In this paper, we present a general formulation of the well-known fractional drifts of Riemann-Liouville type. We state the main properties of these integral operators. Besides, we study Ostrowski, Székely-Clark-Entringer and Hermite-Hadamard-Fejér inequalities involving these general fractional operators.
Citation: Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta. Generalized inequalities involving fractional operators of the Riemann-Liouville type[J]. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087
In this paper, we present a general formulation of the well-known fractional drifts of Riemann-Liouville type. We state the main properties of these integral operators. Besides, we study Ostrowski, Székely-Clark-Entringer and Hermite-Hadamard-Fejér inequalities involving these general fractional operators.
[1] | K. Oldham, J. Spanier, The fractional calculus, theory and applications of differentiation and integration of arbitrary order, 1 Ed., New York: Academic Press, 1974. |
[2] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel, theory and application to heat transfer model, arXiv. Available from: https://arXiv.org/abs/1602.03408. |
[3] | D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. doi: 10.3390/math7090830. doi: 10.3390/math7090830 |
[4] | A. Fernandez, M. A. Özarslan, D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput., 354 (2019), 248–265. doi: 10.1016/j.amc.2019.02.045. doi: 10.1016/j.amc.2019.02.045 |
[5] | L. Huang, D. Baleanu, G. Wu, S. Zeng, A new application of the fractional logistic map, Rom. J. Phys., 61 (2016), 1172–1179. |
[6] | D. Kumar, J. Singh, M. Al Qurashi, D. Baleanu, Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel, Adv. Mechan Eng., 9 (2017), 1–8. doi: 10.1177/1687814017690069. doi: 10.1177/1687814017690069 |
[7] | B. Shiri, D. Baleanu, System of fractional differential algebraic equations with applications, Chaos Solitons Fractals, 120 (2019), 203–212. doi: 10.1016/j.chaos.2019.01.028. doi: 10.1016/j.chaos.2019.01.028 |
[8] | M. Caputo, A linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[9] | M. Caputo, Elasticitá e dissipazione, 1 Ed., Bologna: Zanichelli, 1969. |
[10] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pdfa/010201. doi: 10.12785/pdfa/010201 |
[11] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. |
[12] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062. doi: 10.1016/j.amc.2011.03.062 |
[13] | U. N. Katugampola, A new approach to generalized fractional derivatives, arXiv. Available from: https://arXiv.org/abs/1106.0965. |
[14] | A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives, theory and applications, Pennsylvania: Gordon & Breach, 1993. |
[15] | A. Ostrowski, Über die Absolutabweichung einer di erentienbaren funktionen von ihren integralimittelwert, Comment. Math. Hel., 10 (1938), 226–227. |
[16] | S. S. Dragomir, T. M. Rassias, Ostrowski type inequalities and applications in numerical integration, Dordrecht: Kluwer Academic, 2002. doi: 10.1007/978-94-017-2519-4. |
[17] | S. S. Dragomir, S. Wang, A new inequality of Ostrowski's type in $L_p$ norm, Indian J. Math., 40 (1998), 299–304. |
[18] | L. A. Székely, L. H. Clark, R. C. Entringer, An inequality for degree sequences, Discrete Math., 103 (1992), 293–300. doi: 10.1016/0012-365X(92)90321-6. doi: 10.1016/0012-365X(92)90321-6 |
[19] | J. M. Rodríguez, J. L. Sánchez, J. M. Sigarreta, CMMSE-on the first general Zagreb index, J. Math. Chem., 56 (2018), 1849–1864. doi: 10.1007/s10910-017-0816-y. doi: 10.1007/s10910-017-0816-y |
[20] | Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, Victoria University, 2000. Available from: https://rgmia.org/papers/monographs/Master.pdf. |
[21] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048 |
[22] | M. Vivas-Cortez, P. Kórus, J. E. Nápoles Valdés, Some generalized Hermite-Hadamard-Fejér inequality for convex functions, Adv. Differ. Equations, 199 (2021), 199. doi: 10.1186/s13662-021-03351-7. doi: 10.1186/s13662-021-03351-7 |