Research article Special Issues

Numerical approximation of fourth-order fractional diffusion-wave systems using finite difference and discontinuous Galerkin method

  • Published: 10 December 2025
  • 65M12; 65M06; 35S10

  • This study develops a finite difference/local discontinuous Galerkin (LDG) framework for solving a fourth-order fractional diffusion-wave equation. The temporal fractional operator is approximated through a finite difference approach, achieving a truncation accuracy of $ O((\Delta t)^{3-\alpha}) $, where $ \Delta t $ denotes the time increment and $ \alpha $ represents the fractional order. For spatial discretization, LDG technique is employed, which leads to a fully implicit discrete formulation of the considered model. By applying mathematical induction, we establish the unconditional stability and convergence of the proposed algorithm. A series of computational experiments is presented to verify the theoretical error bounds.

    Citation: Chuan Ran, Xiaoyan Xu, Changshun Hou, Xindong Zhang. Numerical approximation of fourth-order fractional diffusion-wave systems using finite difference and discontinuous Galerkin method[J]. Networks and Heterogeneous Media, 2025, 20(4): 1346-1366. doi: 10.3934/nhm.2025058

    Related Papers:

  • This study develops a finite difference/local discontinuous Galerkin (LDG) framework for solving a fourth-order fractional diffusion-wave equation. The temporal fractional operator is approximated through a finite difference approach, achieving a truncation accuracy of $ O((\Delta t)^{3-\alpha}) $, where $ \Delta t $ denotes the time increment and $ \alpha $ represents the fractional order. For spatial discretization, LDG technique is employed, which leads to a fully implicit discrete formulation of the considered model. By applying mathematical induction, we establish the unconditional stability and convergence of the proposed algorithm. A series of computational experiments is presented to verify the theoretical error bounds.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 204 (2006).
    [2] Q. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simul., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033
    [3] J. Liu, C. Zhu, Y. P. Chen, H. Fu, A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations, Appl. Numer. Math., 160 (2021), 331–348. https://doi.org/10.1016/j.apnum.2020.10.015 doi: 10.1016/j.apnum.2020.10.015
    [4] S. Bazm, A. Hosseini, The alternative Legendre Tau method for solving nonlinear multi-order fractional differential equations, J. Appl. Anal. Comput., 10 (2020), 442–456. https://doi.org/10.11948/20180134 doi: 10.11948/20180134
    [5] S. Kumar, A new analytical modelling for telegraph equation via Laplace transform, Appl. Math. Modell., 38 (2014), 3154–3163. https://doi.org/10.1016/j.apm.2013.11.035 doi: 10.1016/j.apm.2013.11.035
    [6] H. Zhang, Y. Mo, Z. Wang, A high order difference method for fractional sub-diffusion equations with the spatially variable coefficients under periodic boundary conditions, J. Appl. Anal. Comput., 10 (2020), 474–485. https://doi.org/10.11948/20180150 doi: 10.11948/20180150
    [7] M. R. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), 7792–7804. https://doi.org/10.1016/j.jcp.2009.07.021 doi: 10.1016/j.jcp.2009.07.021
    [8] H. F. Ding, C. P. Li, Mixed spline function method for reaction-subdiffusion equation, J. Comput. Phys., 242 (2013), 103–123. https://doi.org/10.1016/j.jcp.2013.02.014 doi: 10.1016/j.jcp.2013.02.014
    [9] R. Du, W. R. Cao, Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Modell., 34 (2010), 2998–3007. https://doi.org/10.1016/j.apm.2010.01.008 doi: 10.1016/j.apm.2010.01.008
    [10] Y. L. Feng, X. D. Zhang, Y. Chen, L. L. Wei, A compact finite difference scheme for solving fractional Black-Scholes option pricing model, J. Inequal. Appl., 2025 (2025) 36. https://doi.org/10.1186/s13660-025-03261-2 doi: 10.1186/s13660-025-03261-2
    [11] W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2008), 204–226. https://doi.org/10.1137/080714130 doi: 10.1137/080714130
    [12] G. Fix, J. Roop, Least squares finite element solution of a fractional order two-point boundary value problem, Comput. Math. Appl., 48 (2004), 1017–1033. https://doi.org/10.1016/j.camwa.2004.10.003 doi: 10.1016/j.camwa.2004.10.003
    [13] Y. Jiang, J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285–3290. https://doi.org/10.1016/j.cam.2011.01.011 doi: 10.1016/j.cam.2011.01.011
    [14] X. J. Li, C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [15] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [16] X. Ma, C. Huang, Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Modell., 38 (2014), 1434–1448. https://doi.org/10.1016/j.apm.2013.08.013 doi: 10.1016/j.apm.2013.08.013
    [17] Y. Liu, M. Zhang, H. Li, J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
    [18] L. L. Wei, Y. N. He, Analysis of the fractional Kawahara equation using an implicit fully discrete local discontinuous Galerkin method, Numer. Methods Partial Differ. Equ., 29 (2013), 1441–1458. https://doi.org/10.1002/num.21756 doi: 10.1002/num.21756
    [19] L. L. Wei, Y. N. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Modell., 38 (2014), 1511–1522. https://doi.org/10.1016/j.apm.2013.07.040 doi: 10.1016/j.apm.2013.07.040
    [20] X. D. Zhang, L. L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
    [21] J. H. He, X. H. Wu, Variational iteration method: New development and applications, Comput. Math. Appl., 54 (2007), 881–894. https://doi.org/10.1016/j.camwa.2006.12.083 doi: 10.1016/j.camwa.2006.12.083
    [22] S. S. Ray, Exact solutions for time-fractional diffusion-wave equations by decomposition method, Phys. Scr., 75 (2007), 53. https://doi.org/10.1088/0031-8949/75/1/008 doi: 10.1088/0031-8949/75/1/008
    [23] Q. Q. Yang, I. Turner, F. Liu, M. Ilic, Novel numerical methods for solving the timespace fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), 1159–1180. https://doi.org/10.1137/100800634 doi: 10.1137/100800634
    [24] X. D. Zhang, B. Tang, Y. N. He, Homotopy analysis method for higher-order fractional integro-differential equations, Comput. Math. Appl., 62 (2011), 3194–3203. https://doi.org/10.1016/j.camwa.2011.08.032 doi: 10.1016/j.camwa.2011.08.032
    [25] X. Hu, L. Zhang, On finite difference methods for fourth-order fractional diffusion-wave and sudiffusion systems, Appl. Math. Comput., 218 (2012), 5019–5034. https://doi.org/10.1016/j.amc.2011.10.069 doi: 10.1016/j.amc.2011.10.069
    [26] X. Hu, L. Zhang, A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system, Int. J. Comput. Math., 91 (2014), 2215–2231. https://doi.org/10.1080/00207160.2013.871000 doi: 10.1080/00207160.2013.871000
    [27] H. Jafari, N. Dehghan, K. Sayevand, Solving a fourth-order fractional diffusion wave equation in a bounded domain by decomposition method, Numer. Methods Partial Differ. Equ., 24 (2008), 1115–1126. https://doi.org/10.1002/num.20308 doi: 10.1002/num.20308
    [28] O. P. Agrawal, A general solution for the fourth-order fractional diffusion-wave equation, Fract. Calc. Appl. Anal., 3 (2000), 1–12.
    [29] L. Qiu, X. Ma, Q. H. Qin, A novel meshfree method based on spatio-temporal homogenization functions for one-dimensional fourth-order fractional diffusion-wave equations, Appl. Math. Lett., 142 (2023), 108657. https://doi.org/10.1016/j.aml.2023.108657 doi: 10.1016/j.aml.2023.108657
    [30] Y. Liu, Z. Fang, H. Li, S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243 (2014), 703–717. https://doi.org/10.1016/j.amc.2014.06.023 doi: 10.1016/j.amc.2014.06.023
    [31] J. Wang, Y. Yang, H. Li, Y. Liu, Mixed spectral element method combined with second-order time stepping schemes for a two-dimensional nonlinear fourth-order fractional diffusion equation, Comput. Math. Appl., 188 (2025), 1–18. https://doi.org/10.1016/j.camwa.2025.03.015 doi: 10.1016/j.camwa.2025.03.015
    [32] H. Bai, D. Ammosov, Y. Yang, W. Xie, M. Al Kobaisi, Multicontinuum modeling of time-fractional diffusion-wave equation in heterogeneous media, J. Comput. Appl. Math., 473 (2026), 116846. https://doi.org/10.1016/j.cam.2025.116846 doi: 10.1016/j.cam.2025.116846
    [33] J. Cao, W. Xu, Adaptive-coefficient finite difference frequency domain method for time fractional diffusive-viscous wave equation arising in geophysics, Appl. Math. Lett., 160 (2025), 109337. https://doi.org/10.1016/j.aml.2024.109337 doi: 10.1016/j.aml.2024.109337
    [34] L. Qing, X. Li, Analysis of a meshless generalized finite difference method for the time-fractional diffusion-wave equation, Comput. Math. Appl., 172 (2024), 134–151. https://doi.org/10.1016/j.camwa.2024.08.008 doi: 10.1016/j.camwa.2024.08.008
    [35] Y. Xia, Y. Xu, C. W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys., 5 (2009), 821–835.
    [36] Q. Zhang, C. W. Shu, Error estimate for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data, Numer. Math., 126 (2014), 703–740. https://doi.org/10.1007/s00211-013-0573-1 doi: 10.1007/s00211-013-0573-1
    [37] J. Zhu, X. Zhong, C. W. Shu, J. Qiu, Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes, Commun. Comput. Phys., 21 (2017), 623–649. https://doi.org/10.4208/cicp.221015.160816a doi: 10.4208/cicp.221015.160816a
    [38] Q. Zhang, F. Z. Gao, A fully-discrete local discontinuous Galerkin method for convection dominated Sobolev equation, J. Sci. Comput., 51 (2012), 107–134. https://doi.org/10.1007/s10915-011-9498-y doi: 10.1007/s10915-011-9498-y
    [39] H. Zhu, J. Qiu, J. M. Qiu, An h-adaptive RKDG method for the Vlasov-Poisson system, J. Sci. Comput., 69 (2016), 1346–1365. https://doi.org/10.1007/s10915-016-0238-1 doi: 10.1007/s10915-016-0238-1
    [40] C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855–875. https://doi.org/10.1016/j.camwa.2011.02.045 doi: 10.1016/j.camwa.2011.02.045
    [41] X. Li, H. Dong, Unconditional error analysis of an element-free Galerkin method for the nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 151 (2025), 109103. https://doi.org/10.1016/j.cnsns.2025.109103 doi: 10.1016/j.cnsns.2025.109103
    [42] X. Li, H. Dong, Analysis of a divergence-free element-free Galerkin method for the Navier-Stokes equations, Appl. Numer. Math., 217 (2025), 73–95. https://doi.org/10.1016/j.apnum.2025.06.002 doi: 10.1016/j.apnum.2025.06.002
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(625) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog