Citation: Masahiro Yasunaga, Shino Manabe, Masaru Furuta, Koretsugu Ogata, Yoshikatsu Koga, Hiroki Takashima, Toshirou Nishida, Yasuhiro Matsumura. Mass spectrometry imaging for early discovery and development of cancer drugs[J]. AIMS Medical Science, 2018, 5(2): 162-180. doi: 10.3934/medsci.2018.2.162
[1] |
Gallo JM (2010) Pharmacokinetic/pharmacodynamic-driven drug development. Mt Sinai J Med N Y 77: 381–388. doi: 10.1002/msj.20193
![]() |
[2] |
Chien JY, Friedrich S, Heathman MA, et al. (2005) Pharmacokinetics/pharmacodynamics and the stages of drug development: Role of modeling and simulation. AAPS J 7: E544–E559. doi: 10.1208/aapsj070355
![]() |
[3] | Garralda E, Dienstmann R, Tabernero J (2017) Pharmacokinetic/pharmacodynamic modeling for drug development in oncology. Am Soc Clin Oncol Educ 37: 210–215. |
[4] | Dingemanse J, Krause A (2017) Impact of pharmacokinetic-pharmacodynamic modelling in early clinical drug development. Eur J Pharm Sci 109S: S53–S58. |
[5] | Glassman PM, Balthasar JP (2014) Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. Cancer Biol Med 11: 20–33. |
[6] | Rajasekaran N, Chester C, Yonezawa A, et al. (2015) Enhancement of antibody-dependent cell mediated cytotoxicity: A new era in cancer treatment. ImmunoTargets Ther 4: 91–100. |
[7] | Krishna M, Nadler SG (2016) Immunogenicity to biotherapeutics-the role of anti-drug immune complexes. Front Immunol 7: 21. |
[8] | Kamath AV (2016) Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov Today Technol S21–22: 75–83. |
[9] |
Gomez-Mantilla JD, Troconiz IF, Parra-Guillen Z, et al. (2014) Review on modeling anti-antibody responses to monoclonal antibodies. J Pharmacokinet Pharmacodyn 41: 523–536. doi: 10.1007/s10928-014-9367-z
![]() |
[10] |
Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23: 1147–1157. doi: 10.1038/nbt1137
![]() |
[11] |
Cornett DS, Reyzer ML, Chaurand P, et al. (2007) Maldi imaging mass spectrometry: Molecular snapshots of biochemical systems. Nat Methods 4: 828–833. doi: 10.1038/nmeth1094
![]() |
[12] |
Rompp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139: 759–783. doi: 10.1007/s00418-013-1097-6
![]() |
[13] |
Calligaris D, Caragacianu D, Liu X, et al. (2014) Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc Natl Acad Sci U. S. A 111: 15184–15189. doi: 10.1073/pnas.1408129111
![]() |
[14] |
Yasunaga M, Manabe S, Tsuji A, et al. (2017) Development of antibody-drug conjugates using dds and molecular imaging. Bioengineering 4: 78. doi: 10.3390/bioengineering4030078
![]() |
[15] |
Wu C, Dill AL, Eberlin LS, et al. (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32: 218–243. doi: 10.1002/mas.21360
![]() |
[16] |
Murray KK, Seneviratne CA, Ghorai S (2016) High resolution laser mass spectrometry bioimaging. Methods 104: 118–126. doi: 10.1016/j.ymeth.2016.03.002
![]() |
[17] |
Stoeckli M, Chaurand P, Hallahan DE, et al. (2001) Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat Med 7: 493–496. doi: 10.1038/86573
![]() |
[18] |
McDonnell LA, Heeren RM (2007) Imaging mass spectrometry. Mass Spectrom Rev 26: 606–643. doi: 10.1002/mas.20124
![]() |
[19] |
Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: Localization of peptides and proteins using maldi-tof ms. Anal Chem 69: 4751–4760. doi: 10.1021/ac970888i
![]() |
[20] |
Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3: 267–275. doi: 10.1038/nrc1043
![]() |
[21] |
Fujiwara Y, Furuta M, Manabe S, et al. (2016) Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep 6: 24954. doi: 10.1038/srep24954
![]() |
[22] | Yasunaga M, Furuta M, Ogata K, et al. (2013) The significance of microscopic mass spectrometry with high resolution in the visualisation of drug distribution. Sci Rep 3: 3050. |
[23] |
Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: Characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39: 429–451. doi: 10.1007/s10928-012-9260-6
![]() |
[24] | Pineda C, Jacobs IA, Alvarez DF, et al. (2016) Assessing the immunogenicity of biopharmaceuticals. Biodrugs 30: 195–206. |
[25] |
Hampe CS (2012) Protective role of anti-idiotypic antibodies in autoimmunity-lessons for type 1 diabetes. Autoimmunity 45: 320–331. doi: 10.3109/08916934.2012.659299
![]() |
[26] |
Thomas A, Teicher BA, Hassan R (2016) Antibody-drug conjugates for cancer therapy. Lancet Oncol 17: e254–e262. doi: 10.1016/S1470-2045(16)30030-4
![]() |
[27] |
Diamantis N, Banerji U (2016) Antibody-drug conjugates-an emerging class of cancer treatment. Br J Cancer 114: 362–367. doi: 10.1038/bjc.2015.435
![]() |
[28] |
Damelin M, Zhong W, Myers J, et al. (2015) Evolving strategies for target selection for antibody-drug conjugates. Pharm Res 32: 3494–3507. doi: 10.1007/s11095-015-1624-3
![]() |
[29] |
Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30: 631–637. doi: 10.1038/nbt.2289
![]() |
[30] |
Ogitani Y, Aida T, Hagihara K, et al. (2016) Ds-8201a, a novel her2-targeting adc with a novel DNA topoisomerase i inhibitor, demonstrates a promising antitumor efficacy with differentiation from t-dm1. Clin Cancer Res 22: 5097–5108. doi: 10.1158/1078-0432.CCR-15-2822
![]() |
[31] |
Sau S, Alsaab HO, Kashaw SK, et al. (2017) Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today 22: 1547–1556. doi: 10.1016/j.drudis.2017.05.011
![]() |
[32] |
Mitsunaga M, Ogawa M, Kosaka N, et al. (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17: 1685–1691. doi: 10.1038/nm.2554
![]() |
[33] |
Larson SM, Carrasquillo JA, Cheung NK, et al. (2015) Radioimmunotherapy of human tumours. Nat Rev Cancer 15: 347–360. doi: 10.1038/nrc3925
![]() |
[34] | Sau S, Alsaab HO, Kashaw SK, et al. (2017) Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discovery Today. |
[35] |
Gerber HP, Sapra P, Loganzo F, et al. (2016) Combining antibody-drug conjugates and immune-mediated cancer therapy: What to expect? Biochem Pharmacol 102: 1–6. doi: 10.1016/j.bcp.2015.12.008
![]() |
[36] |
Alsaab HO, Sau S, Alzhrani R, et al. (2017) Pd-1 and pd-l1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol 8: 561. doi: 10.3389/fphar.2017.00561
![]() |
[37] |
Matsumura Y (2014) The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol 44: 515–525. doi: 10.1093/jjco/hyu046
![]() |
[38] |
Nishiyama N, Matsumura Y, Kataoka K (2016) Development of polymeric micelles for targeting intractable cancers. Cancer Sci 107: 867–874. doi: 10.1111/cas.12960
![]() |
[39] | Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46: 6387–6392. |
[40] |
Cabral H, Matsumoto Y, Mizuno K, et al. (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6: 815–823. doi: 10.1038/nnano.2011.166
![]() |
[41] |
Oku N (2017) Innovations in liposomal dds technology and its application for the treatment of various diseases. Biol Pharm Bull 40: 119–127. doi: 10.1248/bpb.b16-00857
![]() |
[42] |
Kinoshita R, Ishima Y, Chuang VTG, et al. (2017) Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of epr effect and albumin-protein interactions using s-nitrosated human serum albumin dimer. Biomaterials 140: 162–169. doi: 10.1016/j.biomaterials.2017.06.021
![]() |
[43] |
Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6: 688–701. doi: 10.1038/nrc1958
![]() |
[44] |
Yokoyama M (2014) Polymeric micelles as drug carriers: Their lights and shadows. J Drug Targeting 22: 576–583. doi: 10.3109/1061186X.2014.934688
![]() |
[45] |
Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7: 653–664. doi: 10.1038/nrclinonc.2010.139
![]() |
[46] |
Allen TM, Cullis PR (2013) Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Delivery Rev 65: 36–48. doi: 10.1016/j.addr.2012.09.037
![]() |
[47] |
Bae Y, Nishiyama N, Fukushima S, et al. (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular ph-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem 16: 122–130. doi: 10.1021/bc0498166
![]() |
[48] |
Kraft JC, Freeling JP, Wang Z, et al. (2014) Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 103: 29–52. doi: 10.1002/jps.23773
![]() |
[49] | Rao W, Pan N, Yang Z (2016) Applications of the single-probe: Mass spectrometry imaging and single cell analysis under ambient conditions. J Visualized Exp JoVE 2016: 53911. |
[50] |
Calligaris D, Feldman DR, Norton I, et al. (2015) Molecular typing of meningiomas by desorption electrospray ionization mass spectrometry imaging for surgical decision-making. Int J Mass Spectrom 377: 690–698. doi: 10.1016/j.ijms.2014.06.024
![]() |
[51] |
Fenn JB, Mann M, Meng CK, et al. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64–71. doi: 10.1126/science.2675315
![]() |
[52] |
Takats Z, Wiseman JM, Gologan B, et al. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306: 471–473. doi: 10.1126/science.1104404
![]() |
[53] | Parrot D, Papazian S, Foil D, et al. (2018) Imaging the unimaginable: Desorption electrospray ionization-imaging mass spectrometry (desi-ims) in natural product research. Planta Med. |
[54] | Cooks RG, Ouyang Z, Takats Z, et al. (2006) Detection technologies. Ambient mass spectrometry. Science 311: 1566–1570. |
[55] |
Zimmerman TA, Monroe EB, Tucker KR, et al. (2008) Chapter 13: Imaging of cells and tissues with mass spectrometry: Adding chemical information to imaging. Methods Cell Biol 89: 361–390. doi: 10.1016/S0091-679X(08)00613-4
![]() |
[56] | Signor L, Boeri EE (2013) Matrix-assisted laser desorption/ionization time of flight (maldi-tof) mass spectrometric analysis of intact proteins larger than 100 kda. J Visualized Exp JoVE 108: e50635. |
[57] |
Sudhir PR, Wu HF, Zhou ZC (2005) Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with ap-maldi mass spectrometry. Anal Chem 77: 7380–7385. doi: 10.1021/ac051162m
![]() |
[58] |
Abdelhamid HN, Wu HF (2012) A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal Chim Acta 751: 94–104. doi: 10.1016/j.aca.2012.09.012
![]() |
[59] |
Abdelhamid HN, Wu HF (2013) Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(maldi)-mass spectrometry. Talanta 115: 442–450. doi: 10.1016/j.talanta.2013.05.050
![]() |
[60] |
Nasser AH, Wu BS, Wu HF (2014) Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis. Talanta 126: 27–37. doi: 10.1016/j.talanta.2014.03.016
![]() |
[61] |
Abdelhamid HN, Wu HF (2015) Synthesis of a highly dispersive sinapinic acid@graphene oxide (sa@go) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 140: 1555–1565. doi: 10.1039/C4AN02158D
![]() |
[62] |
Abdelhamid HN, Wu HF (2016) Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: From simple molecules to intact cells. Anal Bioanal Chem 408: 4485–4502. doi: 10.1007/s00216-016-9374-6
![]() |
[63] |
Harada T, Yuba-Kubo A, Sugiura Y, et al. (2009) Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal Chem 81: 9153–9157. doi: 10.1021/ac901872n
![]() |
[64] |
Saito Y, Waki M, Hameed S, et al. (2012) Development of imaging mass spectrometry. Biol Pharm Bull 35: 1417–1424. doi: 10.1248/bpb.b212007
![]() |
[65] |
Sugiura Y, Honda K, Suematsu M (2015) Development of an imaging mass spectrometry technique for visualizing localized cellular signaling mediators in tissues. Mass Spectrom 4: A0040. doi: 10.5702/massspectrometry.A0040
![]() |
[66] |
Setou M, Kurabe N (2011) Mass microscopy: High-resolution imaging mass spectrometry. J Electron Microsc 60: 47–56. doi: 10.1093/jmicro/dfq079
![]() |
[67] |
Maeda H (2001) Smancs and polymer-conjugated macromolecular drugs: Advantages in cancer chemotherapy. Adv Drug Delivery Rev 46: 169–185. doi: 10.1016/S0169-409X(00)00134-4
![]() |
[68] |
Barenholz Y (2012) Doxil(r)-the first fda-approved nano-drug: Lessons learned. J Controlled Release 160: 117–134. doi: 10.1016/j.jconrel.2012.03.020
![]() |
[69] |
