with a porous medium, Alex. Eng. J., 55 (2016), 1841–1853. https://doi.org/10.1016/j.aej.2016.04.010 doi: 10.1016/j.aej.2016.04.010
    [12] A. A. Arafa, S. E. Ahmed, M. M. Allan, Peristaltic flow of non-homogeneous nanofluids through variable porosity and heat generating porous media with viscous dissipation: Entropy analyses, Case Stud. Therm. Eng., 32 (2022), 101882. https://doi.org/10.1016/j.csite.2022.101882 doi: 10.1016/j.csite.2022.101882
    [13] T. Anwar, M. Tahir, P. Kumam, S. Ahmed, P. Thounthong, Magnetohydrodynamic mixed convective peristaltic slip transport of carbon nanotubes dispersed in water through an inclined channel with Joule heating, Heat Transf., 50 (2020), 2064–2089. https://doi.org/10.1002/htj.21969 doi: 10.1002/htj.21969
    [14] B. B. Divya, G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffery fluid with heat and mass transfer, Alex. Eng. J., 59 (2020), 693–706. https://doi.org/10.1016/j.aej.2020.01.038 doi: 10.1016/j.aej.2020.01.038
    [15] T. Y. Na, Boundary layer flow of Reiner-Philippoff fluids, Internat. J. Non-Linear Mech., 29 (1994), 871–877. https://doi.org/10.1016/0020-7462(94)90059-0 doi: 10.1016/0020-7462(94)90059-0
    [16] K. S. Yam, S. D. Herris, D. B. Ingham, I. Pop, Boundary-layer flow of Reiner-Philippoff fluids past a stretching wedge, Internat. J. Non-Linear Mech., 44 (2009), 1056–1062. https://doi.org/10.1016/j.ijnonlinmec.2009.08.006 doi: 10.1016/j.ijnonlinmec.2009.08.006
    [17] A. Ahmad, Flow of ReinerPhilippoff based nano-fluid past a stretching sheet, J. Mol. Liq., 219 (2016), 643–646. https://doi.org/10.1016/j.molliq.2016.03.068 doi: 10.1016/j.molliq.2016.03.068
    [18] A. Ullah, E. O. Alzahrani, Z. Shah, M. Ayaz, S. Islam, Nanofluid's thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with Brownian motion and thermophoresis effects, Coatings, 9 (2019), 21. https://doi.org/10.3390/coatings9010021 doi: 10.3390/coatings9010021
    [19] T. Sajid, W. Jamshed, F. Shahzad, I. Ullah, R. W. Ibrahim, M. R. Eid, et al., Insightful into dynamics of magneto Reiner-Philippoff nanofluid flow induced by triple-diffusive convection with zero nanoparticle mass flux, Ain Shams Eng. J., 14 (2022), 101946. https://doi.org/10.1016/j.asej.2022.101946 doi: 10.1016/j.asej.2022.101946
    [20] T. Sajid, W. Jamshed, F. Shahzad, M. A. Aiyashi, M. R. Eid, K. S. Nisar, et al., Impact of Maxwell velocity slip and Smoluchowski temperature slip on CNTs with modified Fourier theory: Reiner-Philippoff model, Plos One, 16 (2021), e0258367. http://doi.org/10.1371/journal.pone.0258367
    [21] M. Tahir, A. Ahmad, Impact of pseudoplaticity and dilatancy of fluid on peristaltic flow and heat transfer: Reiner-Philippoff fluid model, Adv. Mech. Eng., 12 (2020). https://doi.org/10.1177/1687814020981184 doi: 10.1177/1687814020981184
    [22] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, San Francisco: ASME International Mechanical Engineering Congress and Exposition, 1995, 12–17.
    [23] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluid with nanofluids, 1995.
    [24] Y. M. Xuan, Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid fl., 21 (2000), 58–64. https://doi.org/10.1016/S0142-727X(99)00067-3 doi: 10.1016/S0142-727X(99)00067-3
    [25] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Mass Transfer., 128 (2006), 240–250. https://doi.org/10.1115/1.2150834 doi: 10.1115/1.2150834
    [26] G. Rasool, N. A. Shah, E. R. El-Zahar, A. Wakif, Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: application of passive control strategy and generalized transfer laws, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2074571
    [27] A. Shahzad, F. Liaqat, Z. Ellahi, M. Sohail, M. Ayub, M. R. Ali, Thin film flow and heat transfer of Cu-nanofluids with slip and convective boundary condition over a stretching sheet, Sci. Rep., 12 (2022), 14254.
    [28] A. A. Memon, S. Murtaza, M. A. Memon, K. Bhatti, M. Haque, M. R. Ali, Simulation of thermal decomposition of Calcium Oxide in water with different activation energy and the high Reynolds number, Complexity, 2022 (2022), 3877475. https://doi.org/10.1155/2022/3877475 doi: 10.1155/2022/3877475
    [29] A. F. Abu-Bakr, T. Kanagawa, A. K. Abu-Nab, Analysis of doublet bubble dynamics near a rigid wall in ferroparticle nanofluids, Case Stud. Therm. Eng., 34 (2022), 102060. https://doi.org/10.1016/j.csite.2022.102060 doi: 10.1016/j.csite.2022.102060
    [30] K. Sajjan, N. A. Shah, N. A. Ahammad, S. S. K. Raju, M. D. Kumar, W. Weera, Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties, AIMS Mathematics, 7 (2022), 18416–18449. https://doi.org/10.3934/math.20221014 doi: 10.3934/math.20221014
    [31] M. Sheikholeslami, D. D. Ganji, Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM, Comput. Methods Appl. Mech. Eng., 283 (2015), 651–663. https://doi.org/10.1016/j.cma.2014.09.038 doi: 10.1016/j.cma.2014.09.038
    [32] A. K. Abu-Nab, A. F. Abu-Bakr, Effect of bubble-bubble interaction in Cu-Al2O3/H2O hybrid nanofluids during multibubble growth process, Case Stud. Therm. Eng., 33 (2022), 101973. https://doi.org/10.1016/j.csite.2022.101973 doi: 10.1016/j.csite.2022.101973
    [33] A. Rauf, N. A. Shah, A. Mushtaq, T. Botmart, Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet, AIMS Mathematics, 8 (2023), 164–193. https://doi.org/10.3934/math.2023008 doi: 10.3934/math.2023008
    [34] S. Hina, T. Hayat, S. Asghar, A. A. Hendi, Influence of compliant walls on peristaltic motion with heat/mass transfer and chemical reaction, Int. J. Heat Mass Transfer, 55 (2012), 3386–3394. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.074 doi: 10.1016/j.ijheatmasstransfer.2012.02.074
    [35] N. Iftikhar, A. Rehman, Peristaltic flow of an Eyring Prandtl fluid in a diverging tube with heat and mass transfer, Int. J. Heat Mass Transfer, 111 (2017), 667–676. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.013 doi: 10.1016/j.ijheatmasstransfer.2017.04.013
    [36] M. M. Bhatti, A. Zeeshan, R. Ellahi, N. Ijaz, Heat and mass transfer of two-phase flow with electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field, J. Mol. Liq., 230 (2017), 237–246. https://doi.org/10.1016/j.molliq.2017.01.033 doi: 10.1016/j.molliq.2017.01.033
    [37] T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, Homogeneous-heterogeneous reactions and heat source/sink effects in MHD peristaltic flow of micropolar fluid with Newtonian heating in a curved channel, J. Mol. Liq., 223 (2016), 469–488. https://doi.org/10.1016/j.molliq.2016.08.067 doi: 10.1016/j.molliq.2016.08.067
    [38] S. Nadeem, T. Hayat, N. S. Akbar, M. Y. Malik, On the influence of heat transfer in peristalsis with variable viscosity, Int. J. Heat Mass Transfer, 52 (2009), 4722–4730. http://doi.org/10.1016/j.ijheatmasstransfer.2009.04.037
    [39] T. Hayat, A. Tanveer, A. Alsaedi, Mixed convective peristaltic flow of Carreau-Yasuda fluid with thermal deposition and chemical reaction, Int. J. Heat Mass Transfer, 96 (2016), 474–481. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.055 doi: 10.1016/j.ijheatmasstransfer.2016.01.055
    [40] M. Tahir, A. Ahmad, S. A. Shehzad, Study of pseudoplastic and dilatant behavior of nanofluid in peristaltic flow: Reiner-Philippoff models, Chinese J. Phys., 77 (2022), 2371–2388. https://doi.org/10.1016/j.cjph.2022.04.001 doi: 10.1016/j.cjph.2022.04.001
    [41] G. C. Shit, N. K. Ranjit, Role of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: Application to digestive system, J. Mol. Liq., 221 (2016), 305–315. https://doi.org/10.1016/j.molliq.2016.06.002 doi: 10.1016/j.molliq.2016.06.002
    [42] M. Awais, S. Farooq, T. Hayat, B. Ahmad, Comparative study of silver and copper water magneto nanoparticles with homogeneous-heterogeneous reactions in a tapered channel, Int. J. Heat Mass Transfer, 115 (2017), 108–114. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.129 doi: 10.1016/j.ijheatmasstransfer.2017.07.129
    [43] K. Vajravelu, S. Sreenadh, R. Saravana, Combined influence of velocity slip, temperature and concentration jump conditions on MHD peristaltic transport of a Carreau fluid in a non-uniform channel, Appl. Math. Comput., 225 (2013), 656–676. https://doi.org/10.1016/j.amc.2013.10.014 doi: 10.1016/j.amc.2013.10.014
    [44] T. Hayat, R. Iqbal, A. Tanveer, A. Alsaedi, Influence of convective conditions in radiative peristaltic flow of pseudoplastic nanofluid in a tapered asymmetric channel, J. Magn. Magn. Mater., 408 (2016), 168–176. https://doi.org/10.1016/j.jmmm.2016.02.044 doi: 10.1016/j.jmmm.2016.02.044
    [45] T. Hayat, H. Zahir, A. Alsaedi, B. Ahmad, Heat transfer analysis on peristaltic transport of Ree-Eyring fluid in rotating frame, Chinese J. Phys., 55 (2017), 1894–1907. https://doi.org/10.1016/j.cjph.2017.08.016 doi: 10.1016/j.cjph.2017.08.016
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1882) PDF downloads(156) Cited by(8)

Article outline

Figures and Tables

Figures(28)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog