Research article Topical Sections

Prediction of first-year corrosion losses of copper and aluminum in continental regions

  • Received: 15 May 2018 Accepted: 22 July 2018 Published: 01 August 2018
  • The dose-response functions (DRFs) developed for the prediction of first-year corrosion losses of copper and aluminum (K1) in continental regions are presented. The development of DRFs is based on the stablished dependences of the corrosion losses of these metals on SO2 concentration: K = f([SO2]). Experimental data on the atmosphere corrosivity and corrosion losses of the metals in a one-year exposure period according to ISOCORRAG and UN/ECE international programs, the Russian program, and МICAT project were used. Comparisons of the predicted K1 values obtained by three different DRFs with experimental K1 values are presented. These DRFs are analyzed in terms of the coefficients they contain.

    Citation: Yulia M. Panchenko, Andrey I. Marshakov, Ludmila A. Nikolaeva, Victoria V. Kovtanyuk. Prediction of first-year corrosion losses of copper and aluminum in continental regions[J]. AIMS Materials Science, 2018, 5(4): 624-649. doi: 10.3934/matersci.2018.4.624

    Related Papers:

  • The dose-response functions (DRFs) developed for the prediction of first-year corrosion losses of copper and aluminum (K1) in continental regions are presented. The development of DRFs is based on the stablished dependences of the corrosion losses of these metals on SO2 concentration: K = f([SO2]). Experimental data on the atmosphere corrosivity and corrosion losses of the metals in a one-year exposure period according to ISOCORRAG and UN/ECE international programs, the Russian program, and МICAT project were used. Comparisons of the predicted K1 values obtained by three different DRFs with experimental K1 values are presented. These DRFs are analyzed in terms of the coefficients they contain.


    加载中
    [1] Knotkova D, Kreislova K, Dean SW (2010) ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, West Conshohocken, PA: ASTM International.
    [2] Tidblad J, Kucera V, Mikhailov AA (1998) Statistical analysis of 8 year materials exposure and acceptable deterioration and pollution levels, In: UN/ECE ICP on Effects on Materials, Report No. 30, Stockholm, Sweden: Swedish Corrosion Institute, 1–49.
    [3] Tidblad J, Kucera V, Mikhailov AA, et al. (2001) UN ECE ICP Materials: Dose-Response Functions on Dry and Wet Acid Deposition Effects After 8 Years of Exposure. Water Air Soil Poll 130: 1457–1462. doi: 10.1023/A:1013965030909
    [4] Morcillo M, Almeida EM, Rosales BM, et al. (1998) Functiones de Dano (Dosis/Respuesta) de la Corrosion Atmospherica en Iberoamerica, In: Corrosion y Proteccion de Metales en las Atmosferas de Iberoamerica, Madrid, Spain: Programma CYTED, 629–660.
    [5] Morcillo M (1995) Atmospheric corrosion in Ibero-America: The MICAT project, In: Kirk WW, Lawson HH, Atmospheric corrosion, ASTM STP 1239, Philadelphia, PA: American Society for Testing and Materials, 257–275.
    [6] Panchenko YM, Shuvakhina LN, Mikhailovsky YN (1982) Atmospheric corrosion of metals in Far Eastern regions. Zashchita metallov 18: 575–582 (in Russian).
    [7] ISO 9223:2012(E) (2012) Corrosion of metals and alloys—Corrosivity of atmospheres—Classification, determination and estimation. International Standards Organization, Geneva.
    [8] Syed S (2006) Atmospheric corrosion of materials. Emir J Eng Res 11: 1–24.
    [9] De la Fuente D, Castano JG, Morcillo M (2007) Long-term atmospheric corrosion of zinc. Corros Sci 49: 1420–1436. doi: 10.1016/j.corsci.2006.08.003
    [10] Landolfo R, Cascini L, Portioli F (2010) Modeling of metal structure corrosion damage: A state of the art report. Sustainability 2: 2163–2175. doi: 10.3390/su2072163
    [11] Morcillo M, De la Fuente D, Diaz I, et al. (2011) Atmospheric corrosion of mild steel. Rev Metal 47: 426–444. doi: 10.3989/revmetalm.1125
    [12] De la Fuente D, Diaz I, Simancas J, et al. (2011) Long-term atmospheric corrosion of mild steel. Corros Sci 53: 604–617. doi: 10.1016/j.corsci.2010.10.007
    [13] Morcillo M, Chico B, Diaz I, et al. (2013) Atmospheric corrosion data of weathering steels: A review. Corros Sci 77: 6–24. doi: 10.1016/j.corsci.2013.08.021
    [14] Surnam BYR, Chiu CW, Xiao HP, et al. (2015) Long-term atmospheric corrosion in Mauritius. Corros Eng Sci Techn 50: 155–159. doi: 10.1179/1743278214Y.0000000240
    [15] Panchenko YM, Marshakov AI, Igonin TN, et al. (2014) Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function. Corros Sci 88: 306–316. doi: 10.1016/j.corsci.2014.07.049
    [16] Panchenko YM, Marshakov AI (2016) Long-term prediction of metal corrosion losses in atmosphere using a power-linear function. Corros Sci 109: 217–229. doi: 10.1016/j.corsci.2016.04.002
    [17] ISO 9224:2012(E) (2012) Corrosion of metals and alloys—Corrosivity of atmospheres—Guiding values for the corrosivity categories. International Standards Organization, Geneva.
    [18] Tidblad J, Mikhailov AA, Kucera V (1999) Unified Dose-Response Functions after 8 Years of Exposure. Quantification of Effects of Air Pollutants on Materials,UN ECE Workshop Proceedings, Umweltbundesamt, Berlin, 77–86.
    [19] Tidblad J, Mikhailov AA, Kucera V (2000) Acid deposition effects on materials in subtropical and tropical climates. Data compilation and temperate climate comparison, KI Report, Stockholm, Sweden: Swedish Corrosion Institute, 1–33.
    [20] Chico B, De la Fuente D, Díaz I, et al. (2017) Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases. Materials 10: 601. doi: 10.3390/ma10060601
    [21] Panchenko YM, Marshakov AI (2017) Prediction of first-year corrosion losses of carbon steel and zinc in continental regions. Materials 10: 422. doi: 10.3390/ma10040422
    [22] Tidblad J, Mikhailov AA, Kucera V (2000) Model for the prediction of the time of wetness from average annual data on relative air humidity and air temperature. Prot Metal 36: 533–540. doi: 10.1023/A:1026621009635
    [23] Feliu S, Morcillo M, Feliu Jr S (1993) The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion. Corros Sci 34: 403–414. doi: 10.1016/0010-938X(93)90112-T
    [24] Mikhailov AA, Panchenko YM, Kuznetsov YI (2016) Atmospheric corrosion and protection of metals, Tambov: Pershin, Inc. (in Russian).
    [25] Zakipour S, Tidblad J, Leygraf C (1995) Atmospheric Corrosion Effects of SO2 and O3 on Laboratory‐Exposed Copper. J Electrochem Soc 142: 757–760. doi: 10.1149/1.2048530
    [26] Tidblad J, Kucera V (1993) The role of NOx and O3 in the corrosion and degradation of materials, Report 1993:6Е, Stockholm, Sweden: Swedish Corrosion Institute, 1–46.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4440) PDF downloads(818) Cited by(9)

Article outline

Figures and Tables

Figures(9)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog