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Abstract: This study develops a finite difference/local discontinuous Galerkin (LDG) framework
for solving a fourth-order fractional diffusion-wave equation. The temporal fractional operator is
approximated through a finite difference approach, achieving a truncation accuracy of O((Af)*~®),
where At denotes the time increment and « represents the fractional order. For spatial discretization,
LDG technique is employed, which leads to a fully implicit discrete formulation of the considered
model. By applying mathematical induction, we establish the unconditional stability and convergence
of the proposed algorithm. A series of computational experiments is presented to verify the theoretical
error bounds.
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1. Introduction

Fractional calculus has attracted considerable attention over the past decades due to its novel and
diverse applications in finance, engineering, biology, chemistry, and related fields [1-3].
Time-fractional diffusion equations (T-FDEs) constitute a class of linear integro-differential
equations [4—6]. Although some analytical solutions have been obtained, explicit solutions for most
fractional partial differential equations (FPDEs) are highly complex or even intractable, which limits
their practical applicability in scientific and engineering problems. Therefore, the development of
efficient and straightforward numerical schemes for T-FDEs is of significant importance. Existing
numerical approaches for FPDEs include finite difference methods [7-10], finite element
methods [11-13], spectral methods [14-16], discontinuous Galerkin methods [17-20], as well as
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homotopy perturbation and variational techniques [21-24].
In this work, we focus on the fourth-order fractional diffusion-wave equation

0“u(x, 1) N 264u(x, N
o M Ted T
Lt(x, 0) = MO(X)a ut(x9 0) = l/ll(.X), X € [aa b]’

f(x,t), x¢€(a,b), te(0,T], (1.1)

where 1 < @ < 2 denotes the fractional order in time, u is a constant coefficient, and f, ug, u; are given
functions. In this study, the solution is assumed to be either periodic or compactly supported. The
Caputo fractional derivative is employed, defined by

0%u(x, 1) 1 f " Pu(x,s) ds
= , >0, 1 2, 12
o TQ-a)J, 08 (-sr1 T TeS (1.2)

where I'(-) represents the Gamma function.

In certain applications, a fourth-order spatial derivative is essential, such as in wave propagation
along beams and in modeling the formation of grooves on flat surfaces. Hu and Zhang proposed a
Crank—Nicolson scheme [25] and an implicit compact scheme [26] for the diffusion-wave equation.
Jafari et al. [27] addressed a fourth-order fractional diffusion-wave equation in a bounded domain
using the decomposition method. Agarwal [28] presented a general solution for fractional diffusion
equations involving a fourth-order spatial derivative in both bounded and unbounded domains. Qiu
et al. [29] investigated a meshfree method based on spatio-temporal homogenization functions for
one-dimensional fourth-order fractional diffusion-wave equations. Liu et al. [30] developed a mixed
finite element method for a time-fractional fourth-order partial differential equation and rigorously
studied its stability and convergence properties. Wang et al. [31] proposed a mixed spectral element
method combined with second-order time-stepping schemes to solve a two-dimensional nonlinear
fourth-order fractional diffusion equation and analyzed its accuracy and efficiency. Bai et al. [32]
developed a multicontinuum modeling approach for time-fractional diffusion-wave equations in
heterogeneous media and investigated the accuracy and applicability of the proposed method. Cao
and Xu [33] proposed an adaptive-coefficient finite difference frequency-domain method for the
time-fractional diffusive-viscous wave equation in geophysical applications and analyzed its
numerical accuracy and computational efficiency. Qing and Li [34] proposed a meshless generalized
finite difference method for solving the time-fractional diffusion-wave equation and investigated its
stability and numerical accuracy.

The remainder of this paper is organized as follows: Section 2 introduces essential notations and
theoretical preliminaries. In Section 3, we develop a finite difference/LDG method for the fractional
diffusion-wave system and establish its stability and error estimates via mathematical induction.
Numerical experiments are reported in Section 4, and conclusions are drawn in the final section.

2. Notations and auxiliary results
Consider a mesh covering the computational domain
<X

a=x <o <Xyl =D,

=
[
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where the cells are defined by I; = [x;_ 1 X1 1] for j = 1,..., N, and the corresponding cell sizes are
Ax; = x; +1 = X;_1. Denote

I\)

h = max Ax;.
1<j<N

Let u ol and u o represent the values of u at x;, 1 approached from the right cell /;,; and the left

cell 1;, respectlvely
The piecewise-polynomial space of degree at most k is defined as

Vy={v:vl, € PU), xel;, j=1,...,N}.

For error analysis, we introduce two types of projections in the one-dimensional spatial domain
= [a, b). The standard L? projection P satisfies, for each j,

f(?’w(x) —wx)v(x)dx=0, VYve Pk(lj), 2.1
1
and the special projections £* are defined by, for each j,

f (Prw(x) - w0V dx =0, Yve P, Pok)=wx.),
I 2 ?

(2.2)
f(?’_a)(x) —wxX))vx)dx =0, Vve Pk_l(lj), SD_a)(xJ_,Jrl) = w(xj%).
I; 2
The following approximation property holds for the projections # and #* [35-37]:
|| + Alle |l + B0l < CH*Y, (2.3)

where w® = Pw — w or w° = P*w — w.

Throughout this paper, C denotes a generic positive constant whose value may vary in different
occurrences. The scalar inner product on L?(D) is denoted by (-, -)p with the associated norm || - ||p.
When D = Q, the subscript is omitted.

3. Numerical scheme

In this section, we present the numerical discretization for Eq (1.1) and discuss the stability and
convergence properties of the proposed scheme.

3.1. Discretization of the time-fractional derivative

Let the time interval [0, T'] be uniformly partitioned with step size At = T/M, M € N, and define
the discrete time points 7, = nAt,n =0,1,..., M.
Define v(x,t) = %. Using the standard three-point backward difference formula, we have

Qu(x, ;) 3ulx, ;) — 4u(x, 1i1) + u(x, t;)
o 2At

v(x, 1) = + 7,
where the truncation error satisfies [r}| < C (A1)>.
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Then, the Caputo fractional derivative at ¢, can be approximated as

O u(x,t,) 1 f " ov(x,s) ds
- I'2-aJy

or® os (t,—s)!
RS f V(X ti1) = V(x. 1) ds \
= T
rQ-a) &, At (t, —s)*1 2
(At)l—(y n-l .
= TG o[ ;wn_i = by V(X 1) = by v(x, 10) | + 74 .
(A [Bux, 1) — (X, ) + (X, o) '
" TG-a) 2At
n—1
3ulx, t;) — 4u(x, ;1) + u(x, t;2)
+ bn—i - bn—i—
;( 1) AL
= b, v(x, 1) | + 13,
where
bo=1, bi=@G+1)>"=i" i=12,...,
and for i = 1, we set u(x, —1) = u(x, 0) — Atu,(x) + O((At)*) by the Taylor expansion.
Following [15], the truncation error satisfies |[r}| < C (A1)*~®, which implies Il < C (A,
The coefficients b; satisfy
b;>0, i=1,2,...,n, 1l=by>by>b,>--->b,, b,— 0asn — oo. (3.2)

Substituting Eq (3.1) into Eq (1.1), we get

A n—1
3u(x, t,) +ﬁﬂ2% = Z(bn—i—l — b)) Bulx, t;) — 4u(x, tioy) + u(x, t;2))
p
+ 2At b, v(x, to) + Bf(x, 1) + du(x, t,-1) — u(x, t,-») + Bri,

where 8 = 2(A0)T(3 — a).
Let u* denote the numerical approximation of u(x,#;) and f* = f(x,t,). Then the time-discrete
version of problem (1.1) can be written as

(92un T i i-1 i-2
Z(bn—i—l - bn—i) (314 —4u +u )
i=1

6x2:,

+2At b,V + B+ 4u — U2,

S =p (3.3)

where the initial value ™! is defined by
' =u’ — Atuy(x),

consistent with the second-order backward difference approximation.
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3.2. Fully discrete schemes

We first rewrite Eq (1.1) as a first-order system

0“u(x, t)
P=lUy §=pu S=qn praaby wsy = f. (3.4)

Let u}, p}.q;, s € V,f denote the approximations of u(:,,), p(-, t,), q(:, t,), s(-, t,), respectively, and
define f"(x) = f(x,t,). The fully discrete LDG scheme is defined as follows: Find u}, p}, g}, s € V,’l‘
such that for all test functions v, w, p, & € V¥,

N
3 f uyv dx _:8/12 [f Spvydx — Z ((SZV_)J'+% - (SZV+),~_;)]
Q Q =)
bui-1 = bui) f (3uj, — 4uj " + ui?)vdx + 2At b, f Vv dx
Q
+4fuh1vdx—fuZ2vdx+ﬁff”vdx,
Q Q
fShW dx + fqhwx dx — Z ((th )J+— - (;]\ZW+)]'—%) =0,
j=1
N —_ —_
f dipdx + f Piprdx =Y ((Plp )0y~ (P 1) = O,
Q Q o

fg phédx + f e, dx ~ Z((uhf oy — (WD), 1) =

The initial approximations u,',u),V are taken as the L? projections of u(-,—1),u(-,0), u;(-,0),

respectively,
f u;lqﬁ dx = f?u(x, —)pdx = f u(x, - dx,
Q Q Q

f u2¢ dx = f?u(x, 0)pdx = f uo(x)¢p dx,
Q Q Q

f W dx = f Puy(x,0)pdx = f u(x)pdx, Ve Vi
Q Q Q

iMH

(3.5)

The “hat” terms in Eq (3.5) arising from integration by parts represent the numerical fluxes. These
are single-valued functions defined on cell interfaces and should be chosen to ensure stability. A simple
choice is given by

= (MZ)_a SZ = (SZ)+’ SZ = SZ - T [Mh]’

(3.6)

=), pi=EN", P =p) -1l

We note that the choice of fluxes (3.6) is not unique. The key principle is to select I/TZ and ?,:, EZ
from opposite sides, and ¢; and s, p; from opposite sides, to guarantee stability [38,39].
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3.3. Stability and convergence
For simplicity of notation, and without loss of generality, we consider the case f = 0 in the

following analysis.

Theorem 3.1. Under periodic or compactly supported boundary conditions, the fully discrete LDG
scheme (3.5) is unconditionally stable. Specifically, there exists a positive constant C depending on

u, T, a, such that
lufll < Clupll + Atllug (OI),  n=1,2,..., M. (3.7)

Proof. We prove the theorem by mathematical induction.
When n = 1, the scheme (3.5) reduces to

N

1 2 1 - o
3fguhvdx—,8,u (Lshvxdx—Z((s}lv )4 — (shv? j_%))

J=1

:2Atb0fv2vdx+4fugvdx—fu,:lvdx,
Q Q Q

N
Ls}lw dx + Lq}lwx dx — Z (@) + (W) ,1) =0,
=

and

N
fQ gp dx + fg phoxdx =" ((php )y + (Php"), 1) = 0, (3.8)
j=1

N
fp}lfdx + f u,]1§x dx — Z ((u,Lg‘)j+% + (”111f+)j_%) =0.
Taking the test functions
v=u, E=-Buts, w=pup, p=puq,

and using the fluxes (3.6), we obtain

N
Bl + Bl + pit Y (rilufl? + algh 1)y

=

N
FBE D (P )1 = V(phup) oy + O 101); 1) 59)
J=1 :

:2Atb0fvgu}ldx+4fu2u}ldx—fu;1u,lzdx
Q Q Q

! _
< QAU+ Al + i 1) + 2 .

Here, W(-,-) and O(-, -) are defined as in the original statement, and a straightforward calculation
shows that ©(p;,u;),_1 = 0 for the chosen fluxes.

