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1. Introduction

There has been some work in the study of the relationship between persistent infection with hepatitis
B virus and immune responses (see, e.g., [2]). Hepatitis B virus (HBV) is a major cause of various
liver diseases around the world. Except acute and chronic hepatitis, it causes liver fibrosis and even
hepatocellular carcinoma. When an adult gets first infected with the hepatitis B virus during the early
period of six months, it is called an acute infection. On the other hand, innate immune responses on
persons may drive huge effector immune cells (CD8 T cells, help T cells, B cells ) against infection. It
is probably due to such immune system, in clinical observations, only 5–10 percent of healthy adults
will develop a chronic hepatitis B infection after they get infection. This motivates researchers to
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investigate the topic that whether antibodies against hepatitis B play a central role in virus clearance
(see, e.g., [1, 2]).

It is practically difficult to obtain experimental results in the study of the antibody response to
hepatitis B virus (HBV) infection. Thus, developing suitable mathematical models is an alternative
way since it can be used to estimate some crucial factors for the viral infection, and to explore possible
mechanisms of protection and viral infection process (see, e.g., [1–7] and the references therein). We
first mention a model of virus infection in the absence of antibody responses, namely, the following
model consists of three compartments of populations, corresponding to target hepatocytes (T ), infected
hepatocytes (I), and virus (V). 

dT (t)
dt = rT (1 − T+I

Tm
) − βVT + ρI,

dI(t)
dt = βVT − δI − ρI,

dV(t)
dt = πI − cV.

(1.1)

The growth of target cells (T ) in system (1.1) is described by a logistic term with carrying capacity
Tm and and maximal growth rate r (see, e.g., [8, 9]); target cells (T ) also get infected at a rate βVT .
Infected cells (I) are gained at rate βVT , and die at rate δ. Infected cells (I) produce virus (V) at rate π,
and virus clearance rate is denoted by c. Further, system (1.1) also assumes that infected class (I) can
get recovery and move back into the target class at rate ρ.

In order to incorporate antibody response, the authors in [1] ignore the curing of infected cells by
setting ρ = 0, and introduce two additional classes, free antibody (A) and virus-antibody complexes
(X), into system (1.1). Then the governing system takes the following form:

dT (t)
dt = rT (1 − T+I

Tm
) − βVT,

dI(t)
dt = βVT − δI,

dA(t)
dt = pA(1 + θ)V + rAA(1 − A

Am
) + (1 + θ)kmX − (1 + θ)kpAV − dAA,

dX(t)
dt = −kmX + kpAV − cAV X,

dV(t)
dt = πI − cV + kmX − kpAV.

(1.2)

The free antibody (A) is produced at rate pA proportional to the viral and subviral concentrations, and
is degraded at rate dA. Without virus, we also introduce a logistic term with maximum growth rate
rA and carrying capacity Am for the antibody maintenance. In system (1.2), for simplicity, we have
imposed the assumption that the concentration of subviral particles is proportional to the concentration
of free virus V , and θ is a constant proportionality. Antigen clearance is caused by the constitution of
antigen-antibody complexes. The binding rate with antigen-antibody is kp that causes the free antibody
population to descend; km represents the disassociation rate for antibody reacting to viral particles. The
complexes (X) are produced by a productive combination rate kp and it decreases at a disassociation
rate km and a degradation rate cAV . During infection, free virus (V) are gained at a rate π and binding
rate km with complexes, and are degraded by a rate c and binding rate kp with antibody.

In [1], the authors also mention that it can be a further topic in the investigation of spatial effects in
HBV infection. In fact, spatial clustering of infected cells has recently been observed for hepatitis C
virus (HCV) infection (see, e.g., [10]). The effects of spatial heterogeneity was also added to within-
host HIV models, see [11, 12]. Motivated by those previous works, we intend to consider system (1.2)
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with spatial variations. For this purpose, we add diffusion terms DA∆A, DX∆X and DV∆V into the
model, which reflects the spatial variations of free antibody (A), virus-antibody complexes (X) and
free virus (V), respectively. Then the modified version of system (1.2) is as follows

∂T
∂t = rT (1 − T+I

Tm
) − βVT, x ∈ Ω, t > 0,

∂I
∂t = βVT − δI, x ∈ Ω, t > 0,
∂A
∂t = DA∆A + pA(1 + θ)V + rA(x)A(1 − A

Am
) + (1 + θ)kmX

−(1 + θ)kpAV − dA(x)A, x ∈ Ω, t > 0,
∂X
∂t = DX∆X − kmX + kpAV − cAV X, x ∈ Ω, t > 0,
∂V
∂t = DV∆V + πI − cV + kmX − kpAV, x ∈ Ω, t > 0,
∂A
∂ν

= ∂X
∂ν

= ∂V
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), u = T, I, A, X,V, x ∈ Ω.

(1.3)

Here, we consider a general bounded domain Ω ⊂ R3 where virus and cells stay and interact, and
pose zero-flux condition on the boundary of Ω (i.e., homogeneous Neumann boundary condition). The
notation ∂

∂ν
denotes the differentiation along the outward normal ν to ∂Ω. The location dependent

parameters are continuous and strictly positive functions on Ω̄.
The dynamics of system (1.3) is challenging since there are no diffusion terms in the first two

equations, resulting in the loss of compactness of the solution maps. In order to determine the disease-
free steady state of system (1.3), we also need to investigate the following system:∂T

∂t = rT (1 − T
Tm

), x ∈ Ω, t > 0,
T (x, 0) = T 0(x), x ∈ Ω.

(1.4)

It is easy to see that T = 0 and T = Tm are two steady states of (1.4). However, the global dynamics of
system(1.4) is still open to us, due to the loss of compactness of the solution maps. This stops us from
using persistence theory in the investigation of the dynamics of system (1.3). Instead, we will focus
on the study of the existence of the positive steady states of system (1.3), (T̂ (x), Î(x), Â(x), X̂(x), V̂(x)),
which satisfies the following equations:

rT̂ (1 − T̂+Î
Tm

) − βV̂T̂ = 0, x ∈ Ω,

βV̂T̂ − δÎ = 0, x ∈ Ω,

DA∆Â + pA(1 + θ)V̂ + rA(x)Â(1 − Â
Am

) + (1 + θ)kmX̂

−(1 + θ)kpÂV̂ − dA(x)Â = 0, x ∈ Ω,

DX∆X̂ − kmX̂ + kpÂV̂ − cAV X̂ = 0, x ∈ Ω,

DV∆V̂ + πÎ − cV̂ + kmX̂ − kpÂV̂ = 0, x ∈ Ω,
∂Â
∂ν

= ∂X̂
∂ν

= ∂V̂
∂ν

= 0, x ∈ ∂Ω.

(1.5)

In view of the first two equations of (1.5), it follows that

T̂ + Î = Tm(1 −
β

r
V̂), Î =

β

δ
V̂T̂ . (1.6)
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Then 
T̂ = Tm

1− βr V̂

1+
β
δ V̂
,

Î =
β

δ
Tm

(1− βr V̂)V̂

1+
β
δ V̂

.
(1.7)

Substituting the second equality of (1.7) into the fifth equation of (1.5), we arrive at the following
elliptic system 

DA∆Â + pA(1 + θ)V̂ + rA(x)Â(1 − Â
Am

) + (1 + θ)kmX̂

−(1 + θ)kpÂV̂ − dA(x)Â = 0, x ∈ Ω,

DX∆X̂ − kmX̂ + kpÂV̂ − cAV X̂ = 0, x ∈ Ω,

DV∆V̂ + πβ
δ
Tm

1− βr V̂

1+
β
δ V̂

V̂ − cV̂ + kmX̂ − kpÂV̂ = 0, x ∈ Ω,

∂Â
∂ν

= ∂X̂
∂ν

= ∂V̂
∂ν

= 0, x ∈ ∂Ω.

(1.8)

The standard approach in seeking for the positive steady states of system (1.8) is the bifurcation ar-
gument. Here, we are going to adopt another approach, using the persistence theory, to study the
following parabolic system associated with (1.8):

∂A
∂t = DA∆A + pA(1 + θ)V + rA(x)A(1 − A

Am
) + (1 + θ)kmX

−(1 + θ)kpAV − dA(x)A, x ∈ Ω, t > 0,
∂X
∂t = DX∆X − kmX + kpAV − cAV X, x ∈ Ω, t > 0,
∂V
∂t = DV∆V + π f (V)V − cV + kmX − kpAV, x ∈ Ω, t > 0,
∂A
∂ν

= ∂X
∂ν

= ∂V
∂ν

= 0, x ∈ ∂Ω, t > 0,
A(x, 0) = A0(x), X(x, 0) = X0(x), V(x, 0) = V0(x), x ∈ Ω,

(1.9)

where

f (V) =
β

δ
Tm

1 − β

r V

1 +
β

δ
V
. (1.10)

If one can show that system (1.9) is uniformly persistent, then (1.9) must admit a positive steady state
(see, e.g., [13, CH1]). We point out that the dynamics of systems (1.3) and (1.9) may be different, but
they admit the same positive steady states. Thus, we will focus on the search for positive steady state(s)
of system (1.9) via the establishment of uniform persistence of system (1.9).

2. Persistence of HBV with antibody

Let Y := C(Ω̄,R3) be the Banach space with the supremum norm ‖ · ‖Y. Define Y+ := C(Ω̄,R3
+),

then (Y,Y+) is a strongly ordered space. By the similar arguments in [14, Lemma 2.2] (see also [15]),
together with [16, Corollary 4] (see also [17, Theorem 7.3.1]), we have the following result:

Lemma 2.1. For every initial value function φ ∈ Y+, system (1.9) has a unique mild solution u(x, t, φ)
on (0, τφ) with u(·, 0, φ) = φ, where τφ ≤ ∞. Furthermore, u(·, t, φ) ∈ Y+, ∀ t ∈ (0, τφ) and u(x, t, φ) is a
classical solution of (1.9).

Next, we show that solutions of system (1.9) are ultimately bounded, and system (1.9) admits a
compact attractor in Y+.
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Lemma 2.2. For every initial value function φ ∈ Y+, system (1.9) admits a unique solution u(x, t, φ)
on [0,∞) with u(·, 0, φ) = φ. Furthermore,

(i) u(x, t, φ) is ultimately bounded;
(ii) The semiflow Ψ(t) : Y+ → Y+ generated by (1.9) is defined by Ψ(t)φ = u(·, t, φ), t ≥ 0, which

admits a global compact attractor in Y+, ∀ t ≥ 0.

Proof. In view of (1.10), it is not hard to see that

f (V)V ≤
β

δ
Tm

V

1 +
β

δ
V
≤
β

δ
Tm

V
β

δ
V

= Tm, ∀ V > 0.

Thus,
f (V)V ≤ Tm, ∀ V ≥ 0. (2.1)

Setting

U(t) =

∫
Ω

[X(x, t) + V(x, t)] dx.