Giordano G, Pancione M, Olivieri N, et al. (2017) Nano albumin bound-paclitaxel in pancreatic cancer: Current evidences and future directions. World J Gastroenterol 23: 5875–5886. doi: 10.3748/wjg.v23.i32.5875
![]() |
[70] |
Kogure K, Akita H, Yamada Y, et al. (2008) Multifunctional envelope-type nano device (mend) as a non-viral gene delivery system. Adv Drug Delivery Rev 60: 559–571. doi: 10.1016/j.addr.2007.10.007
![]() |
[71] |
Sugaya A, Hyodo I, Koga Y, et al. (2016) Utility of epirubicin-incorporating micelles tagged with anti-tissue factor antibody clone with no anticoagulant effect. Cancer Sci 107: 335–340. doi: 10.1111/cas.12863
![]() |
[72] |
Hiyama E, Ali A, Amer S, et al. (2015) Direct lipido-metabolomics of single floating cells for analysis of circulating tumor cells by live single-cell mass spectrometry. Anal Sci 31: 1215–1217. doi: 10.2116/analsci.31.1215
![]() |
[73] |
Hamaguchi T, Matsumura Y, Suzuki M, et al. (2005) Nk105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92: 1240–1246. doi: 10.1038/sj.bjc.6602479
![]() |
[74] |
Verma S, Miles D, Gianni L, et al. (2012) Trastuzumab emtansine for her2-positive advanced breast cancer. N Engl J Med 367: 1783–1791. doi: 10.1056/NEJMoa1209124
![]() |
[75] |
Younes A, Gopal AK, Smith SE, et al. (2012) Results of a pivotal phase ii study of brentuximab vedotin for patients with relapsed or refractory hodgkin's lymphoma. J Clin Oncol 30: 2183–2189. doi: 10.1200/JCO.2011.38.0410
![]() |
[76] |
Pro B, Advani R, Brice P, et al. (2012) Brentuximab vedotin (sgn-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: Results of a phase ii study. J Clin Oncol 30: 2190–2196. doi: 10.1200/JCO.2011.38.0402
![]() |
[77] |
Doronina SO, Toki BE, Torgov MY, et al. (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21: 778–784. doi: 10.1038/nbt832
![]() |
[78] |
Lyon RP, Bovee TD, Doronina SO, et al. (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33: 733–735. doi: 10.1038/nbt.3212
![]() |
[79] |
Hisada Y, Yasunaga M, Hanaoka S, et al. (2013) Discovery of an uncovered region in fibrin clots and its clinical significance. Sci Rep 3: 2604. doi: 10.1038/srep02604
![]() |
[80] |
Takashima H, Tsuji AB, Saga T, et al. (2017) Molecular imaging using an anti-human tissue factor monoclonal antibody in an orthotopic glioma xenograft model. Sci Rep 7: 12341. doi: 10.1038/s41598-017-12563-5
![]() |
[81] |
Koga Y, Manabe S, Aihara Y, et al. (2015) Antitumor effect of antitissue factor antibody-mmae conjugate in human pancreatic tumor xenografts. Int J Cancer 137: 1457–1466. doi: 10.1002/ijc.29492
![]() |
[82] |
Rao W, Celiz AD, Scurr DJ, et al. (2013) Ambient desi and lesa-ms analysis of proteins adsorbed to a biomaterial surface using in-situ surface tryptic digestion. J Am Soc Mass Spectrom 24: 1927–1936. doi: 10.1007/s13361-013-0737-3
![]() |
[83] | Takahashi T, Serada S, Ako M, et al. (2013) New findings of kinase switching in gastrointestinal stromal tumor under imatinib using phosphoproteomic analysis. Int J Cancer 133: 2737–2743. |
[84] |
Emara S, Amer S, Ali A, et al. (2017) Single-cell metabolomics. Adv Exp Med Biol 965: 323–343. doi: 10.1007/978-3-319-47656-8_13
![]() |
[85] |
Matsumura Y (2012) Cancer stromal targeting (cast) therapy. Adv Drug Delivery Rev 64: 710–719. doi: 10.1016/j.addr.2011.12.010
![]() |
[86] |
Yasunaga M, Manabe S, Tarin D, et al. (2011) Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjugate Chem 22: 1776–1783. doi: 10.1021/bc200158j
![]() |
[87] |
Yasunaga M, Manabe S, Tarin D, et al. (2013) Tailored immunoconjugate therapy depending on a quantity of tumor stroma. Cancer Sci 104: 231–237. doi: 10.1111/cas.12062
![]() |
[88] |
Yasunaga M, Manabe S, Matsumura Y (2017) Immunoregulation by il-7r-targeting antibody-drug conjugates: Overcoming steroid-resistance in cancer and autoimmune disease. Sci Rep 7: 10735. doi: 10.1038/s41598-017-11255-4
![]() |