=3
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From Eq (3.9), we get
gl < 2AdVyIl + Alal] + ey - (3.10)

By the definition of u;', we have
. 1| < Cllugll + Adllur (1),

and similarly

0
[Vl < flog COIl-

Combining these estimates with Eq (3.10) yields
llugll < C(lupll + Atllaay (1)

Assume that
1l < Clugll + Aty ONl),  m=1,2,...,P. (3.1

We need to show that the inequality also holds for m = P + 1. Taking

v=u ', E=-putst, w=pupt, p=pulq)!

in Eq (3.5) and applying the same arguments as above, we obtain
lluy, "1l < C(lluyll + Adllaay (1)

This completes the proof of unconditional stability.

Theorem 3.2. Let u(x,t,) be the exact solution of problem (1.1), sufficiently smooth such that u €
H"™' with 0 < m < k+ 1. Let u} denote the numerical solution obtained from the fully discrete LDG
scheme (3.5). Then the following error estimates hold:

e forl <a<?2,

a

leeCx, 1) = ujll < 5 (An™r + Ay + (AP 7 4 ),

—-a

e Asa — 2,
luCx, £,) = ] < CT((AD2H + At + (A~ R + 1),

where C is a constant depending on u, T, and «.
Proof. Tt is straightforward to verify that the exact solution of partial differential equation
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(PDE) (1.1) satisfies
N
3 f u(x, t,)vdx —,B/JZ(f s(x, t)vedx — Z ((s(x, tn)v_)jJri — (s(x, tn)v+)j_l))
Q Q = 2 2

n—1
= Z(bn—i—l —b,i) f Gu(x, t;) — 4u(x, ti_y) + u(x, t;ip))v dx
i=1 Q
+ 2At b, f v(x, tp)vdx + 4 f u(x, t,_1)vdx
Q Q
- Lu(x, ty2)vdx +,8fgf(x, t,)vdx +ﬁfg;r;’vdx, (3.12)

N
fg St Ly)w dx + fQ g0x, twdx = " (e, 1w 7)1y = (906, tw"),_y) =0,
j=1

N
fg q(x, tn)p dx + fg P, )pedx = > (P06 t)p 7)1y = (P 1)p") 1) = 0,

=1

N
fg pOx, )E dx + fg ux, )€ dx = ) (@06 6)E) 1y = (0 1)E),y) = 0,
j=1

forall v,w,p,€ € H'(I}), j=1,...,N.
Denote the error terms as
e, = u(x,t,) —u, =P e, — (P ulx,t,) —u(x,t,)),
el = s(x,1,) = 5§ = Prel — (Prs(x, 1,) — s(x, 1)),
€y = q(x, 1) = g, = P ey — (P q(x, 1,) — q(x, 1),
ey, = p(x,t,) = p = Pre, — (P p(x, 1,) = p(x, 1))

(3.13)

Subtracting the fully discrete LDG scheme (3.5) from Eq (3.12) and applying the numerical
fluxes (3.6), we obtain the following error equation:

N
n _ 2 n _ A N A
s [ ewar—pii( [ émar ;«es) V= @)
n—1
_ Z(bn_,-_l - b,,_,-)f(3ei - 4e;—1 + e;_Z)v dx
i=1 Q

—4fe’,j_lvdx+feﬁ_zvdx+ﬁfrg’vdx (3.14)
Q Q Q

N
+ Leg’w dx + Legwx dx — Z ((eg)_w;r% - (eZ)_w;,_%)

j=1
N

+ L ep dx + L eprdx—Z((erpJ;%—(eZ)ﬂOj._%)
j=1
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+ [ epears [ agdr- (e, - e

j=1
N

N
+B71 ) eVl + T2 ) [ehlpl; g =0,

Jj=1 Jj=1

Using the notation (3.13), the error equation (3.3) can be rewritten as
N
3 f Pevdx — Bu’( f Prev,dx — Z(((@+e';)+v-) jl
Q Q j=1
- ((P+e§‘)+v+)j_l)) + fPJre’s’wdx + f@‘egwxdx
o)

- Z(((@ e W)y = (Pel) wh), 1)
f P elpdx + fg Prel xdx—;(((?ﬁe;fp_)ﬁ%

(PP, ) + fg P + fg Pt dx

- i(«?‘eu)‘f‘)ﬁ; — (P ED D)

+ BT Z[SD e vl 1+ 7 Z[P epllpl;_t

(3.15)
by-ic1 — bui) f (BP e — 4P e + P el )vdx

+4f?‘ez_lvdx—f?‘ez_zvdx—ﬂfrg‘vdx
Q Q Q

+3 f (P u(x,t,) — u(x, t,))vdx — Bu*( f (Ps(x,t,) — S(x,1,))vdx
Q Q

M

N
- Z(((P+S(x, tn) = $(x, 1,))V7) 1 = ((PTs(x, 1) = s(x, 1))V 1))

=1

n—1
= > (bai1 = ba) f B u(x, 1) = u(x, 1)) = 4P u(x, ti1) = u(x, ;1))
i=1 Q

+ (P u(x, ti2) — u(x, t;»)))vdx — 4 f (P u(x, t,_1) — u(x, t,_1))vdx
Q
+ f(P_M(X, tn—Z) - M(X, tn—Z))de
Q

+ f PFs(x,t,) — s(x, t,))wdx + f (P q(x,t,) — q(x, t,))w.dx
Q Q
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- i(((@‘q(x, ) = 406 60 W) s — (Pq( 1) — (6 50 W),1)
Z

+ f P atn) = aCrapds + [ o) - plespdx

- Z(((P+p(x ty) = P(X )P 1 — (P p(x, 1) = p(x, 1)) ") 1)

+ fg (P plrt) = st + [ P uten) = uten))d

N
= P 1) — ulx 1)) €)1 — (P ulx, 1) — uCe,1,)) €9, 0).

=1
Noting that for any a,b € R,
1
ab < ed® + —b?,
4e

choosing the test functions
v="PTe, &=-fiPel, w=puiPe, p=puP e,

in Eq (3.3), and using the properties (2.1) and (2.2), we obtain
N N
— n\2 2 — n\2 2 — ni2 - ni2
3 f (Pel)dx + f (Peldx + BT Z[P A ﬁTQZ;[P A
]:

-1
:Z pind — n,)f(3so—e — 4P el + Pel P endx

i=1

f?’ e, lp- e,dx — fﬁD e, 2p- e,dx

- Z(bn i-1 = by l)f(3(5" u(x, 1;) — u(x, ;)) = 4P u(x, i)
(3.16)
—u(x, 1) + (P ulx, 1i5) — u(x, 1;2)))P~ e, dx

-4 f(P_M(X, tn-1) — u(X, 1,-1))P" e, dx —ﬁf P endx
Q Q
+ f (P u(x, t,—2) — u(x, t,_2))P edx
Q

+3 f (P u(x,t,) —u(x, t,))P e dx + ,B,uz f (P q(x,t,) — q(x, t,,))?’_ede

+ B Z((Ps(x ) = 5Ce, 1)) [P el]) -y + B Z«Pp(x ) = P, 1) [P e,

J=1 J=1
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1 n—1 ) . '
Sg(Z(bn—i—l = b, )GIP el + 4P e L+ P e 21D + 4P e
i=1

n—1
P2+ BIFI + D (buict = bu)BIP ulx, 1) = u(x, 1)
i=1

+ 4P ulx, tio1) — ulx, i DI + [P ulx, t;2) — u(x, t;5)|])
AP Uk, 1) — ) + P, 2) — s 1)l
F 3P uCx, 1) — ux, 1)) + 2P )P

2 2
+ Pt 1) - aCe 1l + P el

2 N N
e P = st e PP

j=1

B < 2
o Z((@p(x, 1) = PO 1)), + Bi’e Z;[?‘eg]ﬁ_i.

J= J=

Choosing a sufficiently small € < {7, 7,}, we obtain

2
f (P ey dx+ﬁ—‘2’ f (Pely dx
Q Q

n—1
- ( 2 brmirt = i) GIP el + HPel I+ 177 7I)
i=1
+ AP e I+ 1Pl + Bl
n—1
+ Z(bn—i—l — b )BIP ulx, ;) — ulx, )| + 4P~ u(x, ti1) — u(x, tiy)||
i=1

+ [P u(x, t;—p) — u(x, t;ip)ll)
+ 4P ulx, t,-1) — ulx, t,- DIl + 1P ulx, t,-2) — u(x, t,-2)||

2
+ 3P ulx, t,) — u(x, tn)ll)

A
2

B S 2
+ 5 D (st = s )
=1

+ =P q(x, 1) = q(x, )|

B’ Z 2
+ 5= D (@Pp(et) = ple 1)y
j=1
(3.17)
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Hence, we have

n—1
1P~€lll < D (buit = b )BIP €| + 4P el || + 1Pl 1)
i=1

+ 4P e |+ 1P e + Bl
n—1

+ Z(bn—i—l = bGP ux, 1;) — ux, )l + 4P ulx, fiy) — u(x, 1)
i=1

+ 1P u(x, 1;2) — u(x, tio)ll)
+ 4P ulx, t,—1) — ulx, t- DI + 1P ulx, t,-2) — u(x, t,-2)||
+ 3P u(x, 1) — ux, 1)l (3.18)

2
N ﬁ% 1P~ q(x, 1) — g(x, )]

B2 < 2
\ 4_3 Z ((PS()C, 1) — s(x, tn))+)j_%
=1

—+

B N 2
\ Ae Z (Pp(x, tn) = p(X 2))*) 1 -
=1

Now, we prove Theorem 3.2 in two steps. First, we establish the error estimate

1P enll < b, C(H! + (AD* + (A3 ht2). (3.19)

Considering the case n = 1 in Eq (3.18), we have

Noting that

IPelll <4P=elll + [IPe, || + Blirill
+ 4P ulx, to) — ulx, to)ll + 1P ulx, 1-1) — u(x, t-p)l|
+ 3l1P u(x, 1) — u(x, t,)|]

2
+ 'B%HP_Q(X, l])—Q(xa ll

(3.20)

+

Bt & 2
\ s 2 (Psten) —stey
=

,B,UZ S 2
\ As Z (Pp(x,11) — p(x, tl))+)]’_%'
=

P =0, |l <CA™

and applying the projection property (2.3), we immediately obtain

IP~elll < (A1 + (Ar + (AnEA3). 3.21)
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Next, we assume the following inequality holds for some K > 1,
IPelll < bt C(H*! + (A + (ADTH2), m=1,2,... K. (3.22)

When n = K + 1 in Eq (3.18), we obtain

K
1P~ef 1 < > (biei = b DGBIP el + 4IPel 1+ 1P¢ )
i=1

- K - K-1 K+1
+4lP e, I + 1P e, Il +Blirs |l

K
+ Z(bK—i — b)) GIP u(x, ;) — u(x, 1)l + 4P u(x, t;i-y) — ulx, ;)|
=1
+ 1P ulx, tin) — u(x, ;o)) + 4P ulx, tx) — u(x, ty)l|
+ 1P ulx, tx—1) — u(x, tg_pIl + 3|1P~ulx, txe1) — ulx, txo)l

2
. ﬁ%np‘q(x, tan) — gt

Bu? N 2
4_8 Z ((Ps(xa fx+1) — S(X, tK+1))+)j_%
=1

B S 2
o 2, (Pp(xtin) = pl k) )]y
j=1

Noting that
bl <b', i1

and applying the induction hypothesis (3.22), we immediately obtain
1P eS| < b (K + (A + (An3 ).

