Citation: Wedad Saeed Alqahtani, Nawaf Abdulrahman Almufareh, Dalia Mostafa Domiaty, Gadah Albasher, Manal Abduallah Alduwish, Huda Alkhalaf, Bader Almuzzaini, Salma Sanhaat AL-marshidy, Rgya Alfraihi, Abdelbaset Mohamed Elasbali, Hussain Gadelkarim Ahmed, Bassam Ahmed Almutlaq. Epidemiology of cancer in Saudi Arabia thru 2010–2019: a systematic review with constrained meta-analysis[J]. AIMS Public Health, 2020, 7(3): 679-696. doi: 10.3934/publichealth.2020053
[1] | WHO (2018) Cancer, Fact sheets 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. |
[2] | Ervik M, Lam F, Ferlay J, et al. (2016) Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: http://gco.iarc.fr/today. |
[3] | WHO. Global status report on noncommunicable diseases 2010. Available from: https://www.who.int/nmh/publications/ncd_report_full_en.pdf. |
[4] | Alharthi H (2018) Healthcare predictive analytics: An overview with a focus on Saudi Arabia. J Infect Public Health 11: 749–756. doi: 10.1016/j.jiph.2018.02.005 |
[5] | WHO, International Agency for Research in Cancer (IARC). Saudi Arabia. Source: Globocan 2018. Available from: https://gco.iarc.fr/today/data/factsheets/populations/682-saudi-arabia-fact-sheets.pdf. |
[6] | Bassam AA, Rakan FA, Ahmed AA, et al. (2017) Breast cancer in Saudi Arabia and its possible risk factors. J Cancer Policy 12: 83–89. doi: 10.1016/j.jcpo.2017.03.004 |
[7] | Agide FD, Sadeghi R, Garmaroudi G, et al. (2018) A systematic review of health promotion interventions to increase breast cancer screening uptake: from the last 12 years. Eur J Public Health 28: 1149–1155. doi: 10.1093/eurpub/ckx231 |
[8] | Aldiab A, Al Khayal KA, Al Obaid OA, et al. (2017) Clinicopathological Features and Predictive Factors for Colorectal Cancer Outcome in the Kingdom of Saudi Arabia. Oncology 92: 75–86. doi: 10.1159/000450857 |
[9] | Alsanea N, Almadi MA, Abduljabbar AS, et al. (2015) National Guidelines for Colorectal Cancer Screening in Saudi Arabia with strength of recommendations and quality of evidence. Ann Saudi Med 35: 189–195. doi: 10.5144/0256-4947.2015.189 |
[10] | Zubaidi AM, AlSubaie NM, AlHumaid AA, et al. (2015) Public awareness of colorectal cancer in Saudi Arabia: A survey of 1070 participants in Riyadh. Saudi J Gastroenterol 21: 78–83. doi: 10.4103/1319-3767.153819 |
[11] | Alqahtani M, Edwards C, Buzzacott N, et al. (2018) Screening for Lynch syndrome in young Saudi colorectal cancer patients using microsatellite instability testing and next generation sequencing. Fam Cancer 17: 197–203. doi: 10.1007/s10689-017-0015-9 |
[12] | Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68: 7–30. doi: 10.3322/caac.21442 |
[13] | Taha MS, Almsned FM, Hassen MA, et al. (2018) Demographic and histopathological patterns of neuro-epithelial brain tumors in Eastern Province of Saudi Arabia. Neurosciences (Riyadh, Saudi Arabia) 23: 18–22. doi: 10.17712/nsj.2018.1.20160543 |
[14] | Aljuhani SH, Bamaroof SA, Alghamdi TH, et al. (2018) Public awareness of central nervous system tumors in the Kingdom of Saudi Arabia. Neurosciences (Riyadh, Saudi Arabia) 23: 227–237. doi: 10.17712/nsj.2018.3.20180055 |
[15] | Azim HA, Abdel-Malek R, Kassem L (2018) Predicting Brain Metastasis in Breast Cancer Patients: Stage Versus Biology. Clin Breast Cancer 18: e187–e195. doi: 10.1016/j.clbc.2017.08.004 |
[16] | Rauf MS, Akhtar S, Maghfoor I (2015) Changing trends of adult lymphoma in the Kingdom of Saudi Arabia - comparison of data sources. Asian Pac J Cancer Prev 16: 2069–2072. doi: 10.7314/APJCP.2015.16.5.2069 |
[17] | Ahmed MI, Ahmed MS, Nizamani WM, et al. (2018) Beyond PET/CT in lymphoma: Does PET/CT has similar diagnostic accuracy in recurrent lymphoma cases in TB-endemic countries. Pak J Radiol 28: 17–23. |
[18] | Nagi AH, Minawy LA, Naseem N, et al. (2010) A study of the morphological patterns of extranodal non-Hodgkin lymphoma in Pakistani and Saudi populations. Biomedica 26: 118–123. |
[19] | Al Diab AR, Aleem A, Qayum A, et al. (2011) Clinico-pathological pattern of extranodal non-Hodgkin's lymphoma in Saudi Arabia. Asian Pac J Cancer Prev 12: 3277–3282. |
[20] | Saudi Cancer Registry Annual Report (2014) Riyadh: Ministry of Health. Available from: https://nhic.gov.sa/eServices/Documents/2014.pdf. |
[21] | Shamoon RP, Ali MD, Shabila NP (2018) Overview and outcome of Hodgkin's Lymphoma: Experience of a single developing country's oncology centre. Plos One 13. |
[22] | Toorani ZA, Sridhar S, Roque W (2018) A rare concurrence of Hofgkin's lymphoma, Sickle cell disease and Diabetes mellitus. Bahrain Med Bull 40: 118–120. doi: 10.12816/0047565 |
[23] | Medina-Rico M, Ramos HL, Lobo M, et al. (2018 Epidemiology of renal cancer in developing countries: Review of the literature. Can Urol Assoc 12: 154–162. |
[24] | Alkhateeb SS, Alothman AS, Addar AM, et al. (2018) Kidney cancer in Saudi Arabia. Saudi Med J 39: 459–563. doi: 10.15537/smj.2018.5.22641 |
[25] | Mahasin SZ, Aloudah N, Al-Surimi K, et al. (2018) Epidemiology profile of renal cell carcinoma: A 10-years patients' experience at king Abdulaziz Medical City, National Huard Health Affairs, Saudi Arabia. Urol Ann 10: 59–64. doi: 10.4103/UA.UA_102_17 |
[26] | Bafaraj S, Awad I, Jastaniah S, et al. (2018) Screening for thyroid diseases among students of applied medical sciences at King Abdulaziz University, Saudi Arabia. Saudi Med J 39: 311–314. doi: 10.15537/smj.2018.3.22137 |
[27] | Saeed MI, Hassan AA, Butt ME, et al. (2018) Pattern of thyroid lesions in western region of Saudi Arabia: A retrospective analysis and literature review. J Clin Med Res 10: 106–116. doi: 10.14740/jocmr3202w |
[28] | PRISMA (2018) Statement on transparent reporting of systematic reviews and meta-analysis. Available from: http://www.prisma-statement.org/. |
[29] | GLOBECAN 2012. International Agency for Research on Cancer [online database]. Available from: http://www-dep.iarc.fr/. |
[30] | WHO. Breast cancer burden 2017. Available from: http://www.who.int/cancer/detection/breastcancer/en/index1.html. |
[31] | Mir R, Javid J, Al Balawi A, et al. (2018) A germline mutation in BRCA1 3'UTR variant predicts susceptibility to breast cancer in a Saudi Arabian population. Asian Pac J Cancer Prev 19: 859–866. |
[32] | Al Balawi IA, Mir R, Abu-Duhier FM (2018) Potential impact of vascular endothelial growth factor gene variation ( − 2578C> A) on breast cancer susceptibility in Saudi Arabia: a case-control study. Asian Pac J Cancer Prev 19: 1135–1143. |
[33] | Alhuquail AJ, Alzahrani A, Almubarak H, et al. (2018) High prevalence of deliterous BRCA 1 and BRCA 2 germline mutations in arab breast and ovarian cancer patients. Breast Cancer Res Treat. |
[34] | Rahman S, Zayed H (2018) Breast cancer in the GCC countries: A focus on BRCA1/2 and non-BRAC1/2 genes. Gene. |
[35] | Abulkhair O, Saadeddin A, Makran O, et al. (2015) Vitamin D levels and breast cancer characteristics: Findings in patients from Saudi Arabia. J Steroid Biochem Mol Biol. |
[36] | Ifediora CO (2019) Re-thinking breast and cervical cancer preventive campaigns in developing countries: the case for interventions at high schools. BMC Public Health 19: 503. doi: 10.1186/s12889-019-6890-2 |
[37] | Alshatwi AA, Hasan TN, Shafi G, et al. (2011) A single nucleotide polymorphism in the TP53 and MDM-2 gene modifies breast cancer risk in an ethnic Arab population. Fundam Clin Pharmacol 26: 438–443. doi: 10.1111/j.1472-8206.2011.00939.x |
[38] | Al-Qasem A, Toulimat M, Tulbah A, et al. (2012) The p53 codon 72 polymorphism is associated with risk and early onset of breast cancer among Saudi women. Oncol Lett 3: 875–878. |
[39] | Alshatwi AA, Shafi G, Hasan TN, et al. (2012) Differential Expression Profile and Genetic Variants of MicroRNAs Sequences in Breast Cancer Patients. Plos One 7: e30049. doi: 10.1371/journal.pone.0030049 |
[40] | Alghamdi IG, Hussain II, Alghamdi MS, et al. (2013) The incidence rate of female breast cancer in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer Registry 2001–2008. Breast Cancer: Targets Ther 5: 103–109. doi: 10.2147/BCTT.S50750 |
[41] | Alanazi M, Pathan AAK, Arifeen Z, et al. (2013) Association between PARP-1 V762A polymorphism and breast cancer susceptibility in Saudi population. Plos One 8: e85541. doi: 10.1371/journal.pone.0085541 |
[42] | Yousef FM, Jacobs ET, Kang PT, et al. (2013) Vitamin D status and breast cancer in Saudi Arabian women: case-control study. Am J Clin Nutr 98: 105–110. doi: 10.3945/ajcn.112.054445 |
[43] | Al-Mutairi FM, Alanazi M, Shalaby M, et al. (2013) Association of XRCC1 gene polymorphisms with breast cancer susceptibility in Saudi patients. Asian Pac J Cancer Prev 14: 3809–3813. doi: 10.7314/APJCP.2013.14.6.3809 |
[44] | Alokail MS, Al-Daghri N, Abdulkareem A, et al. (2013) Metabolic syndrome biomarkers and early breast cancer in Saudi women: evidence for the presence of a systemic stress response and/ or a pre existing metabolic syndrome-related neoplasia risk? BMC Cancer 13: 54. doi: 10.1186/1471-2407-13-54 |
[45] | Hasan TN, Shafi G, Syed NA, et al. (2013) Lack of association of BRCA1 and BRCA2 variants with breast cancer in an ethnic population of Saudi Arabia, an emerging high-risk area. Asian Pac J Cancer Prev 14: 5671–5674. doi: 10.7314/APJCP.2013.14.10.5671 |
[46] | Elkum N, Al-Tweigeri T, Ajarim D, et al. (2014) Obesity is a significant risk factor for breast cancer. BMC Cancer 14: 788. doi: 10.1186/1471-2407-14-788 |
[47] | Benard F, Barkun AN, Martel M, et al. (2018) Systematic review of colorectal cancer screening guidelines for average-risk adults: Summarising the current global recommendations. World J Gasteroenterol 24: 124–138. doi: 10.3748/wjg.v24.i1.124 |
[48] | Williams CE, Williams EA, Corfe BM (2018) Vitamin D status in irritable bowel syndrome and the impact of supplementation on symptoms: what do we know and what do we need to know? Eur J Clin Nutr 72: 1358–1363. doi: 10.1038/s41430-017-0064-z |
[49] | Al-Harithy RN, Al-Ghafari AB (2010) Risistin in human colon cancer. Saudi Med J 31: 495–500. |
[50] | Al-Harithy RN, Al-Zahrani MH (2012) The adinponectin gene, ADIPOQ, and genetic susceptibility to colon cancer. Oncol Lett 3: 176–180. doi: 10.3892/ol.2011.443 |
[51] | Al-Harithy RN, Al-Ghazzawi (2011) Polymorphisms of the deoxyribonucleic acid (DNA) repair gene XRCC1 and risk of colon cancer in Saudi Arabia. Int J Med Med Sci 3: 281–288. |
[52] | Alharithy RN (2014) Polymorphisms in RETN gene and susceptibility to colon cancer in Saudi patients. Ann Saudi Med 34: 334–339. doi: 10.5144/0256-4947.2014.334 |
