[1]
|
Assy N, Nasser G, Kamayse I, et al. (2008) Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can J Gastroenterol 22: 811-816. doi: 10.1155/2008/810961
|
[2]
|
Basaranoglu M, Basaranoglu G, Bugianesi E (2015) Carbohydrate intake and nonalcoholic fatty liver disease: Fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr 4: 109-116.
|
[3]
|
Clark JM (2006) The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 40: S5-S10.
|
[4]
|
Lim JS, Mietus-Snyder M, Valente A, et al. (2010) The role of fructose in the pathogenesis of nafld and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7: 251-264. doi: 10.1038/nrgastro.2010.41
|
[5]
|
Shimony MK, Schliep KC, Schisterman EF, et al. (2016) The relationship between sugar-sweetened beverages and liver enzymes among healthy premenopausal women: A prospective cohort study. Eur J Nutr 55: 569-576. doi: 10.1007/s00394-015-0876-3
|
[6]
|
Malik VS, Schulze MB, Hu FB (2006) Intake of sugar-sweetened beverages and weight gain: A systematic review. Am J Clin Nutr 84: 274-288. doi: 10.1093/ajcn/84.2.274
|
[7]
|
Odegaard AO, Choh AC, Czerwinski SA, et al. (2012) Sugar-sweetened and diet beverages in relation to visceral adipose tissue. Obesity 20: 689-691. doi: 10.1038/oby.2011.277
|
[8]
|
Sievenpiper JL, de Souza RJ, Mirrahimi A, et al. (2012) Effect of fructose on body weight in controlled feeding trials: A systematic review and meta-analysis. Ann Int Med 156: 291-304. doi: 10.7326/0003-4819-156-4-201202210-00007
|
[9]
|
Stanhope KL, Bremer AA, Medici V, et al. (2011) Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, ldl-cholesterol, and apolipoprotein-b in young men and women. J Clin Endocrinol Metab 96: E1596-E1605. doi: 10.1210/jc.2011-1251
|
[10]
|
Stanhope KL, Medici V, Bremer AA, et al. (2015) A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr 101: 1144-1154. doi: 10.3945/ajcn.114.100461
|
[11]
|
Te Morenga LA, Howatson AJ, Jones RM, et al. (2014) Dietary sugars and cardiometabolic risk: Systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr 100: 65-79. doi: 10.3945/ajcn.113.081521
|
[12]
|
Welsh JA, Sharma A, Abramson JL, et al. (2010) Caloric sweetener consumption and dyslipidemia among us adults. J Am Med Assoc 303: 1490-1497. doi: 10.1001/jama.2010.449
|
[13]
|
Yang Q, Zhang Z, Gregg EW, et al. (2014) Added sugar intake and cardiovascular diseases mortality among us adults. Jama Int Med 174: 516-524. doi: 10.1001/jamainternmed.2013.13563
|
[14]
|
Denova-Gutierrez E, Talavera JO, Huitron-Bravo G, et al. (2010) Sweetened beverage consumption and increased risk of metabolic syndrome in mexican adults. Public Health Nutr 13: 835-842. doi: 10.1017/S1368980009991145
|
[15]
|
Hosseini-Esfahani F, Bahadoran Z, Mirmiran P, et al. (2011) Dietary fructose and risk of metabolic syndrome in adults: Tehran lipid and glucose study. Nutr Metab 8: 50. doi: 10.1186/1743-7075-8-50
|
[16]
|
Schulze MB, Manson JE, Ludwig DS, et al. (2004) Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. J Am Med Assoc 292: 927-934. doi: 10.1001/jama.292.8.927
|
[17]
|
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. (2013) Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62: 3307-3315. doi: 10.2337/db12-1814
|
[18]
|
Maenpaa PH, Raivio KO, Kekomaki MP (1968) Liver adenine nucleotides: Fructose-induced depletion and its effect on protein synthesis. Science 161: 1253-1254. doi: 10.1126/science.161.3847.1253
|
[19]
|
Meneses-Leon J, Denova-Gutierrez E, Castanon-Robles S, et al. (2014) Sweetened beverage consumption and the risk of hyperuricemia in mexican adults: A cross-sectional study. BMC Public Health 14: 445. doi: 10.1186/1471-2458-14-445
|
[20]
|
Angelopoulos TJ, Lowndes J, Sinnett S, et al. (2015) Fructose containing sugars do not raise blood pressure or uric acid at normal levels of human consumption. J Clin Hypertens 17: 87-94. doi: 10.1111/jch.12457
|
[21]
|
Colditz GA, Manson JE, Stampfer MJ, et al. (1992) Diet and risk of clinical diabetes in women. Am J Clin Nutr 55: 1018-1023. doi: 10.1093/ajcn/55.5.1018
|
[22]
|
Hodge AM, English DR, O'Dea K, et al. (2004) Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 27: 2701-2706. doi: 10.2337/diacare.27.11.2701
|
[23]
|
Lowndes J, Sinnett S, Yu Z, et al. (2014) The effects of fructose-containing sugars on weight, body composition and cardiometabolic risk factors when consumed at up to the 90th percentile population consumption level for fructose. Nutrients 6: 3153-3168. doi: 10.3390/nu6083153
|
[24]
|
Meyer KA, Kushi LH, Jacobs DR, et al. (2000) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71: 921-930. doi: 10.1093/ajcn/71.4.921
|
[25]
|
Romaguera D, Norat T, Wark PA, et al. (2013) Consumption of sweet beverages and type 2 diabetes incidence in european adults: Results from epic-interact. Diabetologia 56: 1520-1530. doi: 10.1007/s00125-013-2899-8
|
[26]
|
Te Morenga l, Mallard S, Mann J (2012) Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. Br Med J 346: e7492. doi: 10.1136/bmj.e7492
|
[27]
|
(2005) Institute of MedicineDietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. Available from: https://doi.org/10.17226/10490. |
[28]
|
Nicklas TA, O'Neil CE, Fulgoni VL (2018) Association of usual intake of added sugars with nutrient adequacy. Int J Clin Nutr Diet 4. doi: 10.15344/2456-8171/2018/126
|
[29]
|
Johnson RK, Appel LJ, Brands M, et al. (2009) Dietary sugars intake and cardiovascular health: A scientific statement from the american heart association. Circulation 120: 1011-1020. doi: 10.1161/CIRCULATIONAHA.109.192627
|
[30]
|
World Health Organization (2015) Guideline: Sugars intake for adults and children. Available from: http://apps.Who.Int/iris/bitstream/10665/149782/1/9789241549028_eng.Pdf?Ua=1.
|
[31]
|
U.S. Department of Health and Human Services and U.S. Department of Agriculture (2019) Dietary guidelines for americans 2015-2020. Available from: https://health.gov/dietaryguidelines/2015/guidelines/.
|
[32]
|
American academy of nutrition and dietetics (2010) NNNS: High Fructose Corn Syrup (HFCS). Available from: http://www.Andeal.Org/topic.Cfm?Menu=5307&cat=4372.).
|
[33]
|
GOV.UK (2014) Scientific advisory committee on nutrition, carbohydrates and health report; the stationery office. Available from: https://www.Gov.Uk/government/publications/sacn-carbohydrates-and-health-report.
|
[34]
|
Erickson J, Slavin J (2015) Total, added, and free sugars: Are restrictive guidelines science-based or achievable? Nutrients 7: 2866-2878. doi: 10.3390/nu7042866
|
[35]
|
Brand-Miller JC, Barclay AW (2017) Declining consumption of added sugars and sugar-sweetened beverages in australia: A challenge for obesity prevention. Am J Clin Nutr 105: 854-863. doi: 10.3945/ajcn.116.145318
|
[36]
|
Powell ES, Smith-Taillie LP, Popkin BM (2016) Added sugars intake across the distribution of us children and adult consumers: 1977-2012. J Acad Nutr Diet 116: 1543-1550. doi: 10.1016/j.jand.2016.06.003
|
[37]
|
Welch J, Sharma A, Grellinger L, et al. (2011) Consumption of added sugars is decreasing in the united states. Am J Clin Nutr 94: 726-734. doi: 10.3945/ajcn.111.018366
|
[38]
|
Mozaffarian D, Benjamin EJ, Go AS, et al. (2016) Heart disease and stroke statistics-2016 update: A report from the american heart association. Circulation 133: e38-e360.
|
[39]
|
Flegal KM, Kruszon-Moran D, Carroll MD, et al. (2016) Trends in obesity among adults in the united states, 2005 to 2014. J Am Med Assoc 315: 2284-2291. doi: 10.1001/jama.2016.6458
|
[40]
|
Ogden CL, Carroll MD, Lawman HG, et al. (2016) Trends in obesity prevalence among children and adolescents in the united states, 1988-1994 through 2013-2014. J Am Med Assoc 315: 2292-2299. doi: 10.1001/jama.2016.6361
|
[41]
|
Centers for Disease Control and Prevention, & National Center for Health Statistics (2019) About the national health and nutrition examination survey. Available from: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm.
|
[42]
|
Ahluwalia N, Dwyer J, Terry A, et al. (2016) Update on nhanes dietary data: Focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr 7: 121-134. doi: 10.3945/an.115.009258
|
[43]
|
Centers for Disease Control and Prevention, & Statistics (2020) Nhanes. Questionnaires, datasets, and related documentation. Available from: https://wwwn.cdc.gov/nchs/nhanes/.
|
[44]
|
Centers for Disease Control and Prevention, & National Center for Health Statistics (2020) National health and nutrition examination survey (nhanes). Questionnaires, datasets, and related documentation. Available from: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx.
|
[45]
|
Nhanes (2017) NCHS Research Ethics Review Board (ERB) Approval. Available from: https://www.cdc.gov/nchs/nhanes/irba98.htm.
|
[46]
|
National institutes of health (2018) Nih human subjects policies and guidance. Available from: https://humansubjects.nih.gov/nih-human-subjects-policies-guidance.
|
[47]
|
U.S. Department of Agriculture, Agricultural Research Service (2018) Food surveys research group: Beltsville, MD. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/ampm-usda-automated-multiple-pass-method.
|
[48]
|
National center for health statistics (2006) Mec in-person dietary interviewers procedures manual. Available from: http://www.Cdc.Gov/nchs/data/nhanes/nhanes_05_06/dietary_mec.Pdf.
|
[49]
|
National center for health statistics (2004) Phone follow-up dietary interviewer procedures manual. Available from: http://www.Cdc.Gov/nchs/data/nhanes/nhanes_03_04/dietary_pfu.Pdf.).
|
[50]
|
U.S. Department of Agriculture, Agricultural Research Service (2017) Food and nutrient database for dietary studies. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/main-service-page/.
|
[51]
|
United States Department of Agriculture (2017) What are added sugars?. Available from: https://www.choosemyplate.gov/what-are-added-sugars.
|
[52]
|
Bowman SA, Friday JE, Moshfegh AJ (2008) Mypyramid equivalents database, 2.0 for usda survey foods, 2003–2004. Available from: https://www.Ars.Usda.Gov/arsuserfiles/80400530/pdf/mped/mped2_doc.Pdf.
|
[53]
|
Friday J, Bowman S (2006) Documentation. Foodlink pyramid database series. Mypyramid equivalents database for usda survey food codes, 1994–2002 version 1.0. Available from: https://www.Ars.Usda.Gov/arsuserfiles/80400530/pdf/mped/mped1_doc.Pdf.
|
[54]
|
Bowman SA, Clemens JC, Friday JE, et al. (2014) Food patterns equivalents database 2011–12: Methodology and user guide. Available from: http://www.ars.usda.gov/nea/bhnrc/fsrg.
|
[55]
|
National cancer institute (2017) Division of cancer control & population sciences. Available from: https://epi.grants.cancer.gov/diet/usualintakes/macros_multiple.html.
|
[56]
|
Zhang S, Krebs-Smith SM, Midthune D, et al. (2011) Fitting a bivariate measurement error model for episodically consumed dietary components. Int J Biostat 7: 1. doi: 10.2202/1557-4679.1267
|
[57]
|
Zhang S, Midthune D, Guenther PM, et al. (2011) A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Ann Appl Stat 5: 1456-1487. doi: 10.1214/10-AOAS446
|
[58]
|
Centers for Disease Control and Prevention, & National Center for Health Statistics (2020) Nhanes. Documentation, codebooks, sas code. Available from: https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx.
|
[59]
|
Centers for Disease Control and Prevention, & National Center for Health Statistics (2020) National health and nutrition examination survey. Available from: https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/manuals.aspx?BeginYear=2015.
|
[60]
|
National health and nutrition examination survey (2017) 2011–2012 data documentation, codebook, and frequencies. Available from: Https://wwwn.Cdc.Gov/nchs/nhanes/2011-2012/bpx_g.Htm.).
|
[61]
|
National institute of health (2017) Managing overweight and obesity in adults: Systematic review from the obesity expert panel. Available from: https://www.Nhlbi.Nih.Gov/health-pro/guidelines/in-develop/obesity-evidence-review.).
|
[62]
|
Centers for disease control and prevention (2017) Nhanes laboratory data. Available from: https://wwwn.Cdc.Gov/nchs/nhanes/search/datapage.Aspx?Component=laboratory.).
|
[63]
|
Nhanes (2017) Survey methods and analytical guidelines. Available from: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx.
|
[64]
|
U.S. Department of Agriculture, Agriculture research service (2017) Food surveys research group: Beltsville, md. What we eat in america. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-overview/.
|
[65]
|
Chiu S, Sievenpiper JL, de Souza RJ, et al. (2014) Effect of fructose on markers of non-alcoholic fatty liver disease (nafld): A systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 68: 416-423. doi: 10.1038/ejcn.2014.8
|
[66]
|
Vos MB, Lavine JE (2013) Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57: 2525-2531. doi: 10.1002/hep.26299
|
[67]
|
Kunutsor SK, Apekey TA, Khan H (2014) Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies. Atherosclerosis 236: 7-17. doi: 10.1016/j.atherosclerosis.2014.06.006
|
[68]
|
Papandreou D, Andreou E (2015) Role of diet on non-alcoholic fatty liver disease: An updated narrative review. World J Hepatol 7: 575-582. doi: 10.4254/wjh.v7.i3.575
|
[69]
|
Obika M, Noguchi H (2012) Diagnosis and evaluation of nonalcoholic fatty liver disease. Exp Diabetes Res 145754.
|
[70]
|
Rippe JM, Angelopoulos TJ (2016) Relationship between added sugars consumption and chronic disease risk factors: Current understanding. Nutrients 8. doi: 10.3390/nu8110697
|
[71]
|
Truesdale KP, Stevens J, Cai J (2011) Differences in cardiovascular disease risk factors by weight history: The aerobics center longitudinal study. Obesity 19: 2063-2068. doi: 10.1038/oby.2011.41
|
[72]
|
Carran EL, White SJ, Reynolds AN, et al. (2016) Acute effect of fructose intake from sugar-sweetened beverages on plasma uric acid: A randomised controlled trial. Eur J Clin Nutr 70: 1034-1038. doi: 10.1038/ejcn.2016.112
|
[73]
|
Afzali A, Weiss NS, Boyko EJ, et al. (2010) Association between serum uric acid level and chronic liver disease in the united states. Hepatology 52: 578-589. doi: 10.1002/hep.23717
|
[74]
|
Moshfegh AJ, Rhodes DG, Baer DJ, et al. (2008) The us department of agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am J Clin Nutr 88: 324-332. doi: 10.1093/ajcn/88.2.324
|
[75]
|
Kroke A, Klipstein-Grobusch K, Voss S, et al. (1999) Validation of a self-administered food-frequency questionnaire administered in the european prospective investigation into cancer and nutrition (epic) study: Comparison of energy, protein, and macronutrient intakes estimated with the doubly labeled water, urinary nitrogen, and repeated 24-h dietary recall methods. Am J Clin Nutr 70: 439-447. doi: 10.1093/ajcn/70.4.439
|
[76]
|
United States Department of Agriculture (2017) Database for the added sugars content of selected foods. Available from: http://www.Ars.Usda.Gov/nutrientdata.).
|
[77]
|
Livingstone MB, Rennie KL (2009) Added sugars and micronutrient dilution. Obes Rev 10: 34-40. doi: 10.1111/j.1467-789X.2008.00563.x
|
[78]
|
Fulgoni VL, Keast DR, Bailey RL, et al. (2011) Foods, fortificants, and supplements: Where do americans get their nutrients? J Nutr 141: 1847-1854. doi: 10.3945/jn.111.142257
|