Then it follows from system (1.9) and (2.1) that

dU(t)
dt

=

∫
Ω

π f (V(x, t))V(x, t)dx −
∫

Ω

[cAV X(x, t) + cV(x, t)] dx

≤ πTm|Ω| − cminU(t),

where cmin := min{cAV , c}. Thus, we have

U(t) ≤ U(0)e−cmin t +
πTm|Ω|

cmin
(1 − e−cmin t). (2.2)

Using (2.2) and the similar arguments to those in the end of [18, Proposition 2.3], we can show that
X(·, t, φ) and V(·, t, φ) are ultimately bounded. Therefore, there exists Ĉ > 0 and t1 > 0 such that

pA(1 + θ)V(x, t) + (1 + θ)kmX(x, t) ≤ Ĉ, ∀ x ∈ Ω, t ≥ t1. (2.3)

In view of the first equation of system (1.9) and (2.3), it follows that∂A
∂t ≤ DA∆A + Ĉ + rA(x)A(1 − A

Am
) − dA(x)A, ∀ x ∈ Ω, t ≥ t1,

∂A
∂ν

= 0, x ∈ ∂Ω, t ≥ t1.

Then
lim sup

t→∞
A(x, t) ≤ Â, ∀ x ∈ Ω,

where Â > 0 is a constant such that

Ĉ + rA(x)Â(1 −
Â

Am
) − dA(x)Â ≤ 0, ∀ x ∈ Ω.

From the above discussions, we see that Ψ(t) : Y+ → Y+ is point dissipative. Obviously, Ψ(t) :
Y+ → Y+ is compact, ∀ t > 0. It follows from [19, Theorem 3.4.8] that Ψ(t) : Y+ → Y+, t ≥ 0, admits
a global compact attractor.

�
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Putting X = V = 0 into (1.9), we see that
∂A
∂t = DA∆A + rA(x)A(1 − A

Am
) − dA(x)A, x ∈ Ω, t > 0,

∂A
∂ν

= 0, x ∈ ∂Ω, t > 0,
A(x, 0) = A0(x), x ∈ Ω.

(2.4)

It is easy to see that A = 0 is the trivial steady state solution of system (2.4). The stability of the trivial
steady state solution A = 0 is determined by the following eigenvalue problem:µϕ(x) = DA∆ϕ(x) + (rA(x) − dA(x))ϕ(x), x ∈ Ω,

∂ϕ(x)
∂ν

= 0, x ∈ ∂Ω.
(2.5)

Assume that µ0 is the principal eigenvalue of system (2.5). By [20, Proposition 4.4], we see that µ0 > 0
if the following condition is satisfied ∫

Ω

(rA(x) − dA(x))dx > 0. (2.6)

Thus, trivial steady state solution A = 0 is unstable for system (2.4) if condition (2.6) holds. If condition
(2.6) is true, then one can use [13, Theorem 2.3.2] to show that system (2.4) admits a unique positive
steady state A∗(x) which is globally attractive. Thus, two possible steady states of system (1.9) are as
follows:

E0(x) = (A, X,V) = (0, 0, 0),

and
E1(x) = (A, X,V) = (A∗(x), 0, 0).

Note that E0(x) always exists, and E1(x) exists when (2.6) holds. Linearizing system (1.9) around
E1(x), we get the following cooperative system for the infectious compartments:

∂X
∂t = DX∆X − kmX + kpA∗(x)V − cAV X, x ∈ Ω, t > 0,
∂V
∂t = DV∆V + π f (0)V − cV + kmX − kpA∗(x)V, x ∈ Ω, t > 0,
∂X
∂ν

= ∂V
∂ν

= 0, x ∈ ∂Ω, t > 0.

(2.7)

Substituting X(x, t) = eλtψX(x) and V(x, t) = eλtψV(x) into (2.7) and we get the associated eigenvalue
problem: 

λψX(x) = DX∆ψX(x) − (km + cAV)ψX(x) + kpA∗(x)ψV(x), x ∈ Ω,

λψV(x) = DV∆ψV(x) + kmψX(x) + (π f (0) − c − kpA∗(x))ψV(x), x ∈ Ω,
∂ψX(x)
∂ν

=
∂ψV (x)
∂ν

= 0, x ∈ ∂Ω.

(2.8)

It is not hard to see that the linear system (2.7) generates a strongly positive semigroup on C(Ω,R2
+)

(see, e.g., Section 4 of CH 7 in [17]). In addition, the semigroup associated with system (2.7) is
compact. By a similar argument as in [17, Theorem 7.6.1], we have the following result which is
related to the existence of the principal eigenvalue of (2.8):

Lemma 2.3. The eigenvalue problem (2.8) admits a principal eigenvalue, denoted by λ0, which corre-
sponds a strongly positive eigenfunction.
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Next, we shall adopt the theory developed in [21, Section 3] to define the basic reproduction number
for system (1.9). For this purpose, we assume

F(x) =

(
0 kpA∗(x)
km π f (0)

)
, (2.9)

and

V(x) =

(
km + cAV 0

0 c + kpA∗(x)

)
. (2.10)

Let w = (X,V)T , D∆w = (DX∆X,DV∆V)T , and S(t) : C(Ω,R2) → C(Ω,R2) be the C0-semigroup
generated by the following system∂w

∂t = D∆w − V(x)w, x ∈ Ω, t > 0,
∂X
∂ν

= ∂V
∂ν

= 0, x ∈ ∂Ω, t > 0.
(2.11)

Assume that the state variables are near the disease-free steady state E1(x) and the distribution
of initial infection is described by ϕ ∈ C(Ω,R2). Then S(t)ϕ(x) represents the distribution of those
infectious cases as time evolves to time t, and hence, the distribution of new infection at time t is
F(x)S(t)ϕ(x). Let L : C(Ω,R2)→ C(Ω,R2) be defined by

L(ϕ)(·) =

∫ ∞

0
F(·)(S(t)ϕ)(·)dt.

It then follows that L(ϕ)(·) represents the distribution of accumulated infectious cases during the infec-
tion period, and hence, L is the next generation operator. By the idea of next generation operators (see,
e.g., [21–23]), we define the spectral radius of L as the basic reproduction number for system (1.9),
that is,

R0 := r(L).

