Citation: Kuo-Sheng Huang, Yu-Chiau Shyu, Chih-Lang Lin, Feng-Bin Wang. Mathematical analysis of an HBV model with antibody and spatial heterogeneity[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1820-1837. doi: 10.3934/mbe.2020096
[1] | Subhajit Das, Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman . A survey on pristine and intercalation doped graphene nanoribbon interconnect for future VLSI circuits. AIMS Materials Science, 2021, 8(2): 247-260. doi: 10.3934/matersci.2021016 |
[2] | Yaorong Su, Weiguang Xie, Jianbin Xu . Towards low-voltage organic thin film transistors (OTFTs) with solution-processed high-k dielectric and interface engineering. AIMS Materials Science, 2015, 2(4): 510-529. doi: 10.3934/matersci.2015.4.510 |
[3] | M. P. Lavin-Lopez, L. Sanchez-Silva, J. L. Valverde, A. Romero . CVD-graphene growth on different polycrystalline transition metals. AIMS Materials Science, 2017, 4(1): 194-208. doi: 10.3934/matersci.2017.1.194 |
[4] | Shuhan Jing, Adnan Younis, Dewei Chu, Sean Li . Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films. AIMS Materials Science, 2015, 2(2): 28-36. doi: 10.3934/matersci.2015.2.28 |
[5] | Shuwei Lin, Yitai Fu, Yunsen Sang, Yi Li, Baozong Li, Yonggang Yang . Characterization of Chiral Carbonaceous Nanotubes Prepared from Four Coiled Tubular 4,4-biphenylene-silica Nanoribbons. AIMS Materials Science, 2014, 1(1): 1-10. doi: 10.3934/matersci.2013.1.1 |
[6] | Felicia Ullstad, Jay R. Chan, Harry Warring, Natalie Plank, Ben Ruck, Joe Trodahl, Franck Natali . Ohmic contacts of Au and Ag metals to n-type GdN thin films. AIMS Materials Science, 2015, 2(2): 79-85. doi: 10.3934/matersci.2015.2.79 |
[7] | Raghvendra K Pandey, William A Stapleton, Mohammad Shamsuzzoha, Ivan Sutanto . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.3.243 |
[8] | K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243 |
[9] | Gennaro Gelao, Roberto Marani, Anna Gina Perri . Analysis and design of current mode logic based on CNTFET. AIMS Materials Science, 2023, 10(6): 965-980. doi: 10.3934/matersci.2023052 |
[10] | Vishanth Uppu, Kunal Mishra, Libin K. Babu, Ranji Vaidyanathan . Understanding the influence of graphene and nonclay on the microcracks developed at cryogenic temperature. AIMS Materials Science, 2019, 6(4): 559-566. doi: 10.3934/matersci.2019.4.559 |
Power supply voltage drop (IR-drop) has been one of most important challenges of power interconnects in sub nanometer designs [1,2,3,4]. It becomes even more challenging for the high density and high performance designs in which it has adverse effects on timing. The increase in chip operating temperature has two-fold effects on timing. Firstly, it increases the interconnect resistance which in turn increases the interconnect delay. Secondly, due to the increase in resistance there is more IR-drop which also increases the gate delay. Therefore, it is very essential to analyze the effects of temperature on IR-drop in sub nanometer designs, since the resistivity of the traditional copper based interconnects increases significantly in nanometer dimensions [5]. GNR is one of the most promising material for interconnect modeling for future generation technologies [5,6] due to its excellent properties compared with copper in nanometer dimensions. Recent studies [6,7,8,9,10] on GNR show its superiority over the traditional copper based interconnects. The compact resistance modeling with only absolute temperature (300 K) in MLGNR stacks is proposed by Sansiri Tanachutiwat et al. reported in [11]. The temperature independent IR-Drop induced delay-fault model and simultaneous switching noise for MLGNR interconnects has been investigated by D. Das et al. reported in [12,13,14]. The temperature dependent comparisons of delay between CNT and Cu have been investigated in [15,16]. However, as per our knowledge no investigation has been carried out to analyze the effects of the temperature on IR-drop in multi layer graphene nanoribbon (MLGNR) interconnect till date. Motivated by the previous work, we have proposed a temperature dependent resistive model of multi layer graphene nanoribbon (MLGNR) interconnect. Using the proposed model, we have analyzed the power supply voltage drop (IR-drop) and delay in MLGNR based power interconnects. The rest of the paper is organized as follows. Section 2 and 3 presents the proposed temperature dependent resistive model of MLGNR and Cu interconnect. The results and conclusions are presented in the Sections 4 and 5.
A multilayer GNR (MLGNR) structure is shown in Figure 1 is used for modeling power interconnects in nanoscale design. The width, thickness, and height of the MLGNR structure are denoted by w, t, and ht, respectively. The separation between two MLGNR structures is denoted by sp. In our interconnect design, we have considered width (w)=16 nm and thickness (t)=32 nm for 16 nm International technology roadmap for semiconductors (ITRS) technology node [5]. The total number of SLGNR present in proposed MLGNR structure is given by [7].
Nlayer=1+Integer[t/δ] | (1) |
The interlayer spacing (δ) between two consecutive graphene layers is 0.34 nm which is called as van der walls gap. Using (1) we obtain the total number of SLGNR present in proposed MLGNR structure as Nlayer=95 for 16 nm technology node. The total resistance of MLGNR is given by.
RTotal−MLGNR=RQ(1+lMLGNRλeffective)+Rc | (2) |
where lMLGNR is the length of MLGNR based interconnect and λeffective is the effective electron mean free path (MFP) of MLGNR. The quantum resistance (RQ) of SLGNR is 12.94 kΩ. The contact resistance is assumed as 100 Ω·µm. The quantum resistance for MLGNR expressed as [7]
RQ=h/2.e2Nch.Nlayer=12.94kΩNch.Nlayer | (3) |
In (3) Nch is the number of conducting channels in SLGNR, Nlayer is the number of layer present in MLGNR, h is the Planck’s constant, and e is the electronic charge. The number of conducting channel present in SLGNR is given by [8,10]
Nch=nc∑j=1[1+e(Ej,n−EF)/kBT]−1+nc∑j=1[1+e(EF+Ej,h)/kBT]−1 | (4) |
where j=(1, 2, 3, …) is a positive integer, EF is Fermi energy, kB is the Boltzmann’s constant, T is temperature, and nc and nv are the number of conduction and valance sub-bands. Ej, n and Ej, h are the minimum energy of electron and hole in jth conduction sub-band as given by [8]
Ej=ΔE|j+β|,whereΔE=hvf2w | (5) |
ΔE is the sub-band energy in metallic GNR and β value is zero for metallic GNR and it is 1/3 in semiconducting GNR [8,10]. The Fermi potential for metallic GNR has been consider between 0.21 eV to 0.4 eV reported in [8,10]. The Fermi potential may varies in stacked multilayered GNR in each layer. Therefore, the value of Fermi energy for the inner layer GNR is derived as [11].
EF,m=EFe−δm/Ψ | (6) |
In (6), “m” is the position of the layer in stacked MLGNR structure, δ=0.34 nm and Ψ=0.387 nm is the fitting parameter reported in [11]. The average of all Fermi potential for top, bottom and inner layers (total Nlayer ≅ 95) is equal to 0.3 eV. The number of conducting channels (Nch) is 6 for metallic SLGNR of width 16 nm for EF=0.3 eV. The effective MFP of SLGNR interconnects depends on three important parameters: electron-electron scattering (λe), acoustic phonon scattering (λap) and remote interfacial phonon scattering (λrip). Electron-electron scattering independent with temperature variation, but remaining two parameters vary with temperature which adversely affects on the interconnect delay due to change in resistance followed by temperature variation. Th e electron-electron scattering λe can be expressed as [11]
λe=λdefect+wNch∑i=1√Nchi−1 | (7) |
where, λdefect is the MFP of SLGNR due to the defects exists inside the graphene layer. Here, “i” is an integer variable which varies from 1 to Nch=6 and “w” is the interconnect width of MLGNR interconnect. The value of λdefect is assumed to be 1 µm [11]. The MFP due to acoustic phonon scattering λap can be expressed as [11]
λap=h2ρsvs2vf2wπ2D2AkBT | (8) |
In (8), vf is the Fermi velocity of GNR (=8 × 105 m/s), vs is the sound velocity of GNR (=2.1 × 104 m/s), DA is the acoustic deformation potential, kB is the Boltzmann constant, ρs is the 2D mass density of graphene, and T is the temperature. The MFP due to remote interfacial phonon scattering λrip is expressed as [11]
λrip=αE1.02Fw(eE0kT−1) | (9) |
where α is the fitting parameter, EF is the Fermi potential, and E0=104 mV. The temperature dependent effective MFP of SLGNR is given by applying Matthiessen’s rule [11]
λeffective=[(λe)−1+(λap)−1+(λrip)−1]−1 | (10) |
The values of λe, λap, λrip, and λeffective, for different temperature are shown in Figure 2. Substituting the effective MFP of SLGNR in (2) we obtain the temperature dependent resistance of MLGNR in (11). The temperature dependent resistance values for different length and different temperatures for GNR interconnect is shown in Figure 3.
RTotal−MLGNR=RQ[1+lMLGNR(λeλap+λapλrip+λripλe)(λeλapλrip)] | (11) |
The temperature dependent resistive model of Cu based nanointerconnect is explained in this section. To implement this model, surface roughness scattering and grain boundary scattering phenomena are considered. The surface roughness scattering based resistivity model first proposed by Fuchs [17] and Sondheim [18] (FS-model) which is given by (12)
ρFSρO=1+34λOw(1−P) | (12) |
where ρo is the resistivity of the bulk material, w is width of the nanointerconnect, λo is the mean free path of the conduction electrons, and P (=0.6) is the Fuchs scattering parameter. The grain boundary scattering based resistivity model is proposed by Mayadas and Shatzkes (MS-model) [19] which is given by (13)
ρMSρO=[1−32α+3α2−3α3ln(1+1α)]−1 | (13) |
Where,
α=λOD(R1−P) |
Here D is the mean grain size and R is the reflection coefficient in the grain edges or boundaries with values in between 0 and 1. In our model, we have considered the mean grain size is equivalent to film width and R=0.33. The total resistivity of Cu nanointerconnect can be measured by combined effects of surface roughness and grain boundary scattering as given in (14)
ρCu=ρFS+ρMS | (14) |
In (14) we have shown the temperature independent resistivity of Cu nanointerconnect. In general, the electrical resistivity of Cu nanointerconnects increases with temperature due to electron-phonon interactions mechanism [20]. As the temperature increase linearly, the resistance of Cu nanointerconnect also increases linearly. For Cu nanointerconnects, the temperature dependent resistivity ρcu(T) follows a power law function of temperature which is given by the Bloch-Grüneisen model given in (15) [20,21,22]
ρCu(T)=ρCu(0)+4R(ΘR)[TΘR]n∫ΘRT0xn(ex−1)(1−e−x)dx | (15) |
Here,
R(ΘR)=ηe2[π3(3π2)1/3η24n2/3cellaMkBΘR] |
ΘR, is the Debye temperature used for resistivity calculation of Cu interconnect in nanometer dimension [20,21,22]. The Debye temperature ΘR, is taken ~320 K for bulk non-magnetic material like Cu [22]. In our analysis, the residual resistivity ρCu(0) in (15) has been ignored because it is temperature independent parameter and occurs due to presence of defect scattering [22]. Here η=Planck’s constant divided by 2π, ncell=number of electron’s present in an atom which participate in current conduction, the atomic mass M=(atomic weight)/NA, where NA is the Avogadro’s number, a=(volume/atom)1/3, kB is Boltzmann’s constant, and e is the electron charge. Here “n” is an integer which depends on the characteristics of interaction. In general the value of “n” lies between 2-5.
1. n=5 signifies that the resistance variation is due to scattering of electrons by phonons (for simple metals like Cu) [23];
2. n=3 signifies that the resistance variation is due to s-d (spin density) electron scattering (for transition metals or dilute alloys) [23];
3. n=2 signifies that the resistance variation is due to electron-electron collisions or interaction. [23];
In our analysis we have considered the 1st condition. Thus, the temperature dependent resistance of Cu nanointerconnect is given by (16)
RCu(T)=ρCu(T).lwt | (16) |
where l=length, w=width, and t=thickness of Cu nanointerconnect. Here “w” is 16 nm and “t” is 32 nm for 16 nm ITRS technology node for Cu interconnect same as MLGNR interconnect. Length of Cu nanointerconnect is varied from 10 µm to 100 µm. The temperature dependent resistance values of Cu nanointerconnect for different lengths at different temperature are shown in Figure 3.
Using the temperature dependent resistance model as discussed in previous section, we have calculated the resistance for different interconnect length and different temperature. In Figure 3 we have shown the temperature dependent resistance of MLGNR and Cu interconnect for different interconnect length (5 µm to 50 µm) for 16 nm technology node. MLGNR shows ~2-5x less resistance than that of Cu as shown in Figure 3. In Figure 2, with the increase in temperature, the effective mean free path reduces, and hence the scattering induced ohomic part of the total resistance of MLGNR increases. The IR-drop analysis is performed in MLGNR and Cu interconnects for 5 μm (local), 20 μm (intermediate) and 50 μm (global) interconnect lengths. The analysis is performed using equivalent circuit model shown in Figure 4.
In Figure 4, ten identical CMOS inverters are connected in series with temperature dependent resistance for both MLGNR and Cu. In our analysis, we have assumed the supply voltage as 0.7 V, the input voltage swing is from 0 to 0.7 V for all stages and pulse rise/fall time is assumed as 100 ps. The CMOS inverters are designed for 16 nm ITRS technology node using the Shttps://www.aimspress.com/aimspress-data/aimsmates/2016/4/PICE models from predictive technology model [24]. MOSFET model parameters are defined in Table 1. The simulations are performed using the Cadence spectra simulator. All the inverters are switched simultaneously so that they draw current from the power supply. As a result the power supply voltage decreases progressively away from the power pad. The decrease in power supply causes increase in propagation delay through the gate. As the temperature increases, the resistance of the power interconnects increases which causes more interconnect delay. With temperature as the IR-drop increases, the gates suffer more delay problem. Therefore, increase in temperature has twofold increase in delay: one due to increase in interconnect (RC) delay and the other due to increase in IR-drop. Figure 5-7 illustrate the IR-drop in GNR and Cu interconnects for local, intermediate, and global lengths. It is observed that the IR-drop increases with the increase in temperature both for MLGNR and Cu interconnects but MLGNR shows ~1.5-3.5× less IR-drop than Cu at local, intermediate and global lengths. The IR-Drop analyzed data shown in Table 2,Table 3 and Table 4, where maximum, minimum and average IR-Drop of MLGNR and Cu interconnects are present. The total propagation delay of MLGNR and Cu interconnect shown in Table 5. In our analysis, we also find out that MLGNR interconnect can reduce delay up to ~1.5-3× compared with Cu interconnect.
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |
In this work, we have proposed a temperature dependent resistive model of MLGNR and Cu interconnect and analyzed the effect of temperature on power supply voltage drop (IR-drop). It is observed that with the increase in temperature, the resistance is increased for both MLGNR and Cu, but MLGNR shows significantly less increase than the Cu interconnects ( ~2-5× times lesser), which exhibits less power supply voltage variation and hence less impact on the timing of the circuits. It also reduces the power dissipation of MLGNR based power interconnects as compared with Cu.
This work is partially supported by the DIT, Government of West Bengal, India under VLSI Design Project.
The authors declare that there is no conflict of interest regarding the publication of this manuscript.
[1] | S. M. Ciupe, R. M. Ribeiro, A. S. Perelson, Antibody responses during hepatitis B viral infection, PLOS Comput. Biol., 10 (2014), e1003730. |
[2] | L. G. Guidotti, M. Isogawa, F. V. Chisari, Host-virus interactions in hepatitis B virus infection, Curr. Opin. Immunol., 36 (2015), 61-66. |
[3] | S. Bonhoeffer, R. M. May, G. M. Shaw, M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976. |
[4] | M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398-4402. |
[5] | A. S. Perelson, D. E. Kirschner, R. de Boer, Dynamics of HIV infection of CD4 T cells, Math. Biosci., 114 (1993), 81-125. |
[6] | A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-I dynamics in vivo, SIAM Rev., 41 (1999), 3-44. |
[7] | A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586. |
[8] | S. M. Ciupe, R. M. Ribeiro, P. W. Nelson, G. Dusheiko, A. S. Perelson, The role of cells refractory to productive infection in acute hepatitis B viral dynamics, Proc. Natl. Acad. Sci. USA, 104 (2007), 5050-5055. |
[9] | S. M. Ciupe, R. M. Ribeiro, A. S. Perelson, Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol., 247 (2007), 23-35. |
[10] | A. Kandathil, F. Graw, J. Quinn, H. Hwang, M. Torbenson, A. Perelson, et al., Use of laser capture microdissection to map hepatitis C virus-positive hepatocytes in human liver, Gastroenterol, 145 (2013), 1404-1413. |
[11] | X. Ren, Y. Tian, L. Liu, X. Liu, A reaction-diffusion within-host HIV model with cell-to-cell transmission, J. Math. Biol., 76 (2018), 1831-1872. |
[12] | W. Wang, T. Zhang, Caspase-1-Mediated Pyroptosis of the predominance for driving CD4+ T cells death: a nonlocal spatial mathematical model, Bull. Math. Biol., 80 (2018), 540-582. |
[13] | X.-Q. Zhao, Dynamical Systems in Population Biology, second edition, Springer, New York, 2017. |
[14] | T. W. Hwang, F.-B. Wang, Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation, Discrete Cont Dyn-B, 18 (2013), 147-161. |
[15] | Y. Lou, X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. |
[16] | R. Martin, H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. |
[17] | H. L. Smith, Monotone Dynamical Systems:An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995. |
[18] | H. C. Li, R. Peng, F.-B. Wang, Varying Total Population Enhances Disease Persistence: Qualitative Analysis on a Diffusive SIS Epidemic Model, J. Differ. Equations, 262 (2017), 885-913. |
[19] | J. Hale, Asymptotic behavior of dissipative systems, American Mathematical Society Providence, RI, 1988. |
[20] | W.-M. Ni, The mathematics of diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. |
[21] | W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. |
[22] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[23] | O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in the models for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[24] | H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. |
[25] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984. |
[26] | H. L. Smith, X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179. |
[27] | P. Magal, X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. |
[28] | H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763. |
1. | Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman, Analysis of Simultaneous Switching Noise and IR-Drop in Side-Contact Multilayer Graphene Nanoribbon Power Distribution Network, 2018, 27, 0218-1266, 1850001, 10.1142/S0218126618500019 | |
2. | Sandip Bhattacharya, Subhajit Das, Arnab Mukhopadhyay, Debaprasad Das, Hafizur Rahaman, Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method, 2018, 17, 1569-8025, 1536, 10.1007/s10825-018-1251-4 | |
3. | Subhajit Das, Debaprasad Das, Hafizur Rahaman, Electro-thermal RF modeling and performance analysis of graphene nanoribbon interconnects, 2018, 17, 1569-8025, 1695, 10.1007/s10825-018-1245-2 | |
4. | Subhajit Das, Debaprasad Das, Hafizur Rahaman, 2018, Performance modeling of intercalation doped graphene-nanoribbon interconnects, 978-1-5386-5122-3, 1, 10.1109/ISDCS.2018.8379685 | |
5. | Sandip Bhattacharya, Debaprasad Das, Hafizur Rahaman, Analysis of Temperature-Dependent Crosstalk for Graphene Nanoribbon and Copper Interconnects, 2019, 0377-2063, 1, 10.1080/03772063.2019.1674193 |
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |
Model Parameters [24] | n-MOS(Si) | p-MOS(Si) |
Channel Length (L) | 16 nm | |
Channel Width (W) | 64 nm | 128 nm |
Threshold Voltage (VTH0) | 0.47 volt | −0.43 volt |
Dielectric Constant (εox for Sio2) | εox = 3.9 × ε0,Where ε0 = 8.85 × 10−12 F/m | |
Oxide Thickness(tox) | 0.95 nm | 1 nm |
Gate Oxide Capacitance (Cox) | 0.29 fF | 0.28 fF |
Junction Depth (Xj) | 5 nm |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 7.04 | 7.32 | 7.76 | 8.40 | 9.23 | 10.20 | 11.30 | 13.81 | 18.41 | 22.46 | 26.08 | 29.34 | 32.33 | 35.10 |
2nd | 13.25 | 13.77 | 14.60 | 15.79 | 17.34 | 19.16 | 21.21 | 25.92 | 34.55 | 42.17 | 48.97 | 55.11 | 60.77 | 65.93 |
3rd | 18.68 | 19.41 | 20.57 | 22.25 | 24.41 | 26.98 | 29.86 | 36.47 | 48.64 | 59.41 | 69.05 | 77.82 | 85.88 | 93.29 |
4th | 23.36 | 24.28 | 25.72 | 27.81 | 30.52 | 33.72 | 37.31 | 45.60 | 60.87 | 74.43 | 86.61 | 97.72 | 107.94 | 117.41 |
5th | 27.33 | 28.39 | 30.09 | 32.52 | 35.70 | 39.43 | 43.63 | 53.34 | 71.25 | 87.24 | 101.70 | 114.88 | 127.04 | 138.35 |
6th | 30.61 | 31.80 | 33.69 | 36.41 | 39.96 | 44.15 | 48.86 | 59.72 | 79.87 | 97.93 | 114.25 | 129.29 | 143.18 | 156.11 |
7th | 33.21 | 34.51 | 36.56 | 39.51 | 43.35 | 47.90 | 53.02 | 64.83 | 86.78 | 106.46 | 124.45 | 140.87 | 156.21 | 170.55 |
8th | 35.15 | 36.53 | 38.69 | 41.82 | 45.88 | 50.69 | 56.11 | 68.64 | 91.94 | 112.94 | 132.03 | 149.76 | 166.17 | 181.48 |
9th | 36.45 | 37.87 | 40.11 | 43.35 | 47.56 | 52.55 | 58.17 | 71.18 | 95.37 | 117.25 | 137.19 | 155.68 | 172.75 | 188.97 |
10th | 37.09 | 38.54 | 40.82 | 44.12 | 48.40 | 53.47 | 59.20 | 72.44 | 97.07 | 119.39 | 139.79 | 158.62 | 176.19 | 192.74 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 1.18 | 1.23 | 1.31 | 1.43 | 1.59 | 1.79 | 2.02 | 2.55 | 3.54 | 4.47 | 5.36 | 6.19 | 6.98 | 7.74 |
2nd | 2.24 | 2.33 | 2.49 | 2.71 | 3.02 | 3.40 | 3.83 | 4.84 | 6.72 | 8.49 | 10.18 | 11.75 | 13.27 | 14.73 |
3rd | 3.17 | 3.31 | 3.53 | 3.85 | 4.30 | 4.83 | 5.44 | 6.87 | 9.55 | 12.07 | 14.45 | 16.69 | 18.88 | 20.93 |
4th | 3.99 | 4.16 | 4.44 | 4.85 | 5.41 | 6.08 | 6.85 | 8.64 | 12.03 | 15.20 | 18.18 | 21.05 | 23.78 | 26.42 |
5th | 4.69 | 4.89 | 5.21 | 5.71 | 6.36 | 7.15 | 8.06 | 10.15 | 14.15 | 17.89 | 21.37 | 24.79 | 27.97 | 31.15 |
6th | 5.27 | 5.50 | 5.86 | 6.42 | 7.16 | 8.04 | 9.06 | 11.41 | 15.91 | 20.12 | 24.07 | 27.89 | 31.54 | 35.09 |
7th | 5.73 | 5.98 | 6.38 | 6.99 | 7.80 | 8.75 | 9.86 | 12.42 | 17.32 | 21.91 | 26.23 | 30.37 | 34.39 | 38.23 |
8th | 6.08 | 6.34 | 6.77 | 7.42 | 8.27 | 9.28 | 10.46 | 13.17 | 18.37 | 23.25 | 27.85 | 32.23 | 36.53 | 40.59 |
9th | 6.31 | 6.58 | 7.03 | 7.71 | 8.59 | 9.64 | 10.86 | 13.67 | 19.08 | 24.14 | 28.93 | 33.47 | 37.96 | 42.21 |
10th | 6.43 | 6.70 | 7.16 | 7.85 | 8.75 | 9.82 | 11.06 | 13.92 | 19.43 | 24.59 | 29.47 | 34.09 | 38.67 | 43.02 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 4.11 | 4.27 | 4.53 | 4.91 | 5.41 | 5.99 | 6.66 | 8.18 | 10.97 | 13.46 | 15.72 | 17.76 | 19.65 | 21.42 |
2nd | 7.74 | 8.05 | 8.54 | 9.25 | 10.18 | 11.28 | 12.52 | 15.38 | 20.63 | 25.33 | 29.57 | 33.43 | 37.02 | 40.33 |
3rd | 10.92 | 11.36 | 12.05 | 13.05 | 14.35 | 15.90 | 17.65 | 21.67 | 29.09 | 35.74 | 41.75 | 47.25 | 52.38 | 57.11 |
4th | 13.67 | 14.22 | 15.08 | 16.33 | 17.96 | 19.90 | 22.08 | 27.12 | 36.45 | 44.81 | 52.39 | 59.38 | 65.86 | 71.91 |
5th | 16.01 | 16.64 | 17.65 | 19.11 | 21.03 | 23.29 | 25.84 | 31.74 | 42.70 | 52.56 | 61.53 | 69.83 | 77.50 | 84.75 |
6th | 17.94 | 18.00 | 19.77 | 21.41 | 23.56 | 26.09 | 28.96 | 35.56 | 47.89 | 59.02 | 69.16 | 78.59 | 87.36 | 95.60 |
7th | 19.47 | 20.24 | 21.47 | 23.25 | 25.57 | 28.32 | 31.44 | 38.62 | 52.05 | 64.18 | 75.34 | 85.62 | 95.30 | 104.39 |
8th | 20.61 | 21.43 | 22.73 | 24.62 | 27.07 | 29.98 | 33.28 | 40.90 | 55.15 | 68.09 | 79.94 | 90.99 | 101.35 | 111.03 |
9th | 21.38 | 22.22 | 23.57 | 25.53 | 28.07 | 31.09 | 34.51 | 42.42 | 57.22 | 70.69 | 83.06 | 94.57 | 105.35 | 115.59 |
10th | 21.76 | 22.62 | 23.99 | 25.98 | 28.57 | 31.64 | 35.13 | 43.18 | 58.25 | 71.99 | 84.63 | 96.35 | 107.43 | 117.88 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 18.76 | 19.53 | 20.73 | 22.42 | 24.54 | 26.98 | 29.550 | 36.53 | 45.66 | 53.24 | 59.90 | 65.91 | 71.52 | 76.76 |
2nd | 35.22 | 36.66 | 38.89 | 42.10 | 46.08 | 50.67 | 55.50 | 68.66 | 85.83 | 100.02 | 112.40 | 123.57 | 133.86 | 143.45 |
3rd | 49.57 | 51.63 | 54.82 | 59.30 | 65.01 | 71.49 | 78.38 | 97.18 | 121.74 | 142.15 | 159.91 | 175.86 | 190.47 | 204.12 |
4th | 62.05 | 64.60 | 68.60 | 74.29 | 81.48 | 89.63 | 98.43 | 122.30 | 153.86 | 180.08 | 202.92 | 223.39 | 241.75 | 257.80 |
5th | 72.62 | 75.66 | 80.40 | 87.08 | 95.52 | 105.27 | 115.73 | 144.25 | 182.19 | 213.81 | 241.34 | 264.33 | 283.27 | 299.31 |
6th | 81.45 | 84.87 | 90.14 | 97.75 | 107.38 | 118.40 | 130.28 | 162.87 | 206.46 | 242.96 | 272.94 | 295.93 | 314.48 | 329.98 |
7th | 88.49 | 92.17 | 98.03 | 106.25 | 116.77 | 128.87 | 141.92 | 178.00 | 226.45 | 266.87 | 296.76 | 319.25 | 337.19 | 352.06 |
8th | 93.74 | 97.68 | 103.9 | 112.73 | 123.96 | 136.91 | 150.92 | 189.68 | 241.95 | 284.23 | 313.66 | 335.60 | 352.97 | 367.26 |
9th | 97.23 | 101.3 | 107.8 | 117.03 | 128.75 | 142.26 | 156.87 | 197.40 | 252.44 | 295.44 | 324.46 | 345.97 | 362.91 | 376.79 |
10th | 98.96 | 103.2 | 109.7 | 119.17 | 131.14 | 144.92 | 159.82 | 201.38 | 257.80 | 300.94 | 329.72 | 351.00 | 367.71 | 381.38 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 3.62 | 3.79 | 4.07 | 4.46 | 4.98 | 5.59 | 6.25 | 8.15 | 10.90 | 13.29 | 15.45 | 17.43 | 19.22 | 20.86 |
2nd | 6.87 | 7.20 | 7.72 | 8.47 | 9.46 | 10.61 | 11.85 | 15.50 | 20.74 | 25.42 | 29.68 | 33.56 | 37.11 | 40.50 |
3rd | 9.77 | 10.23 | 10.96 | 12.04 | 13.44 | 15.05 | 16.85 | 22.07 | 29.65 | 36.45 | 42.66 | 48.41 | 53.75 | 58.81 |
4th | 12.30 | 12.88 | 13.79 | 15.17 | 16.92 | 18.93 | 21.24 | 27.86 | 37.47 | 46.25 | 54.35 | 61.91 | 69.05 | 75.84 |
5th | 14.46 | 15.14 | 16.24 | 17.85 | 19.89 | 22.30 | 25.01 | 32.82 | 44.33 | 54.86 | 64.64 | 73.97 | 82.82 | 91.31 |
6th | 16.26 | 17.02 | 18.28 | 20.08 | 22.37 | 25.11 | 28.14 | 36.95 | 50.10 | 62.19 | 73.58 | 84.38 | 94.85 | 104.92 |
7th | 17.70 | 18.53 | 19.91 | 21.86 | 24.34 | 27.36 | 30.64 | 40.33 | 54.70 | 68.18 | 80.88 | 93.07 | 104.88 | 116.36 |
8th | 18.78 | 19.67 | 21.13 | 23.20 | 25.83 | 29.05 | 32.52 | 42.89 | 58.29 | 72.67 | 86.50 | 99.77 | 112.64 | 125.29 |
9th | 19.49 | 20.43 | 21.94 | 24.09 | 26.83 | 30.17 | 33.76 | 44.59 | 60.69 | 75.80 | 90.24 | 104.33 | 118.00 | 131.35 |
10th | 19.85 | 20.81 | 22.35 | 24.53 | 27.34 | 30.73 | 34.40 | 45.44 | 61.89 | 77.37 | 92.19 | 106.61 | 120.72 | 134.47 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 11.19 | 11.66 | 12.40 | 13.44 | 14.76 | 16.28 | 17.90 | 22.34 | 28.28 | 33.26 | 37.67 | 41.67 | 45.37 | 48.81 |
2nd | 21.04 | 21.93 | 23.30 | 25.28 | 27.77 | 30.64 | 33.67 | 42.08 | 53.28 | 62.72 | 71.04 | 78.56 | 85.48 | 91.97 |
3rd | 29.67 | 30.93 | 32.89 | 35.67 | 39.22 | 43.27 | 47.61 | 59.62 | 75.69 | 89.30 | 101.28 | 112.13 | 122.11 | 131.46 |
4th | 37.17 | 38.74 | 41.19 | 44.73 | 49.20 | 54.28 | 59.83 | 75.08 | 95.66 | 113.16 | 128.63 | 142.65 | 155.40 | 166.82 |
5th | 43.54 | 45.40 | 48.32 | 52.46 | 57.70 | 63.78 | 70.37 | 88.53 | 113.26 | 134.33 | 152.99 | 169.15 | 183.04 | 195.31 |
6th | 48.85 | 50.94 | 54.21 | 58.91 | 64.87 | 71.75 | 79.21 | 99.91 | 128.28 | 152.57 | 173.26 | 190.15 | 204.66 | 217.45 |
7th | 53.09 | 55.35 | 58.97 | 64.05 | 70.55 | 78.11 | 86.28 | 109.16 | 140.57 | 167.52 | 188.82 | 206.16 | 221.03 | 234.21 |
8th | 56.26 | 58.67 | 62.51 | 67.96 | 74.89 | 82.98 | 91.72 | 116.28 | 150.12 | 178.45 | 200.08 | 217.68 | 232.80 | 246.27 |
9th | 58.36 | 60.86 | 64.87 | 70.56 | 77.79 | 86.21 | 95.31 | 120.99 | 156.56 | 185.62 | 207.35 | 225.15 | 240.45 | 254.07 |
10th | 59.40 | 62.00 | 66.02 | 71.85 | 79.24 | 87.82 | 97.11 | 123.41 | 159.84 | 189.15 | 210.95 | 228.80 | 244.21 | 257.92 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | Maximum Peak IR-Drop of MLGNR | Maximum Peak IR-Drop of Cu | ||||||||||||
1st | 34.38 | 35.59 | 37.45 | 40.05 | 43.30 | 46.93 | 50.81 | 61.60 | 75.60 | 87.74 | 98.66 | 108.77 | 118.06 | 126.79 |
2nd | 64.59 | 66.85 | 70.42 | 75.31 | 81.41 | 88.20 | 95.54 | 115.58 | 141.31 | 163.38 | 183.20 | 201.39 | 218.29 | 234.07 |
3rd | 91.33 | 94.64 | 99.65 | 106.70 | 115.41 | 125.18 | 135.65 | 164.42 | 201.07 | 232.16 | 258.20 | 280.07 | 298.95 | 315.48 |
4th | 114.9 | 119.1 | 125.5 | 134.49 | 145.67 | 158.28 | 171.77 | 208.71 | 254.33 | 287.89 | 314.12 | 335.66 | 353.96 | 369.79 |
5th | 135.4 | 140.3 | 148.1 | 158.91 | 172.36 | 187.45 | 203.77 | 248.10 | 295.87 | 328.67 | 353.73 | 374.09 | 391.27 | 406.10 |
6th | 152.7 | 158.4 | 167.3 | 179.70 | 195.12 | 212.65 | 231.32 | 279.77 | 326.67 | 357.97 | 381.54 | 400.58 | 416.64 | 430.55 |
7th | 166.7 | 173.1 | 182.9 | 196.73 | 213.86 | 233.40 | 254.31 | 303.48 | 348.89 | 378.61 | 400.79 | 418.68 | 433.80 | 446.96 |
8th | 177.5 | 184.2 | 194.8 | 209.71 | 228.34 | 249.37 | 271.72 | 320.23 | 364.22 | 392.61 | 413.67 | 430.66 | 445.09 | 457.70 |
9th | 184.6 | 191.9 | 203.0 | 218.59 | 238.06 | 260.20 | 283.05 | 330.91 | 373.84 | 401.28 | 421.58 | 437.97 | 451.93 | 464.19 |
10th | 188.3 | 195.7 | 207.0 | 223.00 | 243.08 | 265.75 | 288.63 | 336.11 | 378.48 | 405.43 | 425.34 | 441.43 | 455.17 | 467.25 |
No of Stages | Minimum Peak IR-Drop of MLGNR | Minimum Peak IR-Drop of Cu | ||||||||||||
1st | 7.54 | 7.88 | 8.42 | 9.18 | 10.16 | 11.30 | 12.51 | 15.99 | 20.49 | 24.26 | 27.48 | 30.31 | 32.95 | 35.32 |
2nd | 14.35 | 14.99 | 16.0 | 17.49 | 19.37 | 21.52 | 23.94 | 30.75 | 39.75 | 47.40 | 54.12 | 60.18 | 65.74 | 70.90 |
3rd | 20.39 | 21.31 | 22.8 | 24.91 | 27.60 | 30.76 | 34.23 | 44.26 | 57.71 | 69.44 | 79.94 | 89.68 | 98.75 | 107.30 |
4th | 25.71 | 26.92 | 28.8 | 31.42 | 34.92 | 38.91 | 43.40 | 56.47 | 74.28 | 90.26 | 104.90 | 118.61 | 131.65 | 144.19 |
5th | 30.32 | 31.73 | 33.9 | 37.12 | 41.19 | 46.06 | 51.43 | 67.28 | 89.39 | 109.51 | 128.42 | 146.31 | 163.65 | 180.43 |
6th | 34.16 | 35.73 | 38.2 | 41.88 | 46.55 | 52.01 | 58.23 | 76.55 | 102.66 | 126.85 | 149.76 | 171.80 | 193.21 | 214.11 |
7th | 37.23 | 38.93 | 41.7 | 45.68 | 50.87 | 56.93 | 63.74 | 84.27 | 113.78 | 141.50 | 168.02 | 193.71 | 218.74 | 243.18 |
8th | 39.53 | 41.38 | 44.4 | 48.53 | 54.11 | 60.65 | 68.00 | 90.13 | 122.39 | 153.04 | 182.47 | 211.03 | 238.86 | 266.08 |
9th | 41.06 | 43.03 | 46.1 | 50.50 | 56.28 | 63.12 | 70.85 | 94.18 | 128.38 | 160.99 | 192.37 | 222.98 | 252.78 | 281.88 |
10th | 41.83 | 43.85 | 47.0 | 51.49 | 57.36 | 64.36 | 72.27 | 96.21 | 131.37 | 165.02 | 197.50 | 229.03 | 259.87 | 289.99 |
No of Stages | Average IR-Drop of MLGNR | Average IR-Drop of Cu | ||||||||||||
1st | 20.96 | 21.73 | 22.93 | 24.61 | 26.73 | 29.11 | 31.66 | 38.79 | 48.04 | 56.00 | 63.07 | 69.54 | 75.50 | 81.05 |
2nd | 39.47 | 40.92 | 43.21 | 46.40 | 50.39 | 54.86 | 59.74 | 73.16 | 90.53 | 105.39 | 118.66 | 130.78 | 142.01 | 152.48 |
3rd | 55.86 | 57.97 | 61.23 | 65.80 | 71.50 | 77.97 | 84.94 | 104.34 | 129.39 | 150.80 | 169.07 | 184.87 | 198.85 | 211.39 |
4th | 70.30 | 73.01 | 77.14 | 82.95 | 90.29 | 98.59 | 107.58 | 132.59 | 164.30 | 189.07 | 209.51 | 227.13 | 242.80 | 256.99 |
5th | 82.86 | 86.01 | 91.00 | 98.01 | 106.77 | 116.75 | 127.60 | 157.69 | 192.63 | 219.09 | 241.07 | 260.20 | 277.46 | 293.26 |
6th | 93.43 | 97.06 | 102.7 | 110.79 | 120.83 | 132.33 | 144.77 | 178.16 | 214.66 | 242.41 | 265.65 | 286.19 | 304.92 | 322.33 |
7th | 101.96 | 106.01 | 112.3 | 121.20 | 132.36 | 145.16 | 159.02 | 193.87 | 231.33 | 260.05 | 284.40 | 306.19 | 326.27 | 345.07 |
8th | 108.51 | 112.79 | 119.5 | 129.12 | 141.22 | 155.01 | 169.86 | 205.18 | 243.30 | 272.82 | 298.07 | 320.84 | 341.97 | 361.89 |
9th | 112.83 | 117.46 | 124.5 | 134.54 | 147.17 | 161.66 | 176.95 | 212.54 | 251.11 | 281.13 | 306.97 | 330.47 | 352.35 | 373.03 |
10th | 115.06 | 119.77 | 127.0 | 137.24 | 150.22 | 165.05 | 180.45 | 216.16 | 254.92 | 285.22 | 311.42 | 335.23 | 357.52 | 378.62 |
Temperature (K)→ | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 150 | 200 | 250 | 300 | 350 | 400 | 450 |
No of Stages ↓ | MLGNR interconnect delay(5 μm-Local length) | Cu interconnect delay(5 μm-Local length) | ||||||||||||
1st | 3.74 | 3.75 | 3.76 | 3.77 | 3.78 | 3.79 | 3.82 | 3.86 | 3.94 | 4.03 | 4.12 | 4.20 | 4.28 | 4.37 |
2nd | 6.05 | 6.06 | 6.09 | 6.11 | 6.16 | 6.21 | 6.27 | 6.41 | 6.68 | 6.94 | 7.21 | 7.47 | 7.73 | 8.00 |
3rd | 8.01 | 8.08 | 8.09 | 8.18 | 8.32 | 8.42 | 8.58 | 8.95 | 9.65 | 10.30 | 10.87 | 11.48 | 12.03 | 12.60 |
4th | 9.82 | 9.89 | 10.04 | 10.23 | 10.44 | 10.72 | 11.02 | 11.72 | 13.15 | 14.55 | 15.65 | 16.70 | 17.60 | 18.45 |
5th | 12.48 | 12.64 | 12.80 | 13.11 | 13.50 | 13.95 | 14.50 | 15.80 | 17.80 | 19.65 | 21.10 | 22.40 | 23.50 | 24.65 |
6th | 16.25 | 16.45 | 16.70 | 17.10 | 17.65 | 18.30 | 18.95 | 20.35 | 22.65 | 24.90 | 26.70 | 28.15 | 29.85 | 31.15 |
7th | 19.95 | 20.15 | 20.50 | 21.05 | 21.75 | 22.55 | 23.25 | 25.05 | 27.70 | 30.30 | 32.70 | 34.20 | 36.05 | 37.80 |
8th | 24.00 | 24.30 | 24.75 | 25.40 | 26.15 | 26.70 | 27.65 | 29.65 | 32.95 | 36.15 | 38.70 | 40.60 | 42.95 | 45.40 |
9th | 27.75 | 28.10 | 28.60 | 29.25 | 30.30 | 31.15 | 32.30 | 34.45 | 38.40 | 42.30 | 45.15 | 47.70 | 50.50 | 54.05 |
10th | 31.70 | 32.10 | 32.65 | 33.35 | 34.60 | 35.65 | 37.00 | 39.35 | 44.00 | 48.70 | 52.25 | 56.30 | 59.90 | 62.65 |
No of Stages | MLGNR interconnect delay(20 μm-Intermediate length) | Cu interconnect delay(20 μm-Intermediate length) | ||||||||||||
1st | 3.96 | 3.97 | 3.99 | 4.03 | 4.08 | 4.14 | 4.21 | 4.41 | 4.72 | 5.03 | 5.32 | 5.60 | 5.90 | 6.20 |
2nd | 6.70 | 6.75 | 6.83 | 6.94 | 7.09 | 7.27 | 7.49 | 8.13 | 9.13 | 10.15 | 11.09 | 12.20 | 12.80 | 13.70 |
3rd | 9.72 | 9.86 | 10.04 | 10.30 | 10.60 | 11.05 | 11.50 | 12.90 | 14.95 | 16.50 | 17.95 | 19.40 | 20.90 | 22.40 |
4th | 13.25 | 13.50 | 13.95 | 14.55 | 15.20 | 15.95 | 16.75 | 18.85 | 21.75 | 24.15 | 26.70 | 28.40 | 30.50 | 32.50 |
5th | 18.00 | 18.35 | 18.85 | 19.65 | 20.50 | 21.40 | 22.50 | 25.65 | 29.30 | 32.20 | 35.75 | 38.20 | 41.10 | 44.00 |
6th | 22.90 | 23.30 | 24.00 | 24.90 | 26.00 | 27.10 | 28.25 | 32.15 | 36.90 | 40.75 | 45.00 | 47.60 | 51.30 | 56.60 |
7th | 27.90 | 28.30 | 29.00 | 30.20 | 31.80 | 33.05 | 34.30 | 38.90 | 45.15 | 49.60 | 55.95 | 60.90 | 65.20 | 69.20 |
8th | 33.20 | 33.65 | 34.50 | 36.10 | 37.90 | 39.15 | 40.80 | 46.50 | 54.45 | 62.00 | 66.80 | 72.30 | 79.60 | 86.10 |
9th | 38.65 | 39.15 | 40.25 | 42.25 | 44.25 | 45.65 | 47.90 | 55.60 | 64.60 | 73.10 | 82.45 | 90.10 | 98.10 | 106.00 |
10th | 44.30 | 44.95 | 46.30 | 48.70 | 50.80 | 53.20 | 56.60 | 64.35 | 78.55 | 88.95 | 99.15 | 108.00 | 118.00 | 128.00 |
No of Stages | MLGNR interconnect delay(50 μm-Global length) | Cu interconnect delay(50 μm-Global length) | ||||||||||||
1st | 4.34 | 4.38 | 4.43 | 4.52 | 4.64 | 4.77 | 4.93 | 5.40 | 6.10 | 6.80 | 7.51 | 8.20 | 8.80 | 9.20 |
2nd | 7.92 | 8.040 | 8.23 | 8.49 | 8.84 | 9.26 | 9.77 | 11.40 | 13.40 | 15.00 | 16.21 | 17.40 | 18.50 | 19.60 |
3rd | 12.45 | 12.70 | 13.05 | 13.64 | 14.40 | 15.20 | 16.05 | 18.30 | 22.10 | 25.40 | 27.69 | 29.70 | 31.80 | 34.50 |
4th | 18.20 | 18.55 | 19.10 | 19.87 | 20.90 | 22.15 | 23.60 | 27.20 | 32.00 | 36.90 | 39.84 | 42.90 | 46.90 | 50.30 |
5th | 24.35 | 24.90 | 26.00 | 26.68 | 27.85 | 29.95 | 31.85 | 36.40 | 43.40 | 48.80 | 53.52 | 61.00 | 67.80 | 72.60 |
6th | 30.75 | 31.40 | 32.65 | 33.66 | 34.80 | 37.90 | 40.10 | 45.70 | 55.20 | 65.30 | 70.41 | 77.20 | 87.20 | 96.00 |
7th | 37.30 | 38.20 | 39.50 | 41.15 | 42.85 | 46.10 | 48.90 | 57.50 | 68.20 | 79.50 | 90.76 | 100.10 | 111.00 | 121.50 |
8th | 44.65 | 45.85 | 47.25 | 49.07 | 51.35 | 56.25 | 60.00 | 68.20 | 85.70 | 99.60 | 113.05 | 122.00 | 136.00 | 150.50 |
9th | 53.05 | 54.60 | 56.90 | 59.10 | 62.50 | 66.05 | 70.60 | 84.40 | 104.00 | 121.00 | 136.61 | 151.00 | 168.50 | 184.50 |
10th | 62.10 | 63.50 | 65.40 | 69.76 | 73.60 | 79.90 | 85.55 | 102.00 | 126.50 | 150.00 | 169.75 | 188.00 | 211.00 | 233.00 |