[53] | Alghafari AB, Balamash KS, Doghaither HA, et al. (2019) "Relationship between Serum Vitamin D and Calcium Levels and Vitamin D Receptor Gene Polymorphisms in Colorectal Cancer". BioMed Res Int. |
[54] | Albasri A, El-Siddig A, Hussainy A, et al. (2014a) Histopathologic characterization of prostrate diseases in Madinah, Saudi Arabia. Asian Pac J Cancer Prev 15: 4175–4179. |
[55] | Ross-Adams H, Lamb AD, Dunning MJ, et al. (2015) Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. EBioMedicine 2: 1133–1144. doi: 10.1016/j.ebiom.2015.07.017 |
[56] | Travis RC, Appleby PN, Martin RM, et al. (2016) A Meta-analysis of Individual Participant Data Reveals an Association between Circulating Levels of IGF-I and Prostate Cancer Risk. Cancer Res 76: 2288–2300. doi: 10.1158/0008-5472.CAN-15-1551 |
[57] | Al-Abdin OZ, Rabah DM, Badr G, et al. (2013) Differences in prostrate cancer detection between Canadian and Saudi populations. Braz J Med Biol Res 46: 539–545. doi: 10.1590/1414-431X20132757 |
[58] | Alghamdi IG, Hussain II, Alghamdi MS, et al. (2014) The incidence rate of prostate cancer in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer registry 2001–2008. Hematol/Oncol Stem Cell Ther 7: 18–26. doi: 10.1016/j.hemonc.2013.10.001 |
[59] | Shafi RG, Al-Mansour MM, Kanfar SS, et al. (2017) Hodgkin Lymphoma Outcome: A Retrospective Study from 3 Tertiary Centers in Saudi Arabia. Oncol Res Treat 40: 288–292. doi: 10.1159/000460819 |
[60] | Dalia S, Chavez J, Castillo JJ, et al. (2013) Hepatitis B infection increases the risk of non-Hodkin lymphoma: A meta-analysis of observational studies. Leuk Res 37: 1107–1115. doi: 10.1016/j.leukres.2013.06.007 |
[61] | Alkhateeb SS, Alkhateeb JM, Ahrashidi EA (2015) Increasing trends in kidney cancer over the last 2 decades in Saudi Arabia. Saudi Med J 36: 698–703. doi: 10.15537/smj.2015.6.10841 |
[62] | Hajeer MH, Awad HA, Abdullah NI, et al. (2018) The rising trend in papillary thyroid carcinoma. Saudi Med J 39: 147–153. doi: 10.15537/smj.2018.2.21211 |
[63] | Zhang Y, Chen Y, Huang H, et al. (2015) Diagnostic radiography exposure increases the risk for thyroid microcarcinoma: a population-based case-control study. Eur J Cancer Prev 24: 439–446. doi: 10.1097/CEJ.0000000000000169 |
[64] | Hussain F, Iqbal S, Mehmood A, et al. (2013) Incidence of thyroid cancer in kingdom of Saudi Arabia, 2000–2010. Hematol/Oncol Stem Cell Ther 6: 58–64. doi: 10.1016/j.hemonc.2013.05.004 |
[65] | Albasri A, Sawaf Z, Hussainy AS, et al. (2014c) Histopathological patterns of thyroid disease in Al-Madinah region of Saudi Arabia. Asian Pac J Cancer Prev 15: 5565–5570. |
[66] | Abdo N, Khader YS, Abdelrahman M, et al. (2016) Respiratory health outcomes and air pollution in the Eastern Mediterranean Region: a systematic review. Rev Environ Health 31: 259–280. doi: 10.1515/reveh-2015-0076 |
[67] | Al-Hazzaa HM (2018) Physical inactivity in Saudi Arabia revisited: A systematic review of inactivity prevalence and perceived barriers to active living. Int J Health Sci (Qassim) 12: 50–64. |
[68] | Al-Musa HM, Awadalla NJ, Mahfouz AA (2019) Male Partners' Knowledge, Attitudes, and Perception of Women's Breast Cancer in Abha, Southwestern Saudi Arabia. Int J Environ Res Public Health 16: 3089. doi: 10.3390/ijerph16173089 |
[69] | Aldohaian AI, Alshammari SA, Arafah DM (2019) Using the health belief model to assess beliefs and behaviors regarding cervical cancer screening among Saudi women: a cross-sectional observational study. BMC Womens Health 19: 6. doi: 10.1186/s12905-018-0701-2 |