From [24, Theorem 3.5] or [21, Theorem 3.1], the following observation holds.

Lemma 2.4. R0 − 1 and λ0 have the same sign.

Next, we are going to find an explicit formula for R0 when coefficients of system (1.9) are all
positive constants. For this special case, we see that F(x) = F and V(x) = V, for all x ∈ Ω̄, and hence,
R0 = r(FV−1) ( see e. g., [21, Theorem 3.4]). By direct computations, it follows that

FV−1 =

(
0 kpA∗

km π f (0)

)  1
km+cAV

0
0 1

c+kpA∗

 =

 0 kpA∗

c+kpA∗
km

km+cAV

π f (0)
c+kpA∗

 .
Thus,

R0 =
1
2

 π f (0)
c + kpA∗

+

√
(
π f (0)

c + kpA∗
)2 + 4

kpA∗

c + kpA∗
km

km + cAV

 . (2.12)

In the establishment of the persistence for (1.9), the following results will be necessary.
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Lemma 2.5. For every initial value function φ ∈ Y+, we assume that system (1.9) admits a unique
solution u(x, t, φ) on [0,∞) with u(·, 0, φ) = φ.

(i) If φ2(·) . 0 and φ3(·) . 0, then

ui(x, t, φ) > 0, for x ∈ Ω̄, t > 0, and 1 ≤ i ≤ 3.

(ii) Assume that φi(·) . 0, for i = 2, 3. If there exists a σ1 > 0 such that

lim inf
t→∞

X(x, t, φ) ≥ σ1 and lim inf
t→∞

V(x, t, φ) ≥ σ1, uniformly for x ∈ Ω̄. (2.13)

Then there exists a σ > 0 such that

lim inf
t→∞

ui(x, t, φ) ≥ σ, uniformly for x ∈ Ω̄, and 1 ≤ i ≤ 3. (2.14)

Proof. Part (i). By the positivity of solutions (see Lemma 2.1), it follows that X(x, t) ≥ 0, ∀ x ∈ Ω, t ≥
0. Suppose, by contradiction, there exists x1 ∈ Ω and t1 ∈ (0,∞) such that X(x1, t1) = 0. Let τ1 > 0
be such that t1 < τ1. Then (x1, t1) ∈ Ω × [0, τ1] and X attains its minimum on Ω × [0, τ1] at the point
(x1, t1). In view of the second equation of (1.9), it follows that∂X

∂t ≥ DX∆X − (km + cAV)X, x ∈ Ω, t ∈ (0, τ1],
∂X
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, τ1].

In case x1 ∈ ∂Ω, we apply the Hopf boundary lemma (see, e.g., [25, p. 170, Theorem 3]) and we
have ∂X(x1,t1,φ)

∂ν
< 0, which is impossible. In case where x1 ∈ Ω, then the strong maximum principle

(see [25, p. 174, Theorem 7]) implies that

X(x, t, φ) ≡ X(x1, t1, φ) = 0, ∀ (x, t) ∈ Ω × [0, τ1],

which contradicts the assumption that φ2(·) . 0. Thus, X(x, t, φ) > 0, ∀ x ∈ Ω̄, t > 0. Similarly, we
see that V(x, t) ≥ 0, ∀ x ∈ Ω, t ≥ 0 (see Lemma 2.1). Suppose, by contradiction, there exists x2 ∈ Ω

and t2 ∈ (0,∞) such that V(x2, t2) = 0. Let τ2 > 0 be such that t2 < τ2. Then (x2, t2) ∈ Ω × [0, τ2] and
V attains its minimum on Ω × [0, τ2] at the point (x2, t2). Using the third equation of (1.9) and (1.10),
it follows that 

∂V
∂t ≥ DV∆V − π[β

δ
Tm

β
r V

1+
β
δV

+ c + kpA]V, x ∈ Ω, t ∈ (0, τ2],
∂V
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, τ2].
(2.15)

In case x2 ∈ ∂Ω, we apply the Hopf boundary lemma (see, e.g., [25, p. 170, Theorem 3]) and we have
∂V(x2,t2,φ)

∂ν
< 0, which is a contradiction. In case where x2 ∈ Ω, then the strong maximum principle

(see [25, p. 174, Theorem 7]) implies that

V(x, t, φ) ≡ V(x2, t2, φ) = 0, ∀ (x, t) ∈ Ω × [0, τ2],

which contradicts the assumption that φ3(·) . 0. Thus, V(x, t, φ) > 0, ∀ x ∈ Ω̄, t > 0.
Claim. A(x, t, φ) > 0, ∀ x ∈ Ω̄, t > 0.
By Lemma 2.1, it follows that A(x, t) ≥ 0, ∀ x ∈ Ω, t ≥ 0. Suppose, by contradiction, there exists

x3 ∈ Ω and t3 ∈ (0,∞) such that A(x3, t3) = 0. Let τ3 > 0 be such that t3 < τ3. Then (x3, t3) ∈ Ω× [0, τ3]
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and A attains its minimum on Ω × [0, τ3] at the point (x3, t3). By the first equation of (1.9), it follows
that ∂A

∂t ≥ DA∆A − [rA(x) A
Am

+ (1 + θ)kpV + dA(x)]A, x ∈ Ω, t ∈ (0, τ3],
∂A
∂ν

= 0, x ∈ ∂Ω, t ∈ (0, τ3].

In case x3 ∈ ∂Ω, we apply the Hopf boundary lemma (see, e.g., [25, p. 170, Theorem 3]) and we
have ∂A(x3,t3,φ)

∂ν
< 0, which is a contradiction. In case where x3 ∈ Ω, then the strong maximum principle

(see [25, p. 174, Theorem 7]) implies that

A(x, t, φ) ≡ A(x3, t3, φ) = 0, ∀ (x, t) ∈ Ω × [0, τ3].

This together with the first equation of (1.9) imply that

X(x, t, φ) ≡ 0 and V(x, t, φ) ≡ 0, ∀ (x, t) ∈ Ω × [0, τ3],

which is a contradiction. Thus, A(x, t, φ) > 0, ∀ x ∈ Ω̄, t > 0.
Part (ii). From Lemma 2.2, we see that V(x, t) is ultimately bounded. This together with assumption

(2.13) imply that there exists t4 > 0 and C > 0 such that

1
2
σ1 ≤ V(x, t) ≤ C, and X(x, t) ≥

1
2
σ1, ∀ ∈ Ω̄, t ≥ t4.

From the above inequalities and the first equation of (1.9), it follows that
∂A
∂t ≥ DA∆A + 1

2 (1 + θ)(pA + km)σ1 + rA(x)A(1 − A
Am

)
−[(1 + θ)kpC + dA(x)]A, x ∈ Ω, t ≥ t4,

∂A
∂ν

= 0, x ∈ ∂Ω, t ≥ t4.

(2.16)

Let A > 0 satisfy the following inequality

1
2

(1 + θ)(pA + km)σ1 + rA(x)A(1 −
A

Am
) − [(1 + θ)kpC + dA(x)]A ≥ 0, ∀ x ∈ Ω.

By (2.16) and the standard parabolic comparison theorem (see, e.g., [17, Theorem 7.3.4]), we deduce
that

lim inf
t→∞

A(x, t, φ) ≥ A, ∀ x ∈ Ω̄.

Let σ := min{σ1, A}. Then (2.14) holds. �

We show that R0 is an important index for the persistence of HBV in system (1.9).

Theorem 2.1. Assume that (2.6) holds. For every initial value function u0(·) = (A0, X0,V0)(·) ∈ Y+,
we assume that system (1.9) admits a unique solution

u(x, t, u0) := (A(x, t), X(x, t),V(x, t))

on [0,∞) with u(·, 0, u0) = u0. If R0 > 1, then system (1.9) admits at least one (componentwise) positive
steady state û(x) and there exists a σ > 0 such that for any u0(·) ∈ Y+ with X0(·) . 0 and V0(·) . 0, we
have

lim inf
t→∞

w(x, t, u0(·)) ≥ σ, for w = A, X,V, (2.17)

uniformly for x ∈ Ω.
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Proof. Let
W0 = {u0(·) = (A0, X0,V0)(·) ∈ Y+ : X0(·) . 0 and V0(·) . 0},

and
∂W0 = Y+\W0 = {u0(·) = (A0, X0,V0)(·) ∈ Y+ : X0(·) ≡ 0 or V0(·) ≡ 0}.

Recall that the semiflow Ψ(t) : Y+ → Y+ generated by (1.9) is defined in Lemma 2.2. By Lemma 2.5
(i), it follows that for any u0(·) ∈W0, we have

w(x, t, u0(·)) > 0, for x ∈ Ω̄, t > 0, and w = A, X,V.

In other words, Ψ(t)W0 ⊆W0, ∀ t ≥ 0. Let

M∂ := {u0(·) ∈ ∂W0 : Ψ(t)u0(·) ∈ ∂W0,∀ t ≥ 0},

and ω(u0(·)) be the omega limit set of the orbit O+(u0(·)) := {Ψ(t)u0(·) : t ≥ 0}.
Claim 1. ω(v0(·)) ⊆ {E0(x)} ∪ {E1(x)}, ∀ v0(·) ∈ M∂.
Since v0(·) ∈ M∂, we have Ψ(t)v0(·) ∈ M∂, ∀ t ≥ 0, that is, X(·, t, v0(·)) ≡ 0 or V(·, t, v0(·)) ≡ 0, ∀ t ≥

0.
In case where V(·, t, v0(·)) ≡ 0, ∀ t ≥ 0. Then it follows from the third equation in system (1.9) that

X(·, t, v0(·)) ≡ 0, ∀ t ≥ 0. Thus, X(x, t, v0(·)) satisfies system (2.4), and hence,

either lim
t→∞

A(x, t, v0) = 0 or lim
t→∞

A(x, t, v0) = A∗(x), uniformly for x ∈ Ω̄.

Thus,
either lim

t→∞
u(x, t, v0) = E0(x) or lim

t→∞
u(x, t, v0) = E1(x), uniformly for all x ∈ Ω̄.

In case where V(·, t̂0, v0(·)) . 0, for some t̂0 ≥ 0. Then we can use similar arguments in Lemma 2.5
to show that V(x, t, v0) > 0, for all x ∈ Ω̄ and t > t̂0, and hence, X(·, t, v0) ≡ 0, for all t > t̂0. Then
it follows from the second equation in system (1.9) that A(·, t, v0(·))V(·, t, v0(·)) ≡ 0, ∀ t > t̂0. From
the above discussions, it follows that A(·, t, v0(·)) ≡ 0, ∀ t > t̂0. Thanks to the first equation in system
(1.9), it follows that V(·, t, v0(·)) ≡ 0, ∀ t > t̂0. This is a contradiction, and hence, we cannot allow the
possibility that V(·, t̂0, v0(·)) . 0, for some t̂0 ≥ 0. Therefore, we complete the proof of Claim 1.

Recall that µ0 is the principal eigenvalue of the eigenvalue problem (2.5), and µ0 > 0 since (2.6)
holds. By continuity, there is a δ0 > 0 such that µδ0 > 0, where µδ0 > 0 is the principal eigenvalue of
the following eigenvalue problem:µϕ(x) = DA∆ϕ(x) + [rA(x)(1 − δ0

Am
) − (1 + θ)kpδ0 − dA(x)]ϕ(x), x ∈ Ω,

∂ϕ(x)
∂ν

= 0, x ∈ ∂Ω.
(2.18)

Claim 2. E0(x) is a uniform weak repeller forW0 in the sense that

lim sup
t→∞

‖Ψ(t)u0(·) − E0(·)‖ ≥ δ0, ∀ u0(·) ∈W0.

Suppose, by contradiction, that there exists u0(·) ∈W0 such that

lim sup
t→∞

‖Ψ(t)u0(·) − E0(·)‖ < δ0.
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Then there exists t0 > 0 such that

0 ≤ w(x, t, u0) < δ0, ∀ t ≥ t0, x ∈ Ω̄, w = A, X,V.

From the first equation of (1.9), we see that∂A
∂t ≥ DA∆A + [rA(x)(1 − δ0

Am
) − (1 + θ)kpδ0 − dA(x)]A, x ∈ Ω, t ≥ t0,

∂A
∂ν

= 0, x ∈ ∂Ω, t ≥ t0.
(2.19)

Assume that ϕδ0(x) is the positive eigenfunction corresponding to µδ0 , and there exists a C0 > 0 such
that

A(x, t0) ≥ C0ϕδ0(x), ∀ x ∈ Ω̄,

where we have used the fact that A(x, t0) > 0, ∀ x ∈ Ω̄ (see Lemma 2.5). The comparison principle
and the inequality (2.19) imply that

A(x, t) ≥ C0eµδ0 (t−t0)ϕδ0(x), ∀ t ≥ t0, x ∈ Ω̄.

Since µδ0 > 0, it follows that A(x, t) is unbounded. This contradiction proves the Claim 2.
Since R0 > 1, it follows from Lemma 2.4 that λ0 > 0. By continuity of the principal eigenvalue, we

can find an ε1 > 0 such that λε1 > 0, where λε1 is the principal eigenvalue of the following eigenvalue
problem: 

λψX(x) = DX∆ψX(x) − (km + cAV)ψX(x) + kp[A∗(x) − ε1]ψV(x), x ∈ Ω,

λψV(x) = DV∆ψV(x) + kmψX(x)
+[π( f (0) − ε1) − c − kp(A∗(x) + ε1)]ψV(x), x ∈ Ω,

∂ψX(x)
∂ν

=
∂ψV (x)
∂ν

= 0, x ∈ ∂Ω.

(2.20)

By continuity of f (V), we can choose a δ1 with 0 < δ1 ≤ ε1 such that

f (V) > f (0) − ε1, ∀ | V |< δ1. (2.21)

Claim 3. E1(x) is a uniform weak repeller forW0 in the sense that

lim sup
t→∞

‖Ψ(t)u0(·) − E1(·)‖ ≥
1
2
δ1, ∀ u0(·) ∈W0.

Suppose, by contradiction, there exists u0(·) ∈W0 such that

lim sup
t→∞

‖Ψ(t)u0(·) − E1(x)‖ <
1
2
δ1.

Then there exists t1 > 0 such that

A∗(x) − ε1 < A∗(x) −
1
2
δ1 ≤ A(x, t, u0) < A∗(x) +

1
2
δ1 < A∗(x) + ε1, ∀ t ≥ t1, x ∈ Ω̄,

and
0 ≤ w(x, t, u0) <

1
2
δ1 < ε1, ∀ t ≥ t1, x ∈ Ω̄, w = X,V.
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From the second and third equations in system (1.9), it follows that


∂X
∂t ≥ DX∆X − kmX + kp[A∗(x) − ε1]V − cAV X, x ∈ Ω, t ≥ t1,
∂V
∂t ≥ DV∆V + π[ f (0) − ε1]V − cV + kmX

−kp[A∗(x) + ε1]V, x ∈ Ω, t ≥ t1,
∂X
∂ν

= ∂V
∂ν

= 0, x ∈ ∂Ω, t ≥ t1.

(2.22)

Assume that (ψε1
X (x), ψε1

V (x)) is the positive eigenfunction corresponding to λε1 , and there exists a C1 > 0
such that

(X(x, t1),V(x, t1)) ≥ C1(ψε1
X (x), ψε1

V (x)), ∀ x ∈ Ω̄,

where we have used the fact that X(x, t1) > 0, V(x, t1) > 0, ∀ x ∈ Ω̄ (see Lemma 2.5). The comparison
principle and the inequality (2.22) imply that

(X(x, t),V(x, t)) ≥ C1eλε1 (t−t1)(ψε1
X (x), ψε1

V (x)), ∀ t ≥ t1, x ∈ Ω̄.

Since λε1 > 0, it follows that (X(x, t),V(x, t)) is unbounded. This contradiction proves Claim 3.
Define a continuous function P : Y+ → [0,∞) by

P(u0(·)) := min{min
x∈Ω̄

X0(x), min
x∈Ω̄

V0(x)}, ∀ u0(·) = (A0, X0,V0)(·) ∈ Y+.

By Lemma 2.5 (i), it follows that P−1(0,∞) ⊆ W0 and P has the property that if P(u0(·)) > 0 or
u0(·) ∈ W0 with P(u0(·)) = 0, then P(Ψ(t)u0(·)) > 0, ∀ t > 0. That is, P is a generalized distance
function for the semiflow Ψ(t) : Y+ → Y+ (see, e.g., [26]).

From the above claims, it follows that any forward orbit of Ψ(t) in M∂ converges to {E0(x)}∪{E1(x)}.
For i = 0, 1, {Ei(x)} is isolated in Y+ and W s({Ei(x)}) ∩W0 = ∅, where W s({Ei(x)}) is the stable set
of {Ei(x)} (see [26]). It is obvious that no subset of {E0(x)} ∪ {E1(x)} forms a cycle in ∂W0. By
Lemma 2.2, the semiflow Ψ(t) : Y+ → Y+ has a global compact attractor in Y+, ∀ t ≥ 0. Then it
follows from [26, Theorem 3] that there exists a σ1 > 0 such that

min
ψ∈ω(u0(·))

p(ψ) > σ1, ∀ u0(·) ∈W0.

Hence,

lim inf
t→∞

X(·, t, u0(·)) ≥ σ1 and lim inf
t→∞

V(·, t, u0(·)) ≥ σ1, ∀ u0(·) ∈W0.

From Lemma 2.5 (ii), there exists a σ > 0 such that (2.17) is valid. Hence, the uniform persistence
stated in the conclusion (ii) hold. By [27, Theorem 3.7 and Remark 3.10], it follows that Ψ(t) : W0 →

W0 has a global attractor A0. Using [27, Theorem 4.7], we deduce that Ψ(t) admits a steady-state
û(·) ∈ W0. By Lemma 2.5 (i), we can further conclude that û(·) is a positive steady state of (1.9). The
proof of Part (ii) is finished.

�
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3. Elimination of HBV with antibody

In this section, we focus on the study of elimination of HBV with antibody. Due to technical
reasons, we only consider a special case where we assume km = 0 in system (1.9), and the coefficients
in (1.9) are all positive constants. Then the equation of X in system (1.9) is decoupled from the other
equations, and hence, it suffices to investigate the following system:

∂A
∂t = DA∆A + pA(1 + θ)V + rAA(1 − A

Am
)

−(1 + θ)kpAV − dAA, x ∈ Ω, t > 0,
∂V
∂t = DV∆V + π f (V)V − cV − kpAV, x ∈ Ω, t > 0,
∂A
∂ν

= ∂V
∂ν

= 0, x ∈ ∂Ω, t > 0,
A(x, 0) = A0(x), V(x, 0) = V0(x), x ∈ Ω.

(3.1)

We see that two possible steady states of system (3.1) are as follows:

E0 = (A,V) = (0, 0),

and
E1 = (A,V) = (A∗, 0),

where A∗ := Am(1 − dA
rA

) > 0, provided that rA > dA.
Linearizing system (3.1) around E1, we get the following scalar system∂V

∂t = DV∆V + π f (0)V − cV − kpA∗V, x ∈ Ω, t > 0,
∂V
∂ν

= 0, x ∈ ∂Ω, t > 0.
(3.2)

Substituting V(x, t) = eΛtψ(x) into (3.2), and we get the associated eigenvalue problem:Λψ(x) = DV∆ψ(x) + (π f (0) − c − kpA∗)ψ(x), x ∈ Ω,
∂ψ(x)
∂ν

= 0, x ∈ ∂Ω.
(3.3)

By the same argument in [17, Theorem 7.6.1], we can show that the eigenvalue problem (3.3) admits
a principal eigenvalue, denoted by Λ0, which corresponds a strongly positive eigenfunction ψ0(x). In
fact, one can show that Λ0 = π f (0) − c − kpA∗ and the associated eigenfunction ψ(·) ≡ 1. Note that
one can also adopt the theory developed in [21, Section 3] to define the basic reproduction number, R0

0,
for system (3.1). For this purpose, we assume F = π f (0) and V = c + kpA∗. By [21, Theorem 3.4], it
follows that

R0
0 = FV−1 =

π f (0)
c + kpA∗

.

Putting km = 0 in (2.12), and it is easy to see that R0
0 = R0 when km = 0. This is the reason why the

reproduction number in this section is denoted by R0
0. Further, it is easy to observe that

R0
0 < 1⇔ Λ0 < 0. (3.4)
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We impose the following condition:

A :=
pA

kp
≥ A∗ := Am(1 −

dA

rA
) and rA > dA. (3.5)

Let
YP := {(A0,V0) ∈ C(Ω̄,R2

+) : A0(x) ≤ A, ∀ x ∈ Ω̄}.

Theorem 3.1. Assume that (3.5) holds. For any (A0(·),V0(·)) ∈ YP with A0(·) . 0, let (A(·, t),V(·, t))
be the solution of (3.1) with (A(·, 0),V(·, 0)) = (A0(·),V0(·)). If R0

0 < 1, then we have

lim
t→∞

(A(x, t),V(x, t)) = (A∗, 0), uniformly for x ∈ Ω.

Proof. Assume R0
0 < 1, that is, Λ0 < 0 (see (3.4)). Then there exists ξ0 > 0 such that Λξ0 < 0, where

Λξ0 is the principal eigenvalue of the following eigenvalue problem:Λψ(x) = DV∆ψ(x) + [π f (0) − c − kp(A∗ − ξ0)]ψ(x), x ∈ Ω,
∂ψ(x)
∂ν

= 0, x ∈ ∂Ω.
(3.6)

The first equation of (3.1) can be rewritten as follows

∂A
∂t

= DA∆A + kp[A − A](1 + θ)V +
rA

Am
[A∗ − A]A.

From (3.5), we see that
kp[A − A](1 + θ)V +

rA

Am
[A∗ − A ]A < 0.

Then it is not hard to show that YP is a positively invariant set for system (3.1). Thus,

[pA − kpA(x, t)](1 + θ)V(x, t) ≥ 0, ∀ x ∈ Ω, t ≥ 0.

In view of the first equation of (3.1), we see that∂A
∂t ≥ DA∆A + rAA(1 − A

Am
) − dAA, x ∈ Ω, t > 0,

∂A
∂ν

= 0, x ∈ ∂Ω, t > 0,
(3.7)

and hence,
lim inf

t→∞
A(x, t) ≥ A∗, uniformly for x ∈ Ω.

Therefore, we may choose t1 > 0 such that

A(x, t) ≥ A∗(x) − ξ0, uniformly for x ∈ Ω, t ≥ t1.

In view of the second equation of (3.1), we see that∂V
∂t ≤ DV∆V + π f (0)V − cV − kp(A∗(x) − ξ0)V, x ∈ Ω, t ≥ t1,
∂V
∂ν

= 0, x ∈ ∂Ω, t ≥ t1,
(3.8)
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where we have used the fact that f (V) ≤ f (0), ∀ V ≥ 0. Assume that ψξ0(x) is a strongly positive
eigenfunction corresponding to Λξ0 , and there exists Ĉ > 0 such that V(x, t1) ≤ Ĉψξ0(x), ∀ x ∈ Ω.
From (3.8), the comparison principle implies that

V(x, t) ≤ ĈeΛξ0 (t−t1)ψξ0(x), ∀ t ≥ t1, x ∈ Ω̄.

Since Λξ0 < 0, it follows that

lim
t→∞

V(x, t) = 0, uniformly for x ∈ Ω.

Then A(x, t) in (3.1) is asymptotic to system (2.4). Using A0(·) . 0 and the theory for asymptotically
autonomous semiflows (see, e.g., [28, Corollary 4.3]), we have

lim
t→∞

A(x, t) = A∗, uniformly for x ∈ Ω.

The proof is complete.
�

4. Discussion

This study presents a reaction-diffusion system (1.3) modeling HBV infection, which consists of
five compartments of populations, namely, target cells (T ), infected cells (I), free virus (V), free an-
tibody (A), and virus-antibody complexes (X). In system (1.3), we assume that only free virus (V),
free antibody (A), and virus-antibody complexes (X) can diffuse, and the host cells (target and infected
cells) do not have the ability to move. Thus, the governing equations are coupled by ODEs and PDEs.
Due to the lack of diffusion terms of target cells (T ) and infected cells (I) in (1.3), the steady-state so-
lutions involved T and I can be explicitly expressed by free virus (V). Thus, investigating the existence
of steady-state solutions of (1.3) is equivalent to the study of steady-state solutions of system (1.9).

The standard approach in seeking for positive steady-state solutions of system (1.9) is applying
theory of bifurcation to the associated elliptic equations of (1.9). Instead, we adopt dynamical approach
in the analysis of (1.9) in the current paper. We define an reproduction number, R0, for system (1.9),
and we show that system (1.9) is uniformly persistent and it admits at least one (componentwise)
positive steady state when R0 > 1 (see Theorem 2.1). Mathematically, it is more difficult to investigate
the elimination of HBV in system (1.9). Putting km = 0 in system (1.9), the equation of X in (1.9) is
decoupled from the other equations, and we directly study the system (3.1) for the extinction case of
HBV. Imposing the assumption (3.5), we can show that HBV will die out for (3.1) if the associated
reproduction numberR0

0 is less than one (Theorem 3.1). Here, we also raise some challenging problems
related to system (1.9), which can be future research directions:

• The impact of the diffusion coefficients DX and DV on the basic reproduction number R0;
• The dynamics of system (1.9) for the critical case when R0 = 1;
• The uniqueness and the global attractiveness of the positive steady state of system (1.9) if it exists;
• The asymptotic profile of positive steady state of system (1.9) when the diffusion rates DX and

DV both tend to zero.
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In order to simplify the modeling in system (1.3), we have ignored two compartments of popu-
lations, namely, free subviral particles (S ) and subviral particles-antibody complexes (Xs) in [1] by
assuming that subviral particles S (resp. subviral particles-antibody complexes Xs) is proportional to
the concentration of free virus V (resp. virus-antibody complexes X) with a constant proportionality
θ. The authors in [1] developed another more complete model about HBV infection with antibody,
which includes the interactions of target cells (T ), infected cells(I), free subviral particles (S ), free
antibody (A), virus-antibody complexes (X), subviral particles-antibody complexes (Xs), and free virus
(V). After we add spatial variations into such system, we shall investigate the following more realistic
and challenging case in the future:

∂T
∂t = rT (1 − T+I

Tm
) − βVT, x ∈ Ω, t > 0,

∂I
∂t = βVT − δI, x ∈ Ω, t > 0,
∂A
∂t = DA∆A + pA(V + S ) + rA(x)A(1 − A

Am
) + kmX

−kpAV + ks
mXS − ks

pAS − dA(x)A, x ∈ Ω, t > 0,
∂X
∂t = DX∆X − kmX + kpAV − cAV X, x ∈ Ω, t > 0,
∂XS
∂t = DXS ∆XS − ks

mXS + ks
pAS − cAS XS , x ∈ Ω, t > 0,

∂V
∂t = DV∆V + πI − cV + kmX − kpAV, x ∈ Ω, t > 0,
∂S
∂t = DS ∆S + πθI − csS + ks

mXs − ks
pAS , x ∈ Ω, t > 0,

∂A
∂ν

= ∂X
∂ν

= ∂XS
∂ν

= ∂V
∂ν

= ∂S
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), u = T, I, A, X, XS ,V, S , x ∈ Ω.

(4.1)

The meanings of the parameters in system (4.1) were collected in [1, Table 1].
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