
Citation: Thomas Trunk, Hawzeen S. Khalil, Jack C. Leo. Bacterial autoaggregation[J]. AIMS Microbiology, 2018, 4(1): 140-164. doi: 10.3934/microbiol.2018.1.140
[1] | Abigail Gbemisola Adeyonu, Olubunmi Lawrence Balogun, Babatunde Oluseyi Ajiboye, Isaac Busayo Oluwatayo, Abiodun Olanrewaju Otunaiya . Sweet potato production efficiency in Nigeria: Application of data envelopment analysis. AIMS Agriculture and Food, 2019, 4(3): 672-684. doi: 10.3934/agrfood.2019.3.672 |
[2] | Saeed Hosseini Nejad, Reza Moghaddasi, Amir Mohammadi Nejad . On the role of credit in agricultural growth: An Iranian panel data analysis. AIMS Agriculture and Food, 2018, 3(1): 1-11. doi: 10.3934/agrfood.2018.1.1 |
[3] | Lindie V. Maltitz, Yonas T. Bahta . Empowerment of smallholder female livestock farmers and its potential impacts to their resilience to agricultural drought. AIMS Agriculture and Food, 2021, 6(2): 603-630. doi: 10.3934/agrfood.2021036 |
[4] | Ogunniyi Adebayo, Omonona Bolarin, Abioye Oyewale, Olagunju Kehinde . Impact of irrigation technology use on crop yield, crop income and household food security in Nigeria: A treatment effect approach. AIMS Agriculture and Food, 2018, 3(2): 154-171. doi: 10.3934/agrfood.2018.2.154 |
[5] | Raulston Derrick Gillette, Norio Sakai, Godfrid Erasme Ibikoule . Role and impact of contract farming under various pricing standards: A case of Guyana's rice sector. AIMS Agriculture and Food, 2024, 9(1): 336-355. doi: 10.3934/agrfood.2024020 |
[6] | Hien Thi Vu, Ke-Chung Peng, Rebecca H. Chung . Efficiency measurement of edible canna production in Vietnam. AIMS Agriculture and Food, 2020, 5(3): 466-479. doi: 10.3934/agrfood.2020.3.466 |
[7] | Abbas Ali Chandio, Yuansheng Jiang . Factors influencing the adoption of improved wheat varieties by rural households in Sindh, Pakistan. AIMS Agriculture and Food, 2018, 3(3): 216-228. doi: 10.3934/agrfood.2018.3.216 |
[8] | Marcello Mastrorilli, Raffaella Zucaro . Towards sustainable use of water in rainfed and irrigated cropping systems: review of some technical and policy issues. AIMS Agriculture and Food, 2016, 1(3): 294-314. doi: 10.3934/agrfood.2016.3.294 |
[9] | Radhwane Derraz, Farrah Melissa Muharam, Noraini Ahmad Jaafar . Uncertainty sources affecting operational efficiency of ML algorithms in UAV-based precision agriculture: A 2013–2020 systematic review. AIMS Agriculture and Food, 2023, 8(2): 687-719. doi: 10.3934/agrfood.2023038 |
[10] | Boris Boincean, Amir Kassam, Gottlieb Basch, Don Reicosky, Emilio Gonzalez, Tony Reynolds, Marina Ilusca, Marin Cebotari, Grigore Rusnac, Vadim Cuzeac, Lidia Bulat, Dorian Pasat, Stanislav Stadnic, Sergiu Gavrilas, Ion Boaghii . Towards Conservation Agriculture systems in Moldova. AIMS Agriculture and Food, 2016, 1(4): 369-386. doi: 10.3934/agrfood.2016.4.369 |
As history indicated, infectious diseases have been becoming a main enemy affecting human's health and economic development. Mathematical modelling is an useful tool to investigate the mechanisms of transmission of diseases and make optimal control measures [1]. There are many ways to suppress the disease transmission, such as media propagation, vaccination, quarantine and so on [2]. As we know, vaccination is one of effective methods to control and prevent disease prevalence. Indeed, vaccination has succeeded in slowing down transmission of diseases such as tuberculosis, hepatitis, and some children diseases [3]. However, it has been reported that vaccination immunity waning has caused some diseases reemergence such as measles, rubella and pertussis. There is no doubt that vaccine waning has great effects on understanding the evolution of diseases. Based on the epidemic compartment knowledge in Kermack and McKendrick [4,5,6], an SIVS epidemic model can be written as follows [7]:
$ \displaystyle\frac{dS(t)}{dt} = b-\beta SI-(\mu+p)S+\epsilon V, \\ \displaystyle\frac{d I(t)}{dt} = \beta SI-(\mu+\gamma)I, \\ \displaystyle\frac{dR(t)}{dt} = \gamma I(t)-\mu R, \\ \displaystyle\frac{d V(t)}{dt} = pS-(\mu+\epsilon) V(t), \\ $ | (1) |
where the total population is splited into four classes (Susceptible, Infected, Recovered and Vaccinated). $b$ is the birth rate, $\mu$ is the natural death rate, $\beta$ is the transmission rate, $\gamma$ is the recovery rate, $p$ is the vaccinated rate, $\epsilon$ is the vaccine waning rate. In [7], Li and Yang investigated two vaccine strategies consisting of continuous and impulsive styles, and they obtained the global stability of equilibria by constructing Lyapunov functionals. Zaleta and Hernández proposed an SIVS model with a standard incidence rate and a disease-induced death rate [8]. They showed that their model exhibits a backward bifurcation. Based on model (1), many researchers have evolved many different structures and successfully captured the key characters of diseases transmission and evaluated the risk of their prevalence (see, for examples, [9,10,11]).
We note that all models mentioned above are based on the homogeneous assumptions for host population. However, host heterogeneity plays an important role in exploring their dynamics. Many diseases such as tuberculosis, hepatitis C, HIV/AIDS and so on infect their host for a long time and sometimes for the duration of lifespan. During the long infectious period, the variability of infectivity with age-since-infection has been studied most extensively in HIV infection [12]. The immunity waning process of pertussis satisfies Gamma distributions [13], which can be expressed by the vaccinated age. In this case, the densities of the infected and vaccinated in time $t$ and age $a$ are denoted by $i(t, a), $ and $v(t, a)$, respectively. The parameters $\beta, \gamma, $ and $\epsilon$ in system (1) are associated with age $a$. Based on system (1), the model can be described as follows:
$
dS(t)dt=b−S(t)∫∞0β(a)i(t,a)da−(μ+p)S(t)+∫∞0ϵ(a)v(t,a)da,∂i(t,a)∂t+∂i(t,a)∂a=−(μ+γ(a))i(t,a),∂v(t,a)∂t+∂v(t,a)∂a=−(μ+ϵ(a))v(t,a),i(t,0)=S(t)∫∞0β(a)i(t,a)da,v(t,0)=pS(t),dR(t)dt=∫∞0γ(a)i(t,a)da−μR(t),S(0)=S0∈R+,i(0,a)=i0(a)∈L1+(R+),v(0,a)=v0(a)∈L1+(R+),
$
|
(2) |
where $\mathbb R_+ = (0, +\infty), $ and $L_+^1(\mathbb R_+)$ denotes the space of all the integral functions in $L^1$ and maintaining positivity after integral. Obviously, system (2) is a hybrid system combining an ordinary differential equation and two partial differential equations. Global dynamics of such a system has been becoming a challenging issue due to lack of well posed mathematical techniques.
On the other hand, some diseases such as mumps, measles, gonorrhea, HIV/AIDS etc exhibit heterogeneity in host populations. Groups can be geographical such as counties, cities, communities, or epidemiological as different infectivity and multi-stain agents. Many authors introduced an irreducible matrix and summing elements of the matrix together as a kernel function to describe the inter-group and intra-group infections. In [14], Lajmanovich and Yorke proposed the earliest multi-group model for gonorrhea spread in a community and investigated the global stability. They assumed that the total size of population doesn't change and maintain a constant. Under this assumption their model can be simplified to just consider the infected classes. Since then, many multi-group epidemic models have been studied (see, for example [15,19,20]). In [21], Guo et al proposed a multi-group SIR epidemic model and used the graph-theoretic approach to investigate the global stability of endemic equilibrium. This method combining with nonnegative irreducible matrix is an effective tool in solving the global behavior of endemic equilibrium. In [20], Kuniya considered a multi-group SVIR model to explore the global behavior of equilibria by constructing Lyapunov functional and using a developed graph-theoretic method. There are few literatures incorporating age structure into multi-group epidemic models [15].
Motivated by the discussions above, we separate the total population into $n$ groups and four compartments: susceptible, infected, and vaccinated, recovered, denoted by $S_k(t), i_k(t, a)$ and $v_k(t, a)$ and $R_k(t)$, respectively. $i_k(t, a)$ denotes the infected individuals at time $t$ and infection age $a$ in group $k$. $v_k(t, a)$ denotes the vaccinated individuals at time $t$ and vaccinated age $a$ in group $k$. $R_k(t)$ represents the recovered individuals at time $t.$ Susceptible individuals in group $k$ can be infected by infected individuals in group $j$ at rate $\beta_{kj}(a)$. Hence, we denote the incidence rate in group $k$ in the form of
$ \lambda_k(t) = \sum\limits_{j = 1}^n\int_0^\infty\beta_{kj}(a)i_j(t, a)da. $ |
Susceptible individuals in group $k$ can be vaccinated at rate $p_k$ and become vaccinated individuals with immunity. The vaccinated individuals in group $k$ lose its immunity at rate $\epsilon_k(a)$ and become susceptible individuals. A multi-group SIRVS epidemic model is formulated by the following differential equations:
$
dSk(t)dt=bk−Sk(t)λk(t)−(μk+pk)Sk(t)+∫∞0ϵk(a)vk(t,a)da,∂ik(t,a)∂t+∂ik(t,a)∂a=−(μk+γk(a))ik(t,a),∂vk(t,a)∂t+∂vk(t,a)∂a=−(μk+ϵk(a))vk(t,a),ik(t,0)=Sk(t)λk(t),vk(t,0)=pkSk(t),dRk(t)dt=∫∞0γk(a)ik(t,a)da−μkRk(t),
$
|
(3) |
where $b_k$ denotes the birth rate, $\gamma_k$ is the recovery rate with respect to infection age $a$, $\mu_k$ is the natural death rate in group $k$. In order to satisfy the biological meaning, all the parameters are assumed to be nonnegative and $b_k>0$ and $\mu_k>0.$ Note that the total population $N_k(t) = S_k(t)+\int_0^\infty i_k(t, a)da+R_k(t)+\int_0^\infty v_k(t, a)da$ satisfies the following equation:
$ \frac{dN_k(t)}{dt} = b_k-\mu_k N_k(t), $ | (4) |
which yields $\lim\limits_{t\rightarrow\infty}N_k(t) = \frac{b_k}{\mu_{k}}$. Without loss of generality, we assume that the total population is $N_{k} = \frac{b_k}{\mu_{k}}$. Since the first four equations in (3) do not contain the variable $R_k$, we can consider the following closed subsystem:
$
dSk(t)dt=bk−Sk(t)λk(t)−(μk+pk)Sk(t)+∫∞0ϵk(a)vk(t,a)da,∂ik(t,a)∂t+∂ik(t,a)∂a=−(μk+γk(a))ik(t,a),∂vk(t,a)∂t+∂vk(t,a)∂a=−(μk+ϵk(a))vk(t,a),ik(t,0)=Sk(t)λk(t),vk(t,0)=pkSk(t),Sk(0)=Sk0∈R+,ik(0,a)=ik0(a)∈L1+(R+),vk(0,a)=vk0(a)∈L1+(R+).
$
|
(5) |
Once behaviors of $S_k(t)$, $i_k(t, a)$ and $v_k(t, a)$ are known, those of $R_k(t)$ can be derived from the fourth equation in (3). For convenience, we make the following assumption:
Assumption 1.1. For system (5), we assume
(ⅰ) For each $j, k\in\{1, 2, \cdots, n\}$, $\beta_{jk}(a), \gamma_k(a), \epsilon_k(a)\in L^\infty_+(0, \infty)$. That is, there exist positive constants $\beta_{jk}^+$ and $\epsilon_k^+$ such that
$ {\rm ess}\sup\limits_{a\in[0, +\infty)}\beta_{jk}(a) = \beta_{jk}^+, \quad {\rm ess} \sup\limits_{a\in[0, \infty)}\gamma_k(a) = \gamma_k^+, \quad {\rm ess} \sup\limits_{a\in[0, \infty)}\epsilon_k(a) = \epsilon_k^+. $ |
(ⅱ) For each $j, k\in\{1, 2, \cdots, n\}$, $\beta_{jk}(a)$ satisfies the following property:
$ \lim\limits_{h\rightarrow0}\int_0^\infty|\beta_{jk}(a+h)-\beta_{jk}(a)|da = 0. $ |
(ⅲ) For each $j, k\in\{1, 2, \cdots, n\}$, there exists an $\varepsilon_0>0$ such that for almost all $a\in[0, +\infty), \beta_{jk}(a)\ge\varepsilon_0.$
(ⅳ) For each $j, k\in\{1, 2, \cdots, n\}$, the matrix $(\beta_{jk})_{n\times n}$ is irreducible.
The assumptions above on the parameters in system (5) are naturally satisfied for some real diseases. Evidence exists that the infectivity $\beta_{jk}(a)$ has been addressed by Gamma and Log-normal distributions for smallpox [16,17], Weibull distribution for Ebola [18]. It is easy to find that all of these probability distribution functions have peak values and they are continuous. Hence, (ⅰ) and (ⅱ) in Assumption 1.1 readily hold. As for (ⅲ) in Assumption 1.1, we can modify it in a more generalized form:
(ⅲ)' There exists a positive constant}$a_\beta$ such that $\beta_{jk}(a)(k, j\in\mathbb N)$ is positive in a neighbourhood of $a_\beta$.
Obviously, the distribution functions mentioned above have this property. If we assume that every group keeps up close exchanges in mutual contact, then the generated graph is strongly connected. (ⅳ) in Assumption 1.1 is satisfied automatically.
In order to investigate the dynamic behavior of system (5), define the functional spaces
$ X = (\mathbb R\times L^1(\mathbb R_+, \mathbb R))^n, \quad Y = X\times X, \quad Z = \mathbb R^n\times X\times X, $ |
and
$ X_0 = \left(\{0\}\times L^1(\mathbb R_+, \mathbb R)\right)^n, \quad Y_0 = X_0\times X_0, \quad Z_0 = \mathbb R^n\times X_0\times X_0 $ |
with the norm
$ \|\phi\|_{\mathbb R^n} = \sum\limits_{j = 1}^n|\phi_j|, \quad\phi = (\phi_1, \phi_2, \cdots, \phi_n)^T\in \mathbb R^n, $ |
$ \|\phi\|_{X_0} = \sum\limits_{j = 1}^n\int_0^\infty|\phi_j(a)|da, \quad\phi = (\phi_1, \phi_2, \cdots, \phi_n)^T\in L^1(\mathbb R_+, \mathbb R^n), $ |
$ \|\psi\|_{Y_0} = \|\psi_1\|_{X_0}+\|\psi_2\|_{X_0}, \|\psi\|_Z = \|\psi_1\|_{\mathbb R^n}+\|\psi_2\|_{X_0}+\|\psi_3\|_{X_0}, $ |
where $\psi_i = (\psi_{i1}, \psi_{i2}, \cdots, \psi_{in})^T\in\mathbb R^n$ or $ L^1(\mathbb R_+, \mathbb R^n) (i = 1, 2, 3)$. In addition, denote $X_+, Y_+$ and $Z_+$ as the positive cones of $X, Y$ and $Z$. We define
$ X_{0+} = X_0\bigcap X_+, Y_{0+} = Y_0\bigcap Y_+, Z_{0+} = Z_0\bigcap Z_+. $ |
Under Assumption 1.1 we see that the set
$ \Omega = \left\{({\bf S}(t), {\bf 0}, {\bf i}(t, \cdot), {\bf 0}, {\bf v}(t, \cdot))\in Z_{0+}\Big|S_k(t)+\int_0^\infty i_k(t, a)da+\int_0^\infty v_k(t, a)da\le\frac{b_k}{\mu_k}\right\} $ |
is invariant, where ${\bf S} = (S_1, S_2, \cdots, S_n)^T$, ${\bf i} = (i_1, i_2, \cdots, i_n)^T$ and ${\bf v} = (v_1, v_2, \cdots, v_n)^T$. In the following, we just assume that all the initial values are taken from $\Omega$.
Next, we will show that system (5) has a globally classic solution in $\Omega.$ Let $b, p, \mu, \gamma(a), $ and $\epsilon(a)$ be diagonal matrixes given by
$
b=diag(b1,b2,⋯,bn),p=diag(p1,p2,⋯,pn),μ=diag(μ1,μ2,⋯,μn),γ(a)=diag(γ1(a),γ2(a),⋯,γn(a)),ϵ(a)=diag(ϵ1(a),ϵ2(a),⋯,ϵn(a)).
$
|
(6) |
Then let us define a linear operator $\mathcal A_i:D(A_i)\subset X\rightarrow X$ as
$
\mathcal A_i\left(
0ψ
\right) = \left(
0Aiψ
\right) = \left(
0−ddaψ−(μ+γ(a))ψ
\right),
$
|
and
$
\mathcal A_v\left(
0ψ
\right) = \left(
0Avψ
\right) = \left(
0−ddaψ−(μ+ϵ(a))ψ
\right),
$
|
where $D(A_j) = \{(0, \psi)\in X_0| \psi \textrm{ is obsolutely continuous}, \psi'\in L^1(\mathbb R_+, \mathbb R^n), \psi(0) = 0\}$, $j = i, v$. If $\lambda\in\rho(A_i)$ ($\rho(A_i)$ denotes the resolvent set of $A_i$), for any initial value $\left(\theta_i, \phi_i \right)^T\in X$, we have
$ \label{eqnf1}\psi_i(a) = e^{-\int_0^a[\mu_i+\gamma_i(s)+\lambda]ds}\theta_i+\int_0^a\phi_i(s)e^{-\int_s^a[\mu_i+\gamma_i(\xi)+\lambda]d\xi}ds. $ | (7) |
Similarly, for any $\lambda\in\rho(A_v)$ and any initial value $\left(\theta_v, \phi_v \right)^T\in X$, we have
$ \psi_v(a) = e^{-\int_0^a[\mu_i+\epsilon_i(s)+\lambda]ds}\theta_v+\int_0^a\phi_i(s)e^{-\int_s^a[\mu_i+\epsilon_i(\xi)+\lambda_i]d\xi}ds. $ | (8) |
Furthermore, define two nonlinear operators as
$
F_j\left(
0ψ
\right) = \left(
Bj(ψ)0
\right), j = i, v,
$
|
where $B_i(\phi) = S\sum\limits_{j = 1}^n\int_0^\infty\beta_{j}(a)\phi_{ij}(a)da$ and $B_v(\phi) = p\phi_S$. We further define another nonlinear operator
$ F_S(\psi) = b-p\psi_S-B_i(\psi_i)+\int_0^\infty\epsilon(a)\psi_v(a)da. $ |
If we set $u = \left(S, \left(0i
$ \displaystyle\frac{du(t)}{dt} = \mathcal Au(t)+F(u(t)), \quad u(0) = u_0\in\Omega. $ | (9) |
Proposition 2.1. There exists a uniquely determined semiflow $\{\mathcal U(t)\}_{t\geq 0}$ on $Z_{0+}$ such that, for each $u = \left(S(t),
\left(0i(t,⋅)
$ \mathcal U(t)u = u_0+\mathcal A\int_0^t\mathcal U(s)uds+\int_0^tF(U(s)u)ds. $ | (10) |
Proof. By the definition of $\mathcal A$ and equations (7) and (8), $\mathcal A$ is dense in part of $X_0$ (see Page 1117, , [22]), and the resolvent operator is bounded. From Proposition 3.2 in, [23], we need only to verify that $F$ satisfies Lipschitz condition. Denote
$
x_k = \left(\psi_{Sk}, \left(
0ψik
\right)
, \left(
0ψvk
\right)\right)^T\in Z
, \bar x_k = \left(\bar\psi_{Sk}, \left(
0ˉψik
\right)
, \left(
0ˉψvk
\right)\right)^T\in Z,
$
|
and
$ L_{Sk} = \max\left\{p_k+p_k\int_0^\infty\epsilon_k(a)da+\frac{b_k}{\mu_k}\sum\limits_{j = 1}^n\beta^+_{kj}, \frac{b_k}{\mu_k}\sum\limits_{j = 1}^n\beta^+_{kj}\right\}. $ |
By calculation, we have
$
|FSk(xk)−FSk(ˉxk)|=|−pk(ψSk−ˉψSk)+ψSkn∑j=1∫∞0βkj(a)ψij(a)da−ˉψSkn∑j=1∫∞0βkj(a)ψij(a)da+∫∞0ϵk(a)dapk(ψSk−ˉψSk)|≤pk|ψSk−ˉψSk|+n∑j=1∫∞0βkj(a)ψij(a)da|ψSk−ˉψSk|+ψSkn∑j=1∫∞0βkj(a)|ψij(a)−ˉψij(a)|da+p∫∞0ϵk(a)da|ψSk−ˉψSk)|≤pk|ψSk−ˉψSk|+bkμkn∑j=1β+kj|ψSk−ˉψSk|+bkμkn∑j=1β+kj‖ψij−ˉψij‖L1+pk∫∞0ϵk(a)da|ψSk−ˉψSk)|≤LSk‖x−ˉx‖.
$
|
(11) |
Similarly, we have $\|F_{lk}(x_k)-F_{lk}(\bar x)\|\le L_{lk}\|x-\bar x\|, l = i, v, $ where $L_{ik} = \frac{b_k}{\mu_k}\sum\limits_{j = 1}^n\beta^+_{kj}, $ and $L_{vk} = p_k$. Therefore, $\|F(x)-F(\bar x)\|\leq\sum\limits_{k = 1}^n\|F_k(x_k)-F(\bar x_k)\|\leq L\|x-\bar x\|, $ where $L = \max\{L_{Sk}, L_{ik}, L_{vk}\}$.
In order to prove the positivity of the solution of (5), we first rewrite the operator $\mathcal A_v$ and the nonlinear function $F_{vk}$ as follows:
$
\mathcal A'_v\left(
0ψ
\right) = \left(
0Avψ
\right) = \left(
0−ddaψ−μψ
\right)
$
|
and
$
F'_{v}\left(
0ψ
\right) = \left(
pS−∫∞0ϵ(a)ψ(a)da0
\right).
$
|
Denote $\mathcal A' = \textrm{diag}(\mu, \mathcal A_i, \mathcal A_v')$, and $F' = (F_{S}, F_{i}, F'_{v})$. Then system (9) can be written as
$ \displaystyle\frac{du(t)}{dt} = \mathcal A'u(t)+F'(u(t)), \quad u(0) = u_0. $ | (12) |
It is obvious that $e^{\mathcal A' t}u_0\in \Omega_+$ if $u_0\in\Omega_+$, where $\Omega$ is the positive cone of $\Omega.$ Then we need to show that
$ \int_0^te^{\mathcal A(t-s)}F'_k(\Omega_+)ds\in\Omega_+. $ |
For any $\psi_{lk}\in\mathbb R$ and $\phi_{lk}\in \Omega_+$, it follows from the definitions of $\mathcal A'$ and $F'$ that
$
ψ1+ψ2+ψ3=∫t0e−μ(t−s)FS(ϕ(s))ds+∫t0e−μ(t−s)−∫tsγ(a)daFi(ϕ(s))ds+∫t0e−μ(t−s)F′v(ϕ(s))ds≤∫t0bke−μ(t−s)ds=bkμk(1−eμkt)≤bkμk.
$
|
(13) |
On the other hand, choose a $\kappa_k\in\mathbb R_+$ and redefine the operator in (12) as follows: $\mathcal A_{\kappa_k} = \textrm{diag}(-(\mu_k+\kappa_k), \mathcal A_{i\kappa_k}, \mathcal A_{v\kappa_k})$, where
$
\mathcal A_{i\kappa_k}\left(
0ψ
\right) = \left(
0−ddaψ−(μk+γk(a)+κk)ψ
\right),
$
|
and
$
\mathcal A_{v\kappa_k}\left(
0ψ
\right) = \left(
0−ddaψ−(μk+κk)ψ
\right).
$
|
The nonlinear functions in (12) are defined as $F_{l\kappa_k}(\phi) = F_{lk}+\kappa_k\|\phi_k\| (l = S, i, v)$ for any $\phi\in Z.$ Hence, we have
$
∫t0e−(μk+κk)(t−s)FSκk(ϕk(s))ds=∫t0e−(μk+κk)(t−s)[bk−pkϕSk(s)−ϕSk(s)n∑j=1∫∞0βkj(a)ϕik(t,a)da+∫t0ϵk(a)ϕvk(a)da+κk‖ϕSk‖]ds≥∫t0e−(μk+κk)(t−s)[bk+(κk−pk−n∑k=1β+kj)‖ϕij‖)]ϕSk(s)ds,
$
|
(14) |
$
∫t0e−(μk+κk)(t−s)e−∫s0γk(a)daFiκk(ϕk(s))ds=∫t0e−(μk+κk)(t−s)[ϕSk(s)n∑j=1∫∞0βkj(a)ϕij(t,a)da+κk‖ϕik‖]ds≥∫t0e−(μk+κk)(t−s)[ϕSk(s)ε0+κk]‖ϕik‖ds,
$
|
(15) |
and
$
∫t0e−(μk+κk)(t−s)Fvκk(x)ds=∫t0e−(μk+κk)(t−s)[pkϕSk(s)−∫∞0ϵk(a)ϕvk(s,a)da+κ‖ϕvk‖]ds≥∫t0e−(μk+κk)(t−s)[pkϕSk(s)+(κk−ϵ+k)‖ϕvk‖]ds.
$
|
(16) |
If we choose $\kappa_k>\max\{p_k+\sum\limits_{j = 1}^n\beta^+_{kj}\|\phi_{ij}\|, \epsilon^+_k\}, $ it follows from (14)-(16) that
$ \int_0^te^{\mathcal A_{\kappa_k}(t-s)}F_{\kappa_k}(\phi(s))ds \gt 0, \textrm{if} \phi \gt 0. $ |
From what has been discussed above, we have the following result.
Proposition 2.2. If Assumption 1.1 holds, system (5) has a unique positive solution in $\Omega.$
In this section, we show the computation process of the basic reproduction number $\mathcal R_0$, which is the average number of secondary cases produced by a classical infected individual during its infectious period in a fully susceptible population. Many literatures have given different methods to solve this problem. In this paper, it follows from the renewal process mentioned in Diekman et al in [24] that its value is determined by a next generation operator. Note that $E_0 = (\bf \hat S^0, 0, 0, 0, \hat v^0(a))$ is the disease-free equilibrium of system (5) where ${\bf\hat S^0} = (S^1_0, S_2^0, \cdots, S_n^0)$ and ${\bf\hat v^0(a)} = (v_1^0(a), v_2^0(a), \cdots, v_n^0(a))$ with $S_k^0 = \frac{b_k}{\mu_k+p_k(1-K_k^1)}, v_k^0(a) = p_kS_k^0\pi_k^1(a), $ and $\pi_k^1(a) = e^{-\int_0^a(\mu_k+\epsilon_k(s))ds}, $ $ K_k^1 = \int_0^\infty\epsilon_k(a)\pi^1_k(a)da.$ Linearizing system (5) at the disease-free equilibrium $E_0$, the subsystem (5) can be rewritten as
$ \displaystyle\frac{\partial i(t, a)}{\partial t}+\displaystyle\frac{\partial i(t, a)}{\partial a} = -(\mu+\gamma(a))i(t, a), \\ i(t, 0) = S^0\Lambda(i(t, \cdot)), $ | (17) |
where
$\Lambda(i(t, \cdot)) = \textrm{diag}_{j\in\mathbb N}\left(\displaystyle\sum\limits_{k = 1}^n\int_0^\infty\beta_{jk}(a)i_k(t, a)da\right), $ |
and
$ S^0 = \textrm{diag}\left(S_1^0, S_2^0, \cdots, S_n^0\right). $ |
Let $\mathcal B: D(\mathcal B)\subset X\rightarrow X$ be a linear operator defined by
$
\begin{array}{ll} \mathcal B\left( \begin{array}{c} 0 \\ \phi(a) \\ \end{array}
\right) = \left(
−ϕ(0)−ddaϕ(a)−{μ+γ(a)}ϕ(a)
\right), \\
D(\mathcal B) = \left\{\phi\in X:\phi \; \textrm{is absolutely continuous, } \phi'\in L^1(\mathbb R_+)\right\},
\end{array}
$
|
(18) |
where $\mu$ and $\gamma$ are defined in (6). Based on the above definition, (7) can be rewritten as the following linear Cauchy problem in $Z_0$:
$ \displaystyle\frac{d}{dt}I(t) = \mathcal BI(t)+S^0\Lambda I(t), \quad I(0) = I_0\in X, $ | (19) |
Let $u(t) = e^{t\mathcal B}$ be the $C_0$ semigroup generated by the generator $\mathcal B$. By the variation of constants formula, we have
$ I(t) = u(t)I_0+\int_0^tu(t-s)S^0\Lambda I(s)ds. $ |
Mapping $S^0\Lambda$ on both sides of the above equation yields
$ v(t) = f(t)+\int_0^t\Psi(s)v(t-s)ds, $ | (20) |
where $v(t) = S^0\Lambda I$ denotes the density of newly infectives in the linear invasion phase, $f(t) = S^0\Lambda u(t)I_0$ and $\Psi(s) = \Lambda S^0 u(s)$. Then the next generation operator is defined by
$ \mathcal K = \int_0^\infty\Psi(s)ds = \Lambda(-S^0\mathcal B)^{-1}, $ |
where we used the relation $(z-\mathcal B)^{-1} = \int_0^\infty e^{-zs}V(s)ds, $ for $z\in\rho(\mathcal B)$($\rho(\mathcal B)$ denotes the resolvent set of $\mathcal B$) and $0\in\rho(\mathcal B).$ In fact, the next generation operator is calculated as follows:
$ \mathcal K = (\mathcal K_1, \mathcal K_2, \cdots, \mathcal K_n)^T, $ | (21) |
where
$ \mathcal K_j = \sum\limits_{k = 1}^n S_k^0\int_0^\infty\beta_{jk}(a)\pi_k(a)da, j = 1, 2, \cdots, n. $ | (22) |
Based on Diekmann et al [24], the basic reproduction number $\mathcal R_0 = r(\mathcal K)$ is the spectral radius of the next generation operator $\mathcal K$, where $r(A)$ denotes the spectral radius of a bounded operator $A$. It follows from Inaba [25] that Malthusian parameter or asymptotic growth rate of infectives is positive if $\mathcal R_0>1$, otherwise it is negative.
In this section, we focus on the existence of the endemic equilibrium $E^*$ of system (5). It follows from Section 2 that equilibria of system (5) satisfy $\mathcal Au^*+F(u^*) = 0$. Actually, it satisfies the following equations
$
0=bk−(μk+pk)S∗k−S∗kλ∗k+∫∞0ϵk(a)v∗k(a)da,di∗k(a)da=−(μk+γk(a))i∗k(a),i∗k(0)=S∗kλ∗k,λ∗k=n∑j=1∫∞0βkj(a)i∗k(a)da,dv∗k(a)da=−(μk+ϵk(a))v∗k(a),v∗k(0)=pkS∗k.
$
|
(23) |
From the last two equations of (23), we have
$ v^*_k(a) = p_kS_k^*\pi_k^1(a), \quad\pi_k^1(a) = e^{-\int_0^a[\mu_k+\epsilon_k(s)]ds}. $ | (24) |
Substituting (24) into the first equation of (23) yields
$ S_k^* = \frac{b_k}{\mu_k+p_k(1-K_k^1)+\lambda_k^*}. $ | (25) |
It follows from the second and the third equations of (23) that
$ i_k^*(a) = i_k^*(0)\pi_k(a) = S_k^*\lambda^*_k\pi_k(a), \quad\pi_k(a) = e^{-\int_0^a[\mu_k+\gamma_k(s)]ds}. $ |
Note that
$ \lambda^*_k = \sum\limits_{j = 1}^n\int_0^\infty\beta_{kj}(a)i_j^*(a)da = \sum\limits_{j = 1}^n i_j^*(0)K_{kj} = \sum\limits_{j = 1}^n\frac{b_j\lambda_j^*}{\mu_j+p_j(1-K_j^1)+\lambda_j^*}K_{kj}, $ | (26) |
where $K_{kj} = \int_0^\infty\beta_{kj}(a)\pi_j(a)da.$ Hence, we can define a nonlinear operator
$ H(\phi): = (H_1(\phi), H_2(\phi), \cdots, H_n(\phi))^T\in X, \phi\in \mathbb R, $ | (27) |
where
$ H_k(\phi) = \sum\limits_{j = 1}^n\frac{b_j\phi_j}{\mu_j+p_j(1-K_j^1)+\phi_j}K_{kj}. $ |
In fact, it follows from (26) that the endemic equilibrium of (23) is a positively nontrivial fixed point of the operator $H$. Note that the Fréchet derivative of $H$ at $\phi = 0$ is given by
$
H′k[0]=limh→0Hk[h]−Hk[0]h=limh→0n∑j=1hbjKkjh(μj+pj(1−K1j)+h)=limh→0n∑j=1bjKkjμj+pj(1−K1j)+h=Kk.
$
|
Let
$ H'[0] = (\hat H_1, \hat H_2, \cdots, \hat H_n), $ |
where
$ \hat H_k = \sum\limits_{j = 1}^n\frac{b_j}{\mu_j+p_j(1-K_j^1)}K_{kj} = \sum\limits_{j = 1}^nS_j^0K_{kj} = \mathcal K_k, k = 1, 2, \cdots, n. $ |
Consequently, $H'[0]$ is equal to the next generation operator $\mathcal K$ defined by (21).
Next, we show that $\mathcal R_0$ determines the existence of the positive fixed point of operator $H$. Under Assumption 1.1, the following lemma holds.
Lemma 4.1. Let $\mathcal K$ be defined by (21). We have
(a) $\quad\mathcal K$ is compact.
(b)$\quad\mathcal K$ is nonsupporting.
Proof. Assume that $B_0$ is an arbitrary bounded subset of $\mathbb R$. Then there exists a positive constant $c_0$ such that $\|\phi\|\le c_0$ for all $\phi\in B_0$. Note that
$
‖K(ϕ)‖=n∑j=1|Kj(ϕ)|≤n∑j=1n∑k=1S0k∫∞0βjk(a)|ϕk(a)|da≤n∑j=1n∑k=1S0kβ+jk∫∞0|ϕk(a)|da=n∑j=1n∑k=1S0kβ+jk‖ϕk‖L1.
$
|
(28) |
(28) implies that the operator $\mathcal K$ is bounded. It follows from Fréchet-Kolmogorov Theorem [31] that the operator $\mathcal K$ is compact. It is obvious that $\mathcal K$ is nonsupporting under (ⅲ) or (ⅲ)' of Assumption 1.1.
Lemma 4.1, together with the monotonicity of the operator $H$ with respect to $\phi$ manifests that the following lemma holds.
Lemma 4.2. Let $H$ be defined (27). $H$ is compact and $H(\mathbb R_{+})$ is bounded.
Employing Theorem 4.11 in [26] (Krasnoselskii fixed theorem) and Krein-Rutman Theorem in [27], Lemma 4.2 implies that $r(\mathcal K)$ is the uqiue eigenvalue of the operator $\mathcal K$ associated with a positive eigenvector and there is no eigenvector of $\mathcal K$ associated with eigenvalue $1$. As a consequence of Corollary 5.2 in [15], the following result is immediate.
Proposition 4.1. If $\mathcal R_0>1, $ then $H$ has at least one nontrivial fixed point in $Z_{0+}$.
Corollary 4.1. If $\mathcal R_0>1, $ then system (5) has at least one positive endemic equilibrium $E^* = ({\bf S^*, 0, i^*, 0, v^*})\in Z_{0+}$, where ${\bf S}^* = (S_1^*, S_2^*, \cdots, S_n^*), {\bf i}^* = (i_1^*, i_2^*, \cdots, i_n^*), {\bf v}^* = (v_1^*, v_2^*, \cdots, v_n^*)$.
In order to determine the uniqueness of the solution of system (23), we define two operators by (ⅱ) and (ⅲ) of Assumption 1.1 as follows:
$ H^+_k(\phi) = \sum\limits_{j = 1}^n\frac{b_j\beta_{kj}^+\phi_j}{\mu_j+p_j(1-K_j^1)+\phi_j}\int_0^\infty\pi_j(a)da, k\in\mathbb N, $ |
and for a small positive value $\delta$
$ H_k^-(\phi) = \sum\limits_{j = 1}^n\frac{b_j\varepsilon_0\phi_j}{\mu_j+p_j(1-K_j^1)+\phi_j}\int_{a_\beta-\delta}^{a_\beta+\delta}\pi_j(a)da, k\in\mathbb N. $ |
For convenience, define
$ H^+(\phi) = \textrm{diag}(H^+_1(\phi), H^+_2(\phi), \cdots, H^+_n(\phi)), $ |
and
$ H^-(\phi) = \textrm{diag}(H^-_1(\phi), H_2^-(\phi), \cdots, H_n^-(\phi)). $ |
It is obvious that $0\le H^-(\phi){\bf e}\le H(\phi){\bf e}\le H^+(\phi){\bf e}$, where ${\bf e} = (1, 1, \cdots, 1)^T$.
Theorem 4.3. If $\mathcal R_0>1$, then the operator $H$ defined in (27) has at most one nontrivial fixed point in $Z_{0+}$.
Proof. By Proposition 4.1, we assume that there are two different nontrivial fixed points in $\mathbb R_+$, denoted by $\phi^*$ and $\hat\phi^*$. Borrowing the definitions of $H^-$ and $H^+$, we have
$
ϕ∗=H(ϕ∗)≥H−(ϕ∗)=H−(ϕ∗)H+(ϕ∗)H+(ϕ∗)≥H−(ϕ∗)H+(ϕ∗)H(ϕ∗)=H−(ϕ∗)H+(ϕ∗)ϕ∗.
$
|
Hence, there exists a positive constant $q = \sup\{r\ge0, \phi^*\ge r\hat\phi^*\}>0.$ Suppose $0 < q < 1$, for all $\phi\in \mathbb R_+$ and $k\in\mathbb N$, then
$ H_k(q\phi) = qH_k(\phi)+\xi_k(\phi, q), $ | (29) |
where $\xi_k(\phi, q) = q(1-q)\sum\limits_{j = 1}^n\frac{b_j\phi_j}{(\mu_j+p_j(1-K_j^1)+\phi_j)(\mu_j+p_j(1-K_j^1)+q\phi_j)}K_{kj}$. It follows from $0 < q < 1$ and (ⅲ) of Assumption 1.1 that $\xi_k$ is positive for all $k\in\mathbb N_+$ and $\phi\in \mathbb R_+$. Furthermore,
$ H(q\phi)\ge qH(\phi)+\xi(q, \phi){\bf e}, \quad\xi = \textrm{diag}(\xi_1, \xi_2, \cdots, \xi_n). $ | (30) |
Inequality (30), together with the monotonicity of $H$ implies that
$
ϕ∗=H(ϕ∗)≥qH(ϕ∗)+ξ(ˆϕ∗,q)e=qˆϕ∗+ξ(ˆϕ∗,q){H+(ˆϕ∗)}−1H+(ˆϕ∗)e≥qˆϕ∗+ξ(ˆϕ∗,q){H+(ˆϕ∗)}−1H(ˆϕ∗)=qˆϕ∗+ξ(ˆϕ∗,q){H+(ˆϕ∗)}−1ˆϕ∗.
$
|
(31) |
This contradicts the definition of $q$. Therefore, $q\ge1$ and $\phi^*\ge q\hat\phi^*\ge\hat\phi^*$. Exchanging the role of $\phi^*$ and $\hat\phi^*$, we can prove $\phi^*\le\hat\phi^*$. This implies that $\phi^* = \hat\phi^*$.
In this section, we will show the relative compactness of the positive orbit $\{\mathcal U(t, u_0)\}_{t\ge0}$ defined by (5). This process is spurred by Lemma 19 in [28] and Theorem 2.46 in [29]. To apply them, we define
$
\tilde\phi_k(t, a): = \left\{0,t>a,ik(t,a),t≤a, \right.\qquad
\tilde\psi_k(t, a): = \left\{0,t>a,vk(t,a),t≤a, \right.
$
|
and
$ \tilde i_k(t, a) = i_k(t, a)-\tilde\phi_k(t, a), \qquad\tilde v_k(t, a) = v_k(t, a)-\tilde\psi_k(t, a). $ |
Then we can divide the solution of semigroup $\mathcal U(t)$ into two parts:
$ \mathcal V(t)u_0 = ({\bf 0}, {\bf 0}, \tilde{\phi}(t, \cdot), {\bf 0}, \tilde{\psi}(t, \cdot)) $ | (32) |
and
$ \mathcal W(t)u_0 = (\bf S(t), 0, \tilde{\bf i}(t, \cdot), 0, \tilde{\bf v}(t, \cdot))^T $ | (33) |
where
$ \tilde{\phi} = (\tilde\phi_1, \tilde\phi_2, \cdots, \tilde\phi_n)^T, \tilde{\psi} = (\tilde\psi_1, \tilde\psi_2, \cdots, \tilde\psi_n)^T, \tilde{\bf i} = (\tilde i_1, \tilde i_2, \cdots, \tilde i_n)^T, \tilde{\bf v} = (\tilde v_1, \tilde v_2, \cdots, \tilde v_n)^T. $ |
This implies that $\mathcal U(t)u_0 = \mathcal V(t)u_0+\mathcal W(t)u_0$.
Theorem 5.1. The semiflow $\mathcal U: \mathbb R_+\times X_{0}\rightarrow X_{0}$ is asymptotically smooth if there are maps $\mathcal V(t), \mathcal W(t): \mathbb R_+\times X_{0}\rightarrow X_{0}$ such that $\mathcal U(t)u_0 = \mathcal V(t)u_0 + \mathcal W(t)u_0, $ and the following statements hold for any bounded closed set $\Omega$ that is forward invariant under $\mathcal U:$
($i$) For any $u_0\in\Omega$, there exists a function $\delta:\mathbb R_+\times\mathbb R_+\rightarrow\mathbb R_+$ such that for any $r>0$ $\lim\limits_{t\rightarrow+\infty}\delta(t, r) = 0$ with $\|u_0\|_\Omega\le r$, then $\|\mathcal V(t, u_0)\|_\Omega\le\delta(t, r)$;
($ii$) there exists a $t_\Omega \ge0$ such that $\mathcal W(t)(\Omega)$ has a compact closure for each $t\ge t_\Omega$.
Lemma 5.2. There exists a function $\delta:\mathbb R_+\times\mathbb R_+\rightarrow\mathbb R_+$ such that for any $r>0$,
$ \lim\limits_{t\rightarrow+\infty}\delta(t, r) = 0 $ | (34) |
and
$ \|\mathcal V(t)u_0\|_\Omega\le\delta(t, r), \forall u_0\in Z, \|u_0\|_\Omega\le r, t\ge0. $ | (35) |
Proof. Integrating $i_k$ and $v_k$ equations along the characteristic line $t-a = $ const. yields
$
\tilde\phi(t, a) = \left\{0,t>a,ik0(a−t)πk(a)πk(a−t),t≤a, \right.\qquad
\tilde\psi(t, a) = \left\{0,t>a,vk0(a−t)π1k(a)π1k(a−t),t≤a \right.
$
|
for all $k\in\mathbb N$. Hence for any $u_0\in Y$ and $\|u_0\|_Y\le r$,
$
‖V(t)x0‖Ω=‖0‖+‖˜ϕ(t,⋅)‖X+‖˜ψ(t,⋅)‖X=n∑j=1{∫∞tij0(a−t)πj(a)πj(a−t)da+∫∞tvj0(a−t)π1j(a)π1j(a−t)da}≤eμ_tn∑j=1∫∞0[ij0(a)+vj0(a)]da=e−μ_t{‖i0‖X+‖v0‖X}≤e−μ_tr
$
|
where $\delta(t, r) = e^{-\underline\mu t}r$ and $\underline\mu = \min\limits_{k\in\mathbb N}\{\mu_k\}.$ Obviously, $\|\mathcal V(t)u_0\|_\Omega$ approaches $0$ as $t$ goes to infinity.
Lemma 5.3. $\mathcal W(t)$ maps any bounded subsets of $\Omega$ into sets with compact closure in $Y$.
Proof. It follows from the first equation of (5) that $S_k(t)$ remains in the compact set $\{\phi\in\mathbb R_+^n|0\le\phi_k\le\frac{b_k}{\mu_k}, k\in\mathbb N\}$ for all $t\ge0$. Therefore, we need to show that $\tilde i$ and $\tilde v$ still remain in pre-compact subsets of $Y_0$ which is independent of $u_0$. Note that
$
\tilde i_k(t, a) = \left\{ik(t−a,0)πk(a),t>a,0,t≤a, \right.\qquad
\tilde v_k(t, a) = \left\{vk(t−a,0)π1k(a),t>a,0,t≤a. \right.
$
|
Since for all $k\in\mathbb N_+, $ $0\le\tilde i_k(t, a) = i_k(t-a, 0)\pi_k(a)\le\frac{b_k}{\underline\mu^2}\sum\limits_{j = 1}^n\beta_{kj}^+b_je^{-\underline\mu a}: = \Delta_ke^{-\underline\mu a}$ where $\Delta_k = \frac{b_k}{\underline\mu^2}\sum\limits_{j = 1}^n\beta_{kj}^+b_j$, and $0\le\tilde v_k(t, a)\le \frac{b_kp_k}{\mu_k}e^{-\underline\mu a}.$ It is easy to see that (ⅰ) - (ⅲ) of Theorem B.2 in [29] hold.
In what follows, we need to show that (iv) of Theorem B.2 in [29] also holds. Assume that $h\in(0, t)$ without loss of generality. Then
$
n∑j=1∫∞0|˜ij(t,a+h)−˜ij(t,a)|da=n∑j=1∫tt−h|0−˜ij(t,a)|da+n∑j=1∫t−h0|˜ij(t,a+h)−˜ij(t,a)|da≤n∑j=1Δjh+n∑j=1∫t−h0˜ij(t,a)|π(h)−1|da≤n∑j=1Δjh+n∑j=1Δj(t−h)h=n∑k=1Δjh(1+t−h).
$
|
(36) |
Similarly,
$ \sum\limits_{j = 1}^n\int_0^\infty|\tilde v_j(t, a+h)-\tilde v_j(t, a)|da\le\sum\limits_{k = 1}^n\frac{b_jp_j}{\mu_j}h(1+t-h). $ | (37) |
Obviously, both (36) and (48) uniformly converge to $0$ as $h\rightarrow0$ which is independent of $u_0$.
Lemmas 5.2 and 5.3, together with $\|\mathcal U(t)u_0\|_{Z_0}\le\sum\limits_{k = 1}^n\frac{b_k}{\mu_k}$, imply that $\mathcal U(t)$ has compact closure in $Z$ for $u_0\in\Omega$. It follows from Proposition 3.13 in [32] that the solution orbit is relatively compact and the semiflow $\mathcal U(t)$ is asymptotically smooth.
Proposition 5.1. The semiflow $\mathcal U(t)$ defined in (10) is asymptotically smooth.
In this section, we establish the uniform persistence of (5) when $\mathcal R_0>1.$ This property guarantees the well-definition of the Lyapunov functionals in Section 7. For some $k\in\mathbb N, $ define $\rho_k: \Gamma\to \mathbb{R}_+$ and $u_{0} = ({\bf S_{0}, {\bf 0}, i_0(\cdot), {\bf 0}, v_0(\cdot)})\in \Omega_0$ by
$ \rho_k({\bf S}(t), {\bf0, i}(t, \cdot), {\bf0, v}(t, \cdot)) = \lambda_k(t) = \sum\limits_{j = 1}^n\int_0^\infty\beta_{kj}(a)i_j(t, a)da \qquad \mbox{for} \;u_0\in \Omega. $ |
Let
$ \Omega_0 = \{({{\bf S_0}, {\bf 0}, {\bf i_0}(\cdot), {\bf 0}, {\bf v_0}(\cdot)})\in \Omega: \rho_k(\mathcal U(t_0, u_0)) \gt 0 \;\mbox{for some} \;t_0\in \mathbb{R}_+\}. $ |
Obviously, if $u_0\in \Omega\setminus \Omega_0$, then $({\bf S}(t), {\bf0, i}(t, \cdot), {\bf0, v}(t, \cdot))\to E_0$ as $t\to\infty$. Hence, if $\mathcal U$ has a global compact attractor in $\Omega_0, $ then it also has a global compact attractor in $\Omega$.
Assumption 6.1. The support of the initial age-since-infection value $i_{k0}(a)\in L^1(\mathbb R_+)$ lies to the right of the support the infectivity function $\beta_{kj}$ for all $k, j\in\mathbb N.$
Proposition 6.1. If $\mathcal {R}_0>1$ and Assumption 6.1 hold, then system (5) is uniformly weakly $\rho$-persistent for some $k\in\mathbb N.$
Proof. Since $\mathcal{R}_0>1$, there exists an $\eta_{j0}>0$ and $\phi_j\in \mathbb R_+$ for $k, j\in\mathbb N$ such that
$ \sum\limits_{j = 1}^n\tilde S^0_j(\eta_{j0})\hat{K}_{kj}(\eta_{j0})\phi_j \gt \phi_k, $ | (38) |
where $\tilde S_k^0(\eta_{k0}) = \frac{b_k}{\mu+\eta_{k0}+p_k(1-K_k^1)}-\eta_{k0}(>0)$ and $\widehat{K_{kj}(\cdot)} = \int_0^\infty e^{-\lambda a}\beta_{kj}(a) \pi_k(a)da.$
Suppose that, for any $\eta_{k0}>0$, there exists an $u_{0}\in \Omega_0$ such that
$ \limsup\limits_{t\to\infty}\rho_k(\mathcal U(t, u_0))\le \eta_{k0} $ |
and show a contradiction. Therefore, there exists a $t_0\in\mathbb{R}_+$ such that $\rho_k(\mathcal U(t, u_0))\le \eta_{k0}$ for $t\ge t_0$ and all $k\in\mathbb N.$ Without loss of generality, we shift the time to $t_0 = 0$. Then $\lambda_k(t)\le \eta_{k0}$ for $t\ge t_0 = 0$ and $k\in\mathbb N.$
Next, we show that $S_{k{\infty}} \ge S^0_k(\eta_{k0}): = \frac{b_k}{\mu_k+\eta_{k0}+p_k(1-K_k^1)}$, where $S_{k{\infty}} = \liminf\limits_{t\rightarrow\infty}S_k(t).$ By the Fluctuation Lemma [35], we can pick up a sequence $\{t_n\}$ such that $S_k(t_n)\to S_{k{\infty}}$, $\frac{dS_k(t_n)}{dt}\to 0$ as $n\to\infty$. Then from the first equation of (5), it follows that
$ \frac{dS_k(t_n)}{dt} \ge b_k -(\mu_k+p_k)S_k(t_n)-\eta_{k0}S_k(t_n)+\int_0^{\infty} \varepsilon_k(a)v(t_n, a)da. $ |
This, combined with (40), gives
$ \frac{dS_k(t_n)}{dt}\ge b_k -(\mu_k+p_k)S_k(t_n)-\eta_{k0}S_k(t_n)+\int_0^{t_n}\varepsilon_k(a)p_k S_k(t_n-a)\pi_k^1(a)da. $ |
Letting $n\to\infty$ leads to
$ 0\ge b_k-(\mu+\phi)S_{k{\infty}}-\eta_{k0}S_{k\infty}+p_kS_{k\infty} K_k^1. $ |
This implies that $S_{k\infty}\ge S_k^0(\eta_{k0})$.
Finally, since $S_{k\infty}\ge S_k^0(\eta_{k0})$, there exists a $t_1\in\mathbb{R}_+$ such that $S_k(t)\ge \tilde S_k^0(\eta_{k0})$ for $t\ge t_1$. Again, without loss of generality, we can assume $t_1 = 0$. Solving $i_k(t, a)$ by the characteristic line method yields
$ i_k(t, a) = \left\{ \begin {array}{ll} b_k(t-a)\pi_k (a), \quad & t\ge a, \\ i_{k0}(a-t)\frac {\pi_k(a)}{\pi_k(a-t)}, \quad & t \lt a, \end {array} \right. $ | (39) |
where $b_k(t) = S_k(t)\lambda_k(t).$ Then
$
λk(t)=n∑j=1∫∞0βkj(a)ij(t,a)da≥n∑j=1∫t0βkj(a)Sj(t−a)λj(t−a)πj(a)da≥n∑j=1˜Sj(ηj0)∫t0βkj(a)πj(a)λj(t−a)da.
$
|
Taking Laplace transforms on both sides of the above inequality gives
$ \widehat{\lambda_k(\xi)}\ge \sum\limits_{j = 1}^n\tilde S_j(\eta_{j0})\widehat{K_k(\xi)}\widehat{\lambda_j(\xi)}. $ |
This inequality holds for any $\xi$ and $\eta_{k0}.$ If we take $\xi$ and $\eta_{k0}$ small enough, then this is a contradiction with (38). This completes the proof.
Clearly, for all $k\in\mathbb N$, $\rho_k$ is a continuous function on $\mathbb R_+.$ Proposition 5.1 implies that $\{\mathcal U\}_{t\ge0}$ has a global attractor. From Theorem A.34 in [34], we need to show that for any bounded total orbit $h(t+s) = \mathcal U(s, u(t))$ of $\mathcal U_t$ such that $\rho_k(h(t))>0$ for all $t\in\mathbb R$ and $s\in\mathbb R_+.$ For the total trajectory, we have
$ i_k(t, a) = b_k(t-a)\pi_k(a), v_k(t, a) = pS_k(t-a)\pi_k^1(a) $ |
for $t\in\mathbb R$ and $a\in\mathbb R_+.$ In order to prove the strongly uniform persistence, the following lemma is helpful.
Lemma 6.1. Let $({\bf S}(t), {\bf 0, i}(t, \cdot), {\bf0, v}(t, \cdot))$ be a solution of (5). Then $S_k^{\infty}\le S_k^0$, where $S_k^{\infty} = \limsup\limits_{t\rightarrow\infty}S_k(t)$ for $k\in\mathbb N.$
Proof. By Fluctuate Lemma in [35], there exists $\{t_n\}$ such that $t_n\to\infty$, $S_k(t_n)\to S_k^{\infty}$, and $\frac{dS_k(t_n)}{dt}\to 0$ as $n\to\infty$. Integrating $v_k$ equation in (5) along the characteristic equation $t-a = \mathrm{const.}$, we have
$ v_k(t, a) = \left\{ \begin{array}{ll} p_k S_k(t-a)\pi_k^1(a), \quad & t\ge a, \\ v_{k0}(a-t)\frac{\pi_k^1(a)}{\pi_k^1(a-t)}, & t \lt a, \end {array} \right. \textrm{for all} k\in\mathbb N. $ | (40) |
Substituting $v_k$ into $S_k$ equation yields
$ \begin {eqnarray*} \frac{dS_k(t_n)}{dt} & = & b_k-(\mu_k+p_k)S_k(t_n)-S_k(t_n)\lambda_k(t_n)+\int_0^{\infty}\varepsilon_k(a)v_k(t_n, a)da \\ & \le & b_k-(\mu_k+p_k)S_k(t_n) +\int_0^{t_n}\varepsilon_k(a) p_k S_k(t_n-a)\pi_k^1(a)da \\ &&+\int_{t_n}^{\infty}\varepsilon_k(a)v_{k0}(a-t_n)\frac{\pi_k^1(a)}{\pi_k^1(a-t_n)}da \\ & \le & b_k -(\mu_k+p_k)S_k(t_n)+\int_0^{t_n}\varepsilon_k(a) p_k S_k(t_n-a)\pi_k^1(a)da \\ &&+\int_{0}^{\infty}\varepsilon_k(a+t_n)v_{k0}(a)\frac{\pi_k^1(a+t_n)}{\pi_k^1(a)}da. \end {eqnarray*} $ |
Applying Fluctuate Lemma, we immediately obtain
$ 0\le b_k-(\mu_k+p_k)S_k^{\infty}+p_k S_k^{\infty}K_k^1 $ |
or $S_k^{\infty}\le \frac{b_k}{\mu_k+p_k(1-K_k^1)} = S_k^0$ as required. This completes the proof.
Lemma 6.2. Let us define $\Theta(b(t)) = \sum\limits_{k = 1}^nb_k(t)$. Suppose that Assumption 6.1 holds, then $\Theta(b(t))$ for total trajectory $h(t)$ is identically zero on $\mathbb R$, or it is strictly positive on $\mathbb R$.
Proof. Suppose that there exists a $t_1>0$ such that $b_k(t) = 0$ for all $t\le t_1$. By the definition of $\lambda_k$, we have
$
bk(t)=Sk(t)n∑j=1∫∞0βkj(a)ij(t,a)da=Sk(t)n∑j=1∫∞0βkj(a)b(t−a)πj(a)da≤S0kˉβ∫∞0Θ(b(t−a))da=S0kˉβ∫t−t10Θ(b(t−a))da≤S0kˉβ∫t0Θ(b(a))da,
$
|
(41) |
where $\bar \beta = \max\limits_{j, k\in\mathbb N}\{\beta_{kj}^+\}. $ Summing $k$ from $1$ to $n$ on both sides of (41) yields
$ \Theta(b(t))\le \int_0^t\Theta(b(a))daS^0_{\bar\beta}, S_{\bar\beta}^0 = \sum\limits_{k = 1}^n\bar\beta S_k^0 $ |
for all $t> t_1.$ It follows from Gronwall inequality that $\Theta(b(t)) = 0$ for all $t\ge t_1.$
Suppose there doesn't exist a $t_1$ such that $\Theta(b(t)) = 0$ for all $t\le t_1.$ Thus, there exists a sequence $\{t_m\}$ towards $-\infty$ such that $\Theta(b(t_m))>0$ for each $m.$ That means that $b_{k}(t_m)>0$ for each $m$. Moreover, there exists a sequence $a_m$ such that $i_k(t_m, a_m) = i_k(t_m-a_m, 0)\pi_k(a_m)>0$ for each $m.$ In view of the first equation, with the dissipative property of system (5), we obtain
$ S_k'(t)\ge b_k-(\mu_k+p_k)S_k(t). $ |
Hence, there exists a positive constant $\zeta>0$ such that $S_k(t)>\zeta>0$ holds for all $t\in\mathbb R$. Let $b_{km}(t) = b_k(t+t_m^*)$ for each $n$, where $t_m^* = t_m-a_m.$ Recalling equation (41), we arrive at
$
bkm(t)≥ζ[n∑j=1∫t0βkj(a)bjm(t−a)πj(a)da+˜Θkm(t)]≥ζ[ε0∫t0Θ(bm(t−a))da+˜Θkm(t)],
$
|
(42) |
where $\varepsilon_0$ is defined in (ⅲ) of Assumption 1.1 and
$ \tilde \Theta_{k m}(t) = \sum\limits_{j = 1}^n\int_t^\infty \beta_{kj}(a) i_{jm0}(a-t)\frac{\pi_j(a)}{\pi_j(a-t)}da. $ |
Consequently,
$ \Theta(b_m(t))\ge\zeta\left[\varepsilon_0n\int_{0}^t \Theta(b_m(a))da+\tilde\Theta(t)\right], \tilde\Theta_m(t) = \sum\limits_{k = 1}^n\tilde\Theta_{k m}(t). $ | (43) |
Since $\tilde\Theta_m(0) = \sum\limits_{k = 1}^n\sum\limits_{j = 1}^n\int_0^\infty \beta_{kj}(a) i_{jm0}(a)da>0$ and $\tilde\Theta_m(t)$ is continuous at $t = 0$, it follows from Assumption [29] and Gronwall inequality that $\Theta(b_m(t))$ and $\tilde\Theta_m(t)$ are positive for sufficiently small $t$. Furthermore, from Corollary B.6 [29], we conclude that there exists a constant $l>0$ such that $\Theta(b_m(t))>0$ for all $t>l$. Since $\Theta(b_m(t))$ is a time shift of $\Theta(b(t))$ by $t_m^*$ with $t_m^*\rightarrow-\infty$ as $m\rightarrow\infty, $ it follows that $\Theta(b(t))>0$ for all $t\in\mathbb R.$ This completes the proof.
Corollary 6.1. Suppose that Assumption 6.1 holds. Then for all $k\in\mathbb N, $ $b_k(t)$ for the total trajectory $h(t)$ is strictly positive for every $t\in\mathbb R$.
From Propositions 5.1 and 6.1, together with Corollary 6.1, we apply Theorem 5.2 in [29] to illustrate the $\rho-$ strongly uniform persistence of system (5).
Lemma 6.3. Suppose that $\mathcal R_0>1$ and the assumption of Corollary 6.1 hold. Then system (5) persists uniformly strongly, in this sense, there exists some $\eta_{k0}$ such that
$ \liminf\limits_{t\rightarrow\infty} \lambda_k(t)\ge \eta_{k0} $ |
for some $k\in\mathbb N$ and $\lambda_k(0)\neq0.$
Proof. From Corollary 6.1, we readily see that $\inf \lambda_k(0)>0$ for some $k\in\mathbb N.$ Applying Theorem A.34 in [34], we conclude that there exists a constant $\eta_{k0}>0$ such that $\liminf\limits_{t\rightarrow+\infty}\rho_k(\mathcal U(t, u_0))>\eta_{k0}.$
By Lemma 6.3, we present the following theorem to state the uniformly strong persistence of system (5).
Theorem 6.4. Suppose that $\mathcal R_0>1$ and Assumption 6.1 hold. There exist some positive constants $\eta_{k0}>0(k\in\mathbb N)$ such that for all $t\in\mathbb R$ and $a\in\mathbb R_+$
$ \liminf\limits_{t\rightarrow\infty}S_k(t)\ge\eta_{k0}, \liminf\limits_{t\rightarrow\infty}i_k(t, a)\ge\eta_{k0}\pi_k(a), \liminf\limits_{t\rightarrow\infty}v_k(t, a)\ge\eta_{k0}\pi_k^1(a). $ |
In this section, we will show the global behavior of the equilibria of system (5). To achieve this goal, we employ a Volterra type functional defined by $g(x) = x-1-\ln x$ in [22], which is positive and attains minimum value $0$ at $x = 1$. In what follows, we check this Volterra type functional is well-defined in infinite dimension and make the following assumption.
Assumption 7.1. For all $j\in\mathbb N_+$, $S_{j0}\in \mathbb R_+, $ $\displaystyle\int_0^\infty|\ln h_{j0}(a)|da < +\infty$, $h = i, v.$
Lemma 7.1. If Assumption 7.1 holds, then $\displaystyle\int_0^\infty v_j^0(a)\ln\frac{v_j(t, a)}{v_j^0(a)}da$ is bounded.
Proof. For $t>a$,
$
|v0jlnvj(t,a)v0j(a)|=|v0j(a)lnvj(t,a)−v0j(a)lnv0j(a)|≤|v0j(a)lnvj(t,a)|+|v0j(a)lnv0j(a)|=|pjS0jπ1j(a)lnpjS0j(t−a)π1j(a)+|pjS0jπ1j(a)lnpjS0jπ1j(a)|≤2pjS0jlnpjΛjμje−μja+2pjS0je−μjaμja.
$
|
(44) |
For $t\le a$,
$
|v0jlnvj(t,a)v0j(a)|≤|v0j(a)lnvj(t,a)|+|v0j(a)lnv0j(a)|=|pjS0jπ1j(a)lnvj0(a−t)π1j(t)|+|pjS0jπ1j(a)lnpjS0jπ1j(a)|≤pjS0j|lnvj0(a−t)π1j(t)|+pjS0jlnpjΛjμje−μja+2pjS0je−μjaμja.
$
|
(45) |
It follows from (44) - (45) that
$
∫∞0|v0j(a)lnvj(t,a)v0j(a)|da=∫∞0|v0j(a)lnvj(t,a)−v0j(a)lnv0j(a)|da≤pjS0jlnpjΛjμj∫t0e−μjada+pjS0j∫∞t|lnvj0(a−t)|e−μjtda+pjS0jlnpjΛjμj∫∞0e−μjada+2pjS0j∫∞0ae−μjada=pjS0jlnpjΛjμj(1−e−μjt)+pjS0je−μjt∫∞0|lnvj0(a)|da+pjS0jμjlnpjΛjμj+2pjS0jμj≤2pjS0jlnpjΛjμj+pjS0je−μjt∫∞0|lnvj0(a)|da+2pjS0jμj.
$
|
(46) |
Therefore, it follows from Assumption 7.1 that $\displaystyle\int_0^\infty v_j^0(a)\ln\frac{v_j(t, a)}{v^0_j(a)}da$ is bounded.
Theorem 7.2. Let Assumption 7.1 hold. If $\mathcal R_0 = r(\mathcal K) < 1$, the disease-free equilibrium $E^0$ is a global attractor in $\Omega.$
Proof. For $j\in\mathbb N$, define
$ V_j(t) = \sum\limits_{k = 1}^nK_{jk}S_k^0g\left(\frac{S_k(t)}{S_k^0}\right)+\sum\limits_{k = 1}^n\int_0^\infty\alpha_{jk}(a)i_k(t, a)da+\sum\limits_{k = 1}^nK_{j k}\int_0^\infty\delta_k(a)g\left(\frac{v_k(t, a)}{v^0_k(a)}\right)da, $ |
where $\alpha_{kj}(a) = \int_a^\infty\beta_{kj}(s)\frac{\pi_j(s)}{\pi_j(a)}ds$ and $\delta_k(a) = \int_a^\infty\varepsilon_k(s)v^0_k(s)da.$ Lemma 7.1 ensures $V_j(t)$ is well-defined. Then
$ \alpha'_{kj}(a) = -\beta_{kj}(a)+(\mu_k+\epsilon_k(a))\alpha_{kj}(a), \quad \delta'_k(a) = -\epsilon_k(a)i_k^0(a). $ | (47) |
From Lemma 7.1, together with 6.4, $V_j(t)$ is well-defined. Deviating it along the solution of (5) yields
$
dVj(t)dt|(5)=n∑k=1{Kjk(1−S0kSk(t))S′k+∫∞0αjk(a)∂ijt(t,a)∂tda+Kjk∫∞0δk(a)∂vk(t,a)∂tda}=n∑k=1[Kjk(1−S0kSk(t))(bk−(μk+pk)Sk−ik(t,0)+∫∞0ϵk(a)vk(t,a)da)]+n∑k=1[Kjkik(t,0)−n∑j=1∫∞0βkj(a)ik(t,a)da]+n∑k=1[Kjk∫∞0ϵk(a)(g(vk(t,0)v0k)−g(vk(t,a)v0k(a)))da]=−n∑k=1[Kjk(μk+pk(1−K1k))(2−Sk(t)S0k−S0kSk(t))]−n∑k=1[Kjk∫∞0ϵk(a)g(vk(t,a)S0kv0k(a)Sk(t))da]+n∑k=1(S0kKjk−1)∫∞0βjk(a)ik(t,a)da.
$
|
(48) |
Note that $\mathcal R_0 = r(\mathcal K) < 1$ implies that $\sum\limits_{k = 1}^nS_k^0K_{jk} < 1$. Therefore, $V'_j(t)\le0$ and it is easy to see that the equality holds if and only if $({\bf S}(t), {\bf 0}, {\bf i}(t, \cdot), {\bf 0}, {\bf v}(t, \cdot)) = ({\bf S^0}, {\bf 0}, {\bf 0}, {\bf 0}, {\bf v^0}(\cdot))$. This implies that the largest positive invariant subset of $\{u(t)\in \Omega|V'_j(t) = 0\}$ is the singleton $\{({\bf S}^0, {\bf 0}, {\bf 0}, {\bf 0}, {\bf v^0}(\cdot))\}$. This shows that the disease-free equilibrium $E_0$ is a global attractor.
In the following, we give a lemma to show the boundedness of the Lyapunov functional for proving the global attractivity of the endemic equilibrium $E^*.$
Lemma 7.3. If Assumption 7.1 holds, then $\displaystyle\int_0^\infty h^*_j(a)\ln\frac{h_j(t, a)}{h^*_j(a)}da$ $(h = i, v)$ is bounded.
Proof. Prior to this proof, denote $\beta_j^+ = \max\limits_{k\in\mathbb N}ess.\sup\limits_{a\in\mathbb R_+}\beta_{jk}(a)$ for all $j\in\mathbb N.$ For $t>a$, it follows from $b_j(t)\le\beta^+_j\frac{\Lambda_j^2}{\mu_j^2}$ that
$
|i∗j(a)lnij(t,a)i∗j(a)|=|i∗j(a)lnij(t,a)−i∗j(a)lni∗j(a)|≤|i∗j(a)lnij(t,a)|+|i∗j(a)lni∗j(a)|=|i∗j(0)πj(a)lnbj(t−a)πj(a)+|i∗j(0)πj(a)lni∗j(0)πj(a)|≤4(Λjμj)2e−μjaβ+jlnβ+jΛjμj+2(Λjμj)2e−μjaμja.
$
|
(49) |
For $a>t$,
$
|i∗j(a)lnij(t,a)i∗j(a)|=|i∗j(a)lnij(t,a)−i∗j(a)lni∗j(a)|≤|i∗j(a)lnij(t,a)|+|i∗j(a)lni∗j(a)|=|i∗j(0)πj(a)lnij0(a−t)πj(a)+|i∗j(0)πj(a)lni∗j(a)πj(a)|≤2(Λjμj)2e−μja|lnij0(a−t)|+2(Λjμj)2e−μjaβ+jlnβ+jΛjμj+2(Λjμj)2e−μjaμja.
$
|
(50) |
Then,
$
∫∞0|i∗j(a)lnij(t,a)i∗j(a)|da=∫∞0|i∗j(a)lnij(t,a)−i∗j(a)lni∗j(a)|≤2Λ2jμ3jβ+jlnβ+jΛjμj∫t0e−μjada+2(Λjμj)2∫∞t|lnij0(a−t)|e−μjtda+2Λ2jμ3jβ+jlnβ+jΛjμj∫∞0e−μjada+2(Λjμj)2μj∫∞0ae−μjada=2Λ2jμ3jβ+jlnβ+jΛjμj(1−e−μjt)+2(Λjμj)2∫∞0|lnij0(a)|e−μjtda+2Λ2jμ3jβ+jlnβ+jΛjμj+2Λ2jμ3j≤4Λ2jμ3jβ+jlnβ+jΛjμj+2(Λjμj)2e−μjt∫∞0|lnij0(a)|da+2Λ2jμ3j.
$
|
(51) |
By the assumption, it follows that $\displaystyle\int_0^\infty i^*_j(a)\ln\frac{i_j(t, a)}{i^*_j(a)}da$ is bounded.
Similarly, $\displaystyle\int_0^\infty v^*_j(a)\ln\frac{v_j(t, a)}{v^*_j(a)}da$ is also bounded.
Assume that $f(t, a)\in\mathbb R\times L^1(\mathbb R_+)$ is a solution of the following system
$
∂f(t,a)∂t+∂f(t,a)∂a=−m(a)f(t,a),f(t,0)=L(t)∫∞0η(a)f(t,a)da,f(0,a)=f0(a),
$
|
(52) |
where $m(a), \eta(a)\in L^1(\mathbb R_+)$ and $L(t)\in\mathbb R.$ Obviously, the nontrivial equilibrium $E_1^*$ of system (52) satisfies the following equations:
$
df∗(a)da=−m(a)f∗(a),f∗(0)=L∗∫∞0η(a)f∗(a)da.
$
|
(53) |
Define a Lyapunov functional $V_1(t) = \int_0^\infty M(a)g\left(\frac{f(t, a)}{f^*(a)}\right)da, $ where $M(a) = \int_a^\infty\beta(s)$ $f^*(s)ds.$
Lemma 7.4. Suppose that $\displaystyle\int_0^\infty|\ln f_0(a)|da$ is bounded. There exists a positive value $\eta_0>0$ such that $f(t, a)>\eta_0e^{-\int_0^am(s)ds}, $ then
$ \displaystyle\frac{dV_1(t)}{dt} = \int_0^\infty M(a)f^*(a)\left[g\left(\frac{f(t, 0)}{f^*(0)}\right)-g\left(\frac{f(t, a)}{f^*(a)}\right)\right]da, $ | (54) |
where $M(a) = \displaystyle\int_a^\infty\eta(s)f^*(s)da.$
Proof. Note that
$
∂g(f(t,a)f∗(a))∂a=∂∂a(f(t,a)f∗(a)−1−lnf(t,a)f∗(a))=∂∂af(t,a)f∗(a)−∂∂alnf(t,a)f∗(a)=f′a(t,a)f∗(a)−f(t,a)f∗a(a)(f∗(a))2−f∗(a)f(t,a)f′a(t,a)f∗(a)−f(t,a)f∗′a(a)(f∗(a))2=(1f∗(a)−1f(t,a))(f′a(t,a)−f(t,a))f∗′a(a)f∗(a)=(1f∗(a)−1f(t,a))f′a(t,a)+(1f∗(a)−1f(t,a))m(a)f(t,a),
$
|
(55) |
where we denote $h'_l(s, l) = \frac{\partial h(s, l)}{\partial l}.$
It follows from the proving process of Lemma 7.3, together the assumption of Lemma 7.4 that $V_1(t)$ is well-defined. Deviating it along the solution of (52), we obtain
$
dV1(t)dt|(52)=∫∞0M(a)∂g(f(t,a)f∗(a))∂tda=∫∞0M(a)(1−f∗(a)f(t,a))f′t(t,a)f∗(a)da=∫∞0M(a)(1f∗(a)−1f(t,a))(−f′a(t,a)−m(a)f(t,a))da=−∫∞0M(a)(1f∗(a)−1f(t,a))f′a(t,a)da−∫∞0M(a)m(a)f(t,a)da.
$
|
(56) |
Observing (55), we have
$ \frac{dV_1(t)}{dt}\Big|_{(52)} = -\int_0^\infty M(a)\frac{\partial g\left(\frac{f(t, a)}{f^*(a)}\right)}{\partial a}da. $ | (57) |
With the help of integral by parts, we obtain
$
dV1(t)dt|(52)=−M(a)g(f(t,a)f∗(a))|∞0+∫∞0M′a(a)g(f(t,a)f∗(a))da=M(0)g(f(t,0)f∗(0))−∫∞0η(a)f∗(a)g(f(t,a)f∗(a))da=∫∞0η(a)f∗(a)[g(f(t,0)f∗(0))−g(f(t,a)f∗(a))]da,
$
|
(58) |
here we used the fact $M(0) = \int_0^\infty\eta(a)f^*(a)da, $ and $M'(a) = -\eta(a)f^*(a).$
Next, we will give the global attractivity of the endemic equilibrium $E^*$.
Theorem 7.5. Suppose $\mathcal R_0>1$, ($iv$) of Assumption 1.1 and Assumption 7.1 hold. Then the endemic equilibrium $E^*$ is a global attractor in $\Omega_0.$
Proof. Define
$ V(t) = \sum\limits_{j = 1}^n\kappa_j\left\{S_j^*g\left(\frac{S_j(t)}{S_j^*}\right)+\int_0^\infty\alpha_j(a)g\left(\frac{i_j(t, a)}{i_j^*(a)}\right)da +\int_0^\infty\delta_j(a)g\left(\frac{v_j(t, a)}{v_j^*(a)}\right)da\right\}, $ |
where $\alpha_j(a) = \sum\limits_{k = 1}^n\int_a^\infty\beta_{jk}(s)i^*_k(s)da$ and $\delta_j(a) = \int_a^\infty\varepsilon_j(s)v^*_j(s)ds.$ $\kappa_j$ will be determined later and considered as a weighted coefficient. The well-definition of $V(t)$ follows from Lemma 7.3. From the definitions of $\alpha_j(a)$ and $\delta_j(a)$, it follows that
$ \alpha_j'(a) = -\sum\limits_{k = 1}^n\beta_{jk}(a)i^*_k(a), $ |
and
$ \delta_j'(a) = -\varepsilon_j(a)v^*_j(a). $ |
Assisting with Lemma 7.4 and deviating $V(t)$ along the solution of (5) yield
$
dV(t)dt|(5)=n∑j=1κj{(1−S∗jSj(t))S′j(t)+n∑k=1∫∞0βjk(a)i∗k(a)[g(ij(t,0)i∗j(0))−g(ij(t,a)i∗j(a))]da+∫∞0ϵj(a)v∗j(a)[g(vj(t,0)v∗j(0))−g(vj(t,a)v∗j(a))]da}=n∑j=1κj{(1−S∗jSj(t))[−(μj+pj)(Sj(t)−S∗j)−(Sj(t)n∑k=1∫∞0βjk(a)ik(t,a)da−S∗jn∑k=1∫∞0βjk(a)i∗k(a)da)+∫∞0ϵj(a)(vj(t,a)−v∗j(a))da]+n∑k=1∫∞0βjk(a)i∗k(a)[g(ij(t,0)i∗j(0))−g(ij(t,a)i∗j(a))]da+∫∞0ϵj(a)v∗j(a)[g(vj(t,0)v∗j(0))−g(vj(t,a)v∗j(a))]da}=n∑j=1κj{−(μk+pk)(2−Sk(t)S∗k−S∗kSk(t))+S∗jn∑k=1∫∞0βjk(a)i∗k(a)×[ij(t,0)i∗j(0)−ij(t,a)i∗j(a)−ik(t,a)Sj(t)i∗k(a)S∗j+ik(t,a)i∗k(a)−S∗jSj(t)]da+∫∞0ϵj(a)v∗j(a)[S∗jSj(t)+Sj(t)S∗J−1−S∗jvj(t,a)Sj(t)v∗j(a)+lnS∗jvj(t,a)Sj(t)v∗j(a)]da}.
$
|
(59) |
Note that
$
S∗jn∑k=1∫∞0βjk(a)i∗k(a)ik(t,a)Sj(t)i∗k(a)S∗jda=Sj(t)n∑k=1∫∞0βjk(a)ik(t,a)da=ij(t,0)=S∗jn∑k=1∫∞0βjk(a)i∗k(a)ij(t,0)i∗j(0)da.
$
|
(60) |
Equation (60) implies that
$ S_j^*\displaystyle\sum\limits_{k = 1}^n\int_0^\infty\beta_{jk}(a)i_k^*(a)\frac{i_k(t, a)S_j(t)i_j^*(0)}{i^*_k(a)S_j^*i_j(t, 0)}da = S_j^*\displaystyle\sum\limits_{k = 1}^n\int_0^\infty\beta_{jk}(a)i_k^*(a)da. $ | (61) |
Noting that $\int_0^\infty\epsilon_k(a)v_k^*(a)da = p_kS_k^*\int_0^\infty\epsilon_k(a)\pi_k^1(a)da = p_kS_k^*K_k^1$, it follows from (60) and (61) that
$
dV(t)dt|(5)=n∑j=1κj{−(μj+pj(1−K1j))(2−Sj(t)S∗j−S∗jSj(t))−S∗jn∑k=1∫∞0βjk(a)i∗k(a)[g(S∗jSj(t))+g(ik(t,a)Sj(t)i∗j(0)i∗k(a)S∗jij(t,0))]da+S∗jn∑k=1∫∞0βjk(a)i∗k(a)[Hk(i(t,a))−Hj(i(t,a))]da−∫∞0ϵj(a)v∗j(a)g(S∗jvj(t,a)Sj(t)v∗j(a))da},
$
|
(62) |
where $H_j(i) = \displaystyle\frac{i_j(t, a)}{i^*_j(a)}-\ln\frac{i_j(t, a)}{i^*_j(a)}$. Define $\Theta_{jk} = S_j^*\int_0^\infty\beta_{jk}(a)i_k^*(a)[H_k(i)-H_j(i)]da$, $(j, k = 1, 2, \cdots, n)$ and a Laplacian matrix
$
\Theta = \left(
∑k≠1θ1k−θ21⋯−θn1−θ12∑k≠2θ2k⋯−θn2⋮⋮⋱⋮−θ1n−θ2n⋯∑k≠nθnk
\right).
$
|
By Lemma 2.1 in [21], we have that the solution space of the linear system $\Theta\kappa = 0$ is 1 and one of its basis is given by
$ \kappa = (\kappa_1, \kappa_2, \cdots, \kappa_n)^T = (c_{11}, c_{22}, \cdots, c_{nn})^T, $ |
where $c_{jj}>0 (j = 1, 2, \cdots, n)$ denotes the cofactor of the $j-$th diagonal element of matrix $\Theta$. This implies that $\sum\limits_{k = 1}^n\theta_{jk}\kappa_j = \sum\limits_{j = 1}^n\theta_{kj}\kappa_k$ and
$
n∑j=1κjn∑k=1∫∞0βjk(a)i∗k(a)[Hk(i(t,a))−Hj(i(t,a))]da=n∑j=1n∑k=1κk∫∞0βkj(a)i∗j(a)[Hj(i(t,a))−Hk(i(t,a))]da.
$
|
(63) |
Employing the graph-theoretic approach mentioned in [21], (63) is equal to zero. Therefore, $V'(t)\le0$. The equality holds if and only if $\frac{i_k(t, a)}{i_k^*(a)} = \frac{i_j(t, 0)}{i_j^*(0)} = \frac{i_j(t, a)}{i_j^*(a)}$. This implies that $\mathbf i = \mathbf ci^*$. It follows from the first equation of (5) with respect to the monotonicity of $\mathbf c$ that $\mathbf c = \mathbf 1$. Hence, the largest invariant set of $\{u(t)\in \Omega_0| V'(t) = 0\}$ is the singleton $E^*$. Combining the relative compactness of the solution orbit (see Lemma 5.3) with the invariance principle (see [Theorem 4.2, [30]]), we see that the endemic equilibrium $E^*$ is a global attractor in $\Omega_0.$
In this section, we perform some numerical experiments to illustrate our theoretical results. For the experimental operability, we set $a_{max} = 10$ instead of infinity. For simplicity, we assume system (5) describes some sexually transmission diseases, such as Zika, Ebola and genital warts etc, which consist of two groups - male group and female group. As some news reported in [33], human papillomaviruses (HPV) is an effective and safe vaccine to control some sexually transmitted diseases inducing by virus. In order to illustrate system (5), we firstly fix the demographic parameters as follows:
$ b_1 = 20.5, b_2 = 40.5, \mu_1 = \mu_2 = 0.01. $ |
Hence the total male population maintains the size $N_1(t) = 2050$ and the size of the total female population is $N_2(t) = 4050.$ It has been reported that nearly half of newly infections are diagnosed as females in age range between $15$ to $24.$ Therefore, we assume that the vaccination rates $p_1 = 0.21$ for male and $p_2 = 0.22$ for female. Other parameters are associated with infection age in the form of
$ y(x, A, B) = \frac{1}{B^A\Gamma(A)}x^{A-1}e^{-\frac{x}{B}} $ |
where $\Gamma(n) = (n-1)!, $ or $\Gamma(z) = \int_0^\infty x^{z-1}e^{-x}dx (z\in\mathbb N).$ Obviously, $y(x, A, B)$ satisfies (ⅲ)' of Assumption 1.1. We fix $\gamma(a) = y(a, 2, 5), $ $\varepsilon(a) = y(a, 1, 1)$ and verify the transmission rate $\beta(a) = y(a, 6, B)$. If we choose $B = 9$, this implies that the mean of the transmission function is $54$ and the variance is $486.$ It follows from Figure 1 that the disease-free equilibrium $E_0$ is asymptotically stable. Then we decrease $B = 8$ associated with the variance changed as $384$. Figure 2 shows that the endemic equilibrium $E^*$ is asymptotically stable.
Comparing infected male and female populations in Figure 2, we find that the total infected number for female population is larger than that for male population. However, the first peak time for female population is later than the time for male population. Although the vaccination rate for female designed is higher than such rate for male, the level of infected peak and the total number for female population are still larger than those for male population. Consequently, the government should pay more attentions to female population.
In this paper, we proposed a multi-group SIVS epidemic model with age-since-infection. We calculated the basic reproduction number $\mathcal R_0$ by the renewal equation, which is the spectral radius of the next generation operator $\mathcal K$. From Theorems 7.2 and 7.5, we see that the global attractivity of system (5) is totally determined by $\mathcal R_0$. This implies that the basic reproduction number is a sharp threshold determining that the disease prevails or vanishes. Implicit Euler method performed illustrates the theoretical results. Numerical experiment shows that the number of the infected females is larger than the number of the infected male although the vaccination rate for female group is higher than that for male group. The government should pay much more concerns on female group for suppressing sexual diseases prevalence.
Irreducibility of the transmission matrix $\beta_{jk}, j, k\in\mathbb N$ has been highly influential in analyzing the global stability of equilibria. This assumption is still a basic assumption of epidemics spreading on scale free networks. Therefore, we hope our analysis method proving theoretical results and numerical method can be generalized to investigate the dynamics of some epidemic models on complex networks [36]. Besides, oscillation is one of the important phenomena in diseases transmission. What mechanisms resulting in oscillation has been becoming an increasing trend in investigating epidemic models with age-since-infection [37]. We leave this for our future work.
The authors are very grateful to the Editor-in-Chief, Professor Yang Kuang, and the anonymous referees for their valuable comments and suggestions, which helped us to improve the presentation of this work significantly.
This work was supported by the National Natural Science Foundation of China (Nos. 61573016, 11871316), Shanxi Scholarship Council of China (2015-094), Shanxi Scientific Data Sharing Platform for Animal Diseases, and Startup foundation for High-level Personal of Shanxi University.
The authors declare there is no conflict of interest.
[1] |
Sorroche FG, Spesia MB, Zorreguieta A, et al. (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microb 78: 4092–4101. doi: 10.1128/AEM.07826-11
![]() |
[2] | Kragh KN, Hutchison JB, Melaugh G, et al. (2016) Role of multicellular aggregates in biofilm formation. MBio 7: e00237-16. |
[3] | Corno G, Coci M, Giardina M, et al. (2014) Antibiotics promote aggregation within aquatic bacterial communities. Front Microbiol 5: 297. |
[4] |
Ochiai K, Kurita-Ochiai T, Kamino Y, et al. (1993) Effect of co-aggregation on the pathogenicity of oral bacteria. J Med Microbiol 39: 183–190. doi: 10.1099/00222615-39-3-183
![]() |
[5] |
Malik A, Sakamoto M, Hanazaki S, et al. (2003) Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl Environ Microb 69: 6056–6063. doi: 10.1128/AEM.69.10.6056-6063.2003
![]() |
[6] |
Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biot 28: 316–324. doi: 10.1038/sj.jim.7000249
![]() |
[7] |
McLean JS, Pinchuk GE, Geydebrekht OV, et al. (2008) Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ Microbiol 10: 1861–1876. doi: 10.1111/j.1462-2920.2008.01608.x
![]() |
[8] |
Schembri MA, Hjerrild L, Gjermansen M, et al. (2003) Differential expression of the Escherichia coli autoaggregation factor antigen 43. J Bacteriol 185: 2236–2242. doi: 10.1128/JB.185.7.2236-2242.2003
![]() |
[9] | Skurnik M, Bölin I, Heikkinen H, et al. (1984) Virulence plasmid-associated autoagglutination in Yersinia spp. J Bacteriol 158: 1033–1036. |
[10] |
Bossier P, Verstraete W (1996) Triggers for microbial aggregation in activated sludge? Appl Microbiol Biot 45: 1–6. doi: 10.1007/s002530050640
![]() |
[11] |
Haaber J, Cohn MT, Frees D, et al. (2012) Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 7: e41075. doi: 10.1371/journal.pone.0041075
![]() |
[12] |
Tree JJ, Ulett GC, Hobman JL, et al. (2007) The multicopper oxidase (CueO) and cell aggregation in Escherichia coli. Environ Microbiol 9: 2110–2116. doi: 10.1111/j.1462-2920.2007.01320.x
![]() |
[13] | Fexby S, Bjarnsholt T, Jensen PØ, et al. (2006) Biological Trojan horse: Antigen 43 provides specific bacterial uptake and survival in human neutrophils. Infect Immun 75: 30–34. |
[14] |
Galdiero F, Carratelli CR, Nuzzo I, et al. (1988) Phagocytosis of bacterial aggregates by granulocytes. Eur J Epidemiol 4: 456–460. doi: 10.1007/BF00146398
![]() |
[15] |
Meuskens I, Michalik M, Chauhan N, et al. (2017) A new strain collection for improved expression of outer membrane proteins. Front Cell Infect Microbiol 7: 464. doi: 10.3389/fcimb.2017.00464
![]() |
[16] |
Formosa-Dague C, Feuillie C, Beaussart A, et al. (2016) Sticky matrix: adhesion mechanism of the staphylococcal polysaccharide intercellular adhesin. ACS Nano 10: 3443–3452. doi: 10.1021/acsnano.5b07515
![]() |
[17] |
Guerry P (2007) Campylobacter flagella: not just for motility. Trends Microbiol 15: 456–461. doi: 10.1016/j.tim.2007.09.006
![]() |
[18] |
Das T, Sharma PK, Busscher HJ, et al. (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microb 76: 3405–3408. doi: 10.1128/AEM.03119-09
![]() |
[19] | Arenas J, Cano S, Nijland R, et al. (2014) The meningococcal autotransporter AutA is implicated in autoaggregation and biofilm formation. Environ Microbiol 17: 1321–1337. |
[20] | Ishikawa M, Nakatani H, Hori K (2012) AtaA, a new member of the trimeric autotransporter adhesins from Acinetobacter sp. Tol 5 mediating high adhesiveness to various abiotic surfaces. PLoS One 7: e48830. |
[21] |
Xiao L, Zhou L, Sun C, et al. (2012) Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence. J Basic Microb 52: 598–607. doi: 10.1002/jobm.201100365
![]() |
[22] |
Inoue T, Tanimoto I, Ohta H, et al. (1998) Molecular characterization of low-molecular-weight component protein, Flp, in Actinobacillus actinomycetemcomitans fimbriae. Microbiol Immunol 42: 253–258. doi: 10.1111/j.1348-0421.1998.tb02280.x
![]() |
[23] | Riess T, Raddatz G, Linke D, et al. (2006) Analysis of Bartonella adhesin A expression reveals differences between various B. henselae strains. Infect Immun 75: 35–43. |
[24] |
Zhang P, Chomel BB, Schau MK, et al. (2004) A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. Proc Natl Acad Sci USA 101: 13630–13635. doi: 10.1073/pnas.0405284101
![]() |
[25] | Menozzi FD, Boucher PE, Riveau G, et al. (1994) Surface-associated filamentous hemagglutinin induces autoagglutination of Bordetella pertussis. Infect Immun 62: 4261–4269. |
[26] |
Tomich M, Mohr CD (2003) Adherence and autoaggregation phenotypes of a Burkholderia cenocepacia cable pilus mutant. FEMS Microbiol Lett 228: 287–297. doi: 10.1016/S0378-1097(03)00785-7
![]() |
[27] |
Boddey JA, Flegg CP, Day CJ, et al. (2006) Temperature-regulated microcolony formation by Burkholderia pseudomallei requires pilA and enhances association with cultured human cells. Infect Immun 74: 5374–5381. doi: 10.1128/IAI.00569-06
![]() |
[28] |
Guerry P, Ewing CP, Schirm M, et al. (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60: 299–311. doi: 10.1111/j.1365-2958.2006.05100.x
![]() |
[29] | Hoeflinger JL, Miller MJ (2017) Cronobacter sakazakii ATCC 29544 autoaggregation requires FliC flagellation, not motility. Front Microbiol 8: 301. |
[30] | Nataro JP, Deng Y, Maneval DR, et al. (1992) Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect Immun 60: 2297–2304. |
[31] |
Sherlock O, Schembri MA, Reisner A, et al. (2004) Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol 186: 8058–8065. doi: 10.1128/JB.186.23.8058-8065.2004
![]() |
[32] |
Henderson IR, Meehan M, Owen P (1997) Antigen 43, a phase-variable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K-12. FEMS Microbiol Lett 149: 115–120. doi: 10.1111/j.1574-6968.1997.tb10317.x
![]() |
[33] |
Bieber D, Ramer SW, Wu CY, et al. (1998) Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280: 2114. doi: 10.1126/science.280.5372.2114
![]() |
[34] | Leo JC, Lyskowski A, Hattula K, et al. (2011) The structure of E. coli IgG-binding protein D suggests a general model for bending and binding in trimeric autotransporter adhesins. Structure 19: 1021–1030. |
[35] |
Fagan RP, Smith SGJ (2007) The Hek outer membrane protein of Escherichia coli is an auto-aggregating adhesin and invasin. FEMS Microbiol Lett 269: 248–255. doi: 10.1111/j.1574-6968.2006.00628.x
![]() |
[36] |
Bhargava S, Johnson BB, Hwang J, et al. (2009) Heat-resistant agglutinin 1 is an accessory enteroaggregative Escherichia coli colonization factor. J Bacteriol 191: 4934–4942. doi: 10.1128/JB.01831-08
![]() |
[37] |
Sherlock O, Vejborg RM, Klemm P (2005) The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun 73: 1954–1963. doi: 10.1128/IAI.73.4.1954-1963.2005
![]() |
[38] |
Gao ZP, Nie P, Lu JF, et al. (2015) Type III secretion system translocon component EseB forms filaments on and mediates autoaggregation of and biofilm formation by Edwardsiella tarda. Appl Environ Microb 81: 6078–6087. doi: 10.1128/AEM.01254-15
![]() |
[39] | Hendrixson DR, Geme JWS (1999) The Haemophilus influenzae Hap serine protease promotes adherence and microcolony formation, potentiated by a soluble host protein. Mol Cell 2: 841–850. |
[40] |
Pearson MM, Lafontaine ER, Wagner NJ, et al. (2002) A hag mutant of Moraxella catarrhalis strain O35E is deficient in hemagglutination, autoagglutination, and immunoglobulin D-binding activities. Infect Immun 70: 4523–4533. doi: 10.1128/IAI.70.8.4523-4533.2002
![]() |
[41] |
Hevia A, Martínez N, Ladero V, et al. (2013) An extracellular Serine/Threonine-rich protein from Lactobacillus plantarum NCIMB 8826 is a novel aggregation-promoting factor with affinity to mucin. Appl Environ Microb 79: 6059–6066. doi: 10.1128/AEM.01657-13
![]() |
[42] | Abdel-Nour M, Duncan C, Prashar A, et al. (2013) The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microb 80: 1441–1454. |
[43] |
Wu SS, Wu J, Kaiser D (1997) The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23: 109–121. doi: 10.1046/j.1365-2958.1997.1791550.x
![]() |
[44] |
Park HS, Wolfgang M, van Putten JP, et al. (2001) Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behaviour and adherence to host tissue. Mol Microbiol 42: 293–307. doi: 10.1046/j.1365-2958.2001.02629.x
![]() |
[45] |
Carbonnelle E, Helaine S, Nassif X, et al. (2006) A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61: 1510–1522. doi: 10.1111/j.1365-2958.2006.05341.x
![]() |
[46] |
O'Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304. doi: 10.1046/j.1365-2958.1998.01062.x
![]() |
[47] |
Ausmees N, Jacobsson K, Lindberg M (2001) A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology 147: 549–559. doi: 10.1099/00221287-147-3-549
![]() |
[48] |
Collinson SK, Doig PC, Doran JL, et al. (1993) Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175: 12–18. doi: 10.1128/jb.175.1.12-18.1993
![]() |
[49] |
Kuroda M, Ito R, Tanaka Y, et al. (2008) Staphylococcus aureus surface protein SasG contributes to intercellular autoaggregation of Staphylococcus aureus. Biochem Bioph Res Co 377: 1102–1106. doi: 10.1016/j.bbrc.2008.10.134
![]() |
[50] |
Rohde H, Burdelski C, Bartscht K, et al. (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55: 1883–1895. doi: 10.1111/j.1365-2958.2005.04515.x
![]() |
[51] |
Heilmann C, Schweitzer O, Gerke C, et al. (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20: 1083–1091. doi: 10.1111/j.1365-2958.1996.tb02548.x
![]() |
[52] |
Frick IM, Mörgelin M, Björck L (2000) Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein-protein interactions. Mol Microbiol 37: 1232–1247. doi: 10.1046/j.1365-2958.2000.02084.x
![]() |
[53] |
Chiang SL, Taylor RK, Koomey M, et al. (1995) Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Mol Microbiol 17: 1133–1142. doi: 10.1111/j.1365-2958.1995.mmi_17061133.x
![]() |
[54] |
Faris A, Lindahl M, Ljungh A, et al. (1983) Autoaggregating Yersinia enterocolitica express surface fimbriae with high surface hydrophobicity. J Appl Bacteriol 55: 97–100. doi: 10.1111/j.1365-2672.1983.tb02652.x
![]() |
[55] |
Mühlenkamp M, Oberhettinger P, Leo JC, et al. (2015) Yersinia adhesin A (YadA)-Beauty & beast. Int J Med Microbiol 305: 252–258. doi: 10.1016/j.ijmm.2014.12.008
![]() |
[56] |
Kolodziejek AM, Sinclair DJ, Seo KS, et al. (2007) Phenotypic characterization of OmpX, an Ail homologue of Yersinia pestis KIM. Microbiology 153: 2941–2951. doi: 10.1099/mic.0.2006/005694-0
![]() |
[57] |
Podladchikova O, Rykova V, Antonenka U, et al. (2012) Yersinia pestis autoagglutination is mediated by HCP-like protein and siderophore Yersiniachelin (Ych). Adv Exp Med Biol 954: 289–292. doi: 10.1007/978-1-4614-3561-7_36
![]() |
[58] |
Felek S, Lawrenz MB, Krukonis ES (2008) The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiology 154: 1802–1812. doi: 10.1099/mic.0.2007/010918-0
![]() |
[59] |
Ojanen-Reuhs T, Kalkkinen N, Westerlund-Wikström B, et al. (1997) Characterization of the fimA gene encoding bundle-forming fimbriae of the plant pathogen Xanthomonas campestris pv. vesicatoria. J Bacteriol 179: 1280–1290. doi: 10.1128/jb.179.4.1280-1290.1997
![]() |
[60] |
Busch A, Waksman G (2012) Chaperone-usher pathways: diversity and pilus assembly mechanism. Phil Trans R Soc B 367: 1112–1122. doi: 10.1098/rstb.2011.0206
![]() |
[61] |
Van Gerven N, Klein RD, Hultgren SJ, et al. (2015) Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23: 693–706. doi: 10.1016/j.tim.2015.07.010
![]() |
[62] |
Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2: 363–378. doi: 10.1038/nrmicro885
![]() |
[63] |
Heilmann C (2011) Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715: 105–123. doi: 10.1007/978-94-007-0940-9_7
![]() |
[64] |
Smeesters PR, McMillan DJ, Sriprakash KS (2010) The streptococcal M protein: a highly versatile molecule. Trends Microbiol 18: 275–282. doi: 10.1016/j.tim.2010.02.007
![]() |
[65] |
Glaubman J, Hofmann J, Bonney ME, et al. (2016) Self-association motifs in the enteroaggregative Escherichia coli heat-resistant agglutinin 1. Microbiology 162: 1091–1102. doi: 10.1099/mic.0.000303
![]() |
[66] |
Leo JC, Grin I, Linke D (2012) Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Phil Trans R Soc B 367: 1088–1101. doi: 10.1098/rstb.2011.0208
![]() |
[67] | Fan E, Chauhan N, Udatha DB, et al. (2016) Type V Secretion Systems in Bacteria. Microbiol Spectrum 4. |
[68] |
Nesta B, Spraggon G, Alteri C, et al. (2012) FdeC, a novel broadly conserved Escherichia coli adhesin eliciting protection against urinary tract infections. MBio 3: 1–10. doi: 10.3391/mbi.2012.3.1.01
![]() |
[69] |
Klemm P, Vejborg RM, Sherlock O (2006) Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol 296: 187–195. doi: 10.1016/j.ijmm.2005.10.002
![]() |
[70] | Balligand G, Laroche Y, Cornelis G (1985) Genetic analysis of virulence plasmid from a serogroup 9 Yersinia enterocolitica strain: role of outer membrane protein P1 in resistance to human serum and autoagglutination. Infect Immun 48: 782–786. |
[71] |
Misawa N, Blaser MJ (2000) Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infect Immun 68: 6168–6175. doi: 10.1128/IAI.68.11.6168-6175.2000
![]() |
[72] |
Klemm P, Hjerrild L, Gjermansen M, et al. (2003) Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51: 283–296. doi: 10.1046/j.1365-2958.2003.03833.x
![]() |
[73] |
Montero DA, Velasco J, Del Canto F, et al. (2017) Locus of Adhesion and Autoaggregation (LAA), a pathogenicity island present in emerging Shiga Toxin-producing Escherichia coli strains. Sci Rep 7: 7011. doi: 10.1038/s41598-017-06999-y
![]() |
[74] |
Del Re B, Sgorbati B, Miglioli M, et al. (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31: 438–442. doi: 10.1046/j.1365-2672.2000.00845.x
![]() |
[75] |
Beloin C, Houry A, Froment M, et al. (2008) A short-time scale colloidal system reveals early bacterial adhesion dynamics. PLoS Biol 6: e167. doi: 10.1371/journal.pbio.0060167
![]() |
[76] |
Geng J, Henry N (2011) Short time-scale bacterial adhesion dynamics. Adv Exp Med Biol 715: 315–331. doi: 10.1007/978-94-007-0940-9_20
![]() |
[77] |
Heras B, Totsika M, Peters KM, et al. (2014) The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci USA 111: 457–462. doi: 10.1073/pnas.1311592111
![]() |
[78] |
Hoiczyk E, Roggenkamp A, Reichenbecher M, et al. (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19: 5989–5999. doi: 10.1093/emboj/19.22.5989
![]() |
[79] |
Jonsson P, Wadström T (1984) Cell surface hydrophobicity of Staphylococcus aureus measured by the salt aggregation test (SAT). Curr Microbiol 10: 203–210. doi: 10.1007/BF01627256
![]() |
[80] | Martinez R (1983) Plasmid-mediated and temperature-regulated surface properties of Yersinia enterocolitica. Infect Immun 41: 921–930. |
[81] | Arenas J, Nijland R, Rodriguez FJ, et al. (2012) Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation. Mol Microbiol 87: 254–268. |
[82] |
Eboigbodin KE, Newton JRA, Routh AF, et al. (2005) Role of nonadsorbing polymers in bacterial aggregation. Langmuir 21: 12315–12319. doi: 10.1021/la051740u
![]() |
[83] | Tsang TM, Wiese JS, Alhabeil JA, et al. (2017) Defining the Ail ligand-binding surface: hydrophobic residues in two extracellular loops mediate cell and extracellular matrix binding to facilitate Yop delivery. Infect Immun 85: e01047-15. |
[84] |
Kaiser PO, Riess T, Wagner CL, et al. (2008) The head of Bartonella adhesin A is crucial for host cell interaction of Bartonella henselae. Cell Microbiol 10: 2223–2234. doi: 10.1111/j.1462-5822.2008.01201.x
![]() |
[85] |
Meng G, Spahich N, Kenjale R, et al. (2011) Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J 30: 3864–3874. doi: 10.1038/emboj.2011.279
![]() |
[86] |
Fink DL, Buscher AZ, Green B, et al. (2003) The Haemophilus influenzae Hap autotransporter mediates microcolony formation and adherence to epithelial cells and extracellular matrix via binding regions in the C-terminal end of the passenger domain. Cell Microbiol 5: 175–186. doi: 10.1046/j.1462-5822.2003.00266.x
![]() |
[87] |
Fink DL, Geme JWS (2003) Chromosomal expression of the Haemophilus influenzae Hap autotransporter allows fine-tuned regulation of adhesive potential via inhibition of intermolecular autoproteolysis. J Bacteriol 185: 1608–1615. doi: 10.1128/JB.185.5.1608-1615.2003
![]() |
[88] |
Wolska KI, Grudniak AM, Rudnicka Z, et al. (2016) Genetic control of bacterial biofilms. J Appl Genet 57: 225–238. doi: 10.1007/s13353-015-0309-2
![]() |
[89] |
O'Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54: 49–79. doi: 10.1146/annurev.micro.54.1.49
![]() |
[90] |
Vaccari L, Molaei M, Niepa THR, et al. (2017) Films of bacteria at interfaces. Adv Colloid Interfac 247: 561–572. doi: 10.1016/j.cis.2017.07.016
![]() |
[91] |
Flemming HC, Wingender J, Szewzyk U, et al. (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14: 563–575. doi: 10.1038/nrmicro.2016.94
![]() |
[92] | Gupta P, Sarkar S, Das B (2015) Biofilm, pathogenesis and prevention-a journey to break the wall: a review. Arch Microbiol 198: 1–15. |
[93] | Anderson GG, O'Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322: 85–105. |
[94] |
Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15: 155–166. doi: 10.1128/CMR.15.2.155-166.2002
![]() |
[95] |
Bos R, Mei HCVD, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study. FEMS Microbiol Rev 23: 179–230. doi: 10.1111/j.1574-6976.1999.tb00396.x
![]() |
[96] |
Melaugh G, Hutchison J, Kragh KN, et al. (2016) Shaping the growth behaviour of biofilms initiated from bacterial aggregates. PLoS One 11: e0149683. doi: 10.1371/journal.pone.0149683
![]() |
[97] |
Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14: 576–588. doi: 10.1038/nrmicro.2016.89
![]() |
[98] |
Laganenka L, Colin R, Sourjik V (2016) Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun 7: 12984. doi: 10.1038/ncomms12984
![]() |
[99] |
Bible AN, Stephens BB, Ortega DR, et al. (2008) Function of a chemotaxis-like signal transduction pathway in modulating motility, cell clumping, and cell length in the alphaproteobacterium Azospirillum brasilense. J Bacteriol 190: 6365–6375. doi: 10.1128/JB.00734-08
![]() |
[100] |
Bible A, Russell MH, Alexandre G (2012) The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping. J Bacteriol 194: 3343–3355. doi: 10.1128/JB.00310-12
![]() |
[101] |
Hiramatsu Y, Saito M, Otsuka N, et al. (2016) BipA is associated with preventing autoagglutination and promoting biofilm formation in Bordetella holmesii. PLoS One 11: e0159999. doi: 10.1371/journal.pone.0159999
![]() |
[102] |
Ramalingam B, Sekar R, Boxall JB (2013) Aggregation and biofilm formation of bacteria isolated from domestic drinking water. Water Sci Tech-W Sup 13: 1016–1023. doi: 10.2166/ws.2013.115
![]() |
[103] |
Blom JF, Zimmermann YS, Ammann T, et al. (2010) Scent of danger: floc formation by a freshwater bacterium is induced by supernatants from a predator-prey coculture. Appl Environ Microb 76: 6156–6163. doi: 10.1128/AEM.01455-10
![]() |
[104] | Hahn MW, Moore ERB, Höfle MG (2000) Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microb Ecol 39: 175–185. |
[105] |
Nikel PI, Martínez-García E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12: 368–379. doi: 10.1038/nrmicro3253
![]() |
[106] |
Klebensberger J, Rui O, Fritz E, et al. (2006) Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch Microbiol 185: 417–427. doi: 10.1007/s00203-006-0111-y
![]() |
[107] |
Klebensberger J, Lautenschlager K, Bressler D, et al. (2007) Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ Microbiol 9: 2247–2259. doi: 10.1111/j.1462-2920.2007.01339.x
![]() |
[108] |
Klebensberger J, Birkenmaier A, Geffers R, et al. (2009) SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ Microbiol 11: 3073–3086. doi: 10.1111/j.1462-2920.2009.02012.x
![]() |
[109] | Hazelbauer GL, Falke JJ, Parkinson JS (2007) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33: 9–19. |
[110] |
Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176: 111–116. doi: 10.1111/j.1574-6968.1999.tb13650.x
![]() |
[111] |
Matz C, Bergfeld T, Rice SA, et al. (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6: 218–226. doi: 10.1111/j.1462-2920.2004.00556.x
![]() |
[112] |
Zhou P, Liu J, Merritt J, et al. (2015) A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, Porphyromonas gingivalis, and human oral buccal cells. Mol Oral Microbiol 30: 269–279. doi: 10.1111/omi.12091
![]() |
[113] |
Corno G, Villiger J, Pernthaler J (2013) Coaggregation in a microbial predator-prey system affects competition and trophic transfer efficiency. Ecology 94: 870–881. doi: 10.1890/12-1652.1
![]() |
[114] |
Caceres SM, Malcolm KC, Taylor-Cousar JL, et al. (2014) Enhanced in vitro formation and antibiotic resistance of nonattached Pseudomonas aeruginosa aggregates through incorporation of neutrophil products. Antimicrob Agents Ch 58: 6851–6860. doi: 10.1128/AAC.03514-14
![]() |
[115] |
Owen P, Meehan M, de Loughry-Doherty H, et al. (1996) Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol Med Mic 16: 63–76. doi: 10.1111/j.1574-695X.1996.tb00124.x
![]() |
[116] |
Ulett GC, Valle J, Beloin C, et al. (2007) Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75: 3233–3244. doi: 10.1128/IAI.01952-06
![]() |
[117] |
Zalewska-Piatek B, Zalewska-Piatek R, Olszewski M, et al. (2015) Identification of antigen Ag43 in uropathogenic Escherichia coli Dr+ strains and defining its role in the pathogenesis of urinary tract infections. Microbiology 161: 1034–1049. doi: 10.1099/mic.0.000072
![]() |
[118] | Vo JL, Ortiz GCM, Subedi P, et al. (2017) Autotransporter adhesins in Escherichia coli pathogenesis. Proteomics: 1600431. |
[119] |
Valle J, Mabbett AN, Ulett GC, et al. (2008) UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol 190: 4147–4161. doi: 10.1128/JB.00122-08
![]() |
[120] |
Paton AW, Srimanote P, Woodrow MC, et al. (2001) Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun 69: 6999–7009. doi: 10.1128/IAI.69.11.6999-7009.2001
![]() |
[121] |
Totsika M, Wells TJ, Beloin C, et al. (2012) Molecular characterization of the EhaG and UpaG trimeric autotransporter proteins from pathogenic Escherichia coli. Appl Environ Microb 78: 2179–2189. doi: 10.1128/AEM.06680-11
![]() |
[122] |
Lu Y, Iyoda S, Satou H, et al. (2006) A new immunoglobulin-binding protein, EibG, is responsible for the chain-like adhesion phenotype of locus of enterocyte effacement-negative, shiga toxin-producing Escherichia coli. Infect Immun 74: 5747–5755. doi: 10.1128/IAI.00724-06
![]() |
[123] |
Moreira CG, Palmer K, Whiteley M, et al. (2006) Bundle-forming pili and EspA are involved in biofilm formation by enteropathogenic Escherichia coli. J Bacteriol 188: 3952. doi: 10.1128/JB.00177-06
![]() |
[124] | Personnic N, Striednig B, Hilbi H (2017) Legionella quorum sensing and its role in pathogen-host interactions. Curr Opin Microbiol 41: 29–35. |
[125] |
Yu VL, Plouffe JF, Pastoris MC, et al. (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186: 127–128. doi: 10.1086/341087
![]() |
[126] |
Duncan C, Prashar A, So J, et al. (2011) Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 79: 2168–2181. doi: 10.1128/IAI.01304-10
![]() |
[127] | Dehio C, Meyer M, Berger J, et al. (1997) Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci 110: 2141–2154. |
[128] | Moradali MF, Ghods S, Rehm BHA (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7: 39. |
[129] |
Frederiksen B, Lanng S, Koch C, et al. (1996) Improved survival in the Danish center-treated cystic fibrosis patients: results of aggressive treatment. Pediatr Pulmonol 21: 153–158. doi: 10.1002/(SICI)1099-0496(199603)21:3<153::AID-PPUL1>3.0.CO;2-R
![]() |
[130] | Khan TZ, Wagener JS, Bost T, et al. (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151: 1075–1082. |
[131] |
Walker TS, Tomlin KL, Worthen GS, et al. (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73: 3693–3701. doi: 10.1128/IAI.73.6.3693-3701.2005
![]() |
[132] |
Häussler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6: 546–551. doi: 10.1111/j.1462-2920.2004.00618.x
![]() |
[133] |
Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740–743. doi: 10.1038/416740a
![]() |
[134] |
Häussler S, Ziegler I, Löttel A, et al. (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52: 295–301. doi: 10.1099/jmm.0.05069-0
![]() |
[135] |
Goerke C, Wolz C (2010) Adaptation of Staphylococcus aureus to the cystic fibrosis lung. Int J Med Microbiol 300: 520–525. doi: 10.1016/j.ijmm.2010.08.003
![]() |
[136] | Kaplan JB, Izano EA, Gopal P, et al. (2012) Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. MBio 3: e00198-12. |
[137] |
Savin C, Martin L, Bouchier C, et al. (2014) The Yersinia pseudotuberculosis complex: characterization and delineation of a new species, Yersinia wautersii. Int J Med Microbiol 304: 452–463. doi: 10.1016/j.ijmm.2014.02.002
![]() |
[138] |
Reuter S, Connor TR, Barquist L, et al. (2014) Parallel independent evolution of pathogenicity within the genus Yersinia. Proc Natl Acad Sci USA 111: 6768–6773. doi: 10.1073/pnas.1317161111
![]() |
[139] |
Chauhan N, Wrobel A, Skurnik M, et al. (2016) Yersinia adhesins: An arsenal for infection. Proteom Clin Appl 10: 949–963. doi: 10.1002/prca.201600012
![]() |
[140] | Laird WJ, Cavanaugh DC (1980) Correlation of autoagglutination and virulence of yersiniae. J Clin Microbiol 11: 430–432. |
[141] | Kapperud G, Lassen J (1983) Relationship of virulence-associated autoagglutination to hemagglutinin production in Yersinia enterocolitica and Yersinia enterocolitica-like bacteria. Infect Immun 42: 163–169. |
[142] |
Nagano T, Kiyohara T, Suzuki K, et al. (1997) Identification of pathogenic strains within serogroups of Yersinia pseudotuberculosis and the presence of non-pathogenic strains isolated from animals and the environment. J Vet Med Sci 59: 153–158. doi: 10.1292/jvms.59.153
![]() |
[143] |
Falcão JP, Falcão DP, Pitondo-Silva A, et al. (2006) Molecular typing and virulence markers of Yersinia enterocolitica strains from human, animal and food origins isolated between 1968 and 2000 in Brazil. J Med Microbiol 55: 1539–1548. doi: 10.1099/jmm.0.46733-0
![]() |
[144] | Fukushima H, Shimizu S, Inatsu Y (2011) Yersinia enterocolitica and Yersinia pseudotuberculosis detection in foods. J Pathog. |
[145] |
Freund S, Czech B, Trülzsch K, et al. (2008) Unusual, virulence plasmid-dependent growth behavior of Yersinia enterocolitica in three-dimensional collagen gels. J Bacteriol 190: 4111–4120. doi: 10.1128/JB.00156-08
![]() |
[146] |
Grosskinsky U, Schütz M, Fritz M, et al. (2007) A conserved glycine residue of trimeric autotransporter domains plays a key role in Yersinia adhesin A autotransport. J Bacteriol 189: 9011–9019. doi: 10.1128/JB.00985-07
![]() |
[147] |
Schütz M, Weiss EM, Schindler M, et al. (2010) Trimer stability of YadA is critical for virulence of Yersinia enterocolitica. Infect Immun 78: 2677–2690. doi: 10.1128/IAI.01350-09
![]() |
[148] | Kapperud G, Namork E, Skurnik M, et al. (1987) Plasmid-mediated surface fibrillae of Yersinia pseudotuberculosis and Yersinia enterocolitica: relationship to the outer membrane protein YOP1 and possible importance for pathogenesis. Infect Immun 55: 2247–2254. |
[149] | Felek S, Muszyński A, Carlson RW, et al. (2009) Phosphoglucomutase of Yersinia pestis is required for autoaggregation and polymyxin B resistance. Infect Immun 78: 1163–1175. |
[150] |
Bujnakova D, Kmet V (2002) Aggregation of animal lactobacilli with O157 enterohemorrhagic Escherichia coli. J Vet Med B Infect Dis Vet Public Health 49: 152–154. doi: 10.1046/j.1439-0450.2002.00526.x
![]() |
[151] |
Reid G, McGroarty JA, Angotti R, et al. (1988) Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can J Microbiol 34: 344–351. doi: 10.1139/m88-063
![]() |
1. | Wei Lv, Hanfei He, Kezan Li, Robust optimal control of a network-based SIVS epidemic model with time delay, 2022, 161, 09600779, 112378, 10.1016/j.chaos.2022.112378 | |
2. | Jing Yang, Shaojuan Ma, Juan Ma, Jinhua Ran, Xinyu Bai, Stochastic Analysis for the Dual Virus Parallel Transmission Model with Immunity Delay, 2024, 1557-8666, 10.1089/cmb.2024.0662 |