Hence, by the principle of mathematical induction, the inequality (3.19) holds for all n > 1.
By some analysis, we know that

1
n°b,!, - —— asnincreases.
2 -«
Thus, from Eq (3.19), we have

1P~eill < b, C(H! + (A + (A3 i2)
<1 n7 b, C(H! + (Ar + (AD3 i)
cre

<

(A0 H" + (A= + (AryEh!3),

04

where T = nAt.
Notice that this estimate becomes meaningless as @ — 2 since ﬁ — oo. Therefore, we need to

reconsider the estimate for « near 2.
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Suppose instead that
a 1
IPelll < nC(H + (A1) + (Ar)E R!2), (3.23)

By using similar techniques as in the proof of Eq (3.19), we can easily verify Eq (3.23) (the details
are omitted for brevity). In particular, when @ — 2, this gives

1P~ elll < TC((AD R + At + (Ary'hM*3).

Finally, Theorem 3.2 follows by applying the triangle inequality and the interpolation property (2.3).

Remark. In Theorem 3.2, we observe that the error arising from the spatial approximation is
influenced by the inverse of the time step. Similar phenomena have also been reported in [15, 40].
Nevertheless, for sufficiently smooth solutions, one can generally choose a spatial step 2 much smaller
than the time step Az, so that this influence does not significantly degrade the overall accuracy [15].

4. Numerical examples

Example 4.1. Consider the following fractional problem:

+ 167*# | sin(27x),

0“u(x, 1) . u(x,1) ( 217

or® Zx“ . I'G-a) @.1)
w0y =0, 20 o epo.
ot
The exact solution is given by
u(x, 1) = £* sin(2mx).
Table 1. Spatial accuracy test using piecewise P* polynomials. a = 1.2, At = ﬁ’ T=1.

N L?-error order L>-error order
10 0.268369171454230 - 0.425516775770436 -

PO 20 0.143456516001119 0.90 0.233192588549476 0.87
40 7.418297884848368E-002 0.95 0.121337346301527 0.94
80 3.772652263985216E-002 0.98 6.183068333664676E-002 0.97
10 1.598834727872643E-002 - 5.686767451595021E-002 -

P! 20 4.097515165530630E-003 1.96 1.528254715234789E-002 1.90
40 1.041526895366093E-003 1.98 3.971581531355906E-003 1.94
80 2.628167145762841E-004 1.99 1.010930910805063E-003 1.97
10 8.202233250136834E-004 - 3.688835453254780E-003 -

P? 20 1.046335883710975E-004 2.97 4.924187272465639E-004 2.90
40 1.322262615436073E-005 2.98 6.319441916376639E-005 2.96
80 1.664864081868804E-006 2.99 7.992896861264143E-006 2.98

Choosing 71 = 1, = 0.1 and Ar = 1/1000, we consider spatial step sizes
h = 1/10,1/20,1/40,1/80. The corresponding errors measured in the L?>-norm and L*-norm, along
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with the discrete spatial convergence orders for the scheme with @ = 1.2,1.4,1.6, 1.8, are reported in
Tables 1-4. From these results, it is evident that the numerical errors consistently attain the expected
(k + 1)-th order of accuracy for piecewise P* polynomials. These findings confirm not only the
theoretical convergence properties of the proposed scheme but also their high efficiency and reliability
in practical computations. Overall, the numerical experiments demonstrate the robustness and
excellent performance of the method across different fractional orders.

To further support the unconditional convergence observed in our numerical results, one may refer
to the analysis in Li and Dong [41], where unconditional error estimates for an element-free Galerkin
method for the nonlinear Schrodinger equation are rigorously established. This reference provides a
useful benchmark for understanding unconditional stability and convergence in fractional or
nonlinear PDEs.

Table 2. Spatial accuracy test using piecewise P polynomials. a = 1.4, At = 10]W’ T=1.
N L?-error order L>-error order
10 0.267648256386237 - 0.425890675278256 -
P° 20 0.143450994210472 0.90 0.233186418176963 0.87
40 7.417976532107379E-002 0.95 0.121333514437931 0.94
80 3.772479055786165E-002 0.98 6.182855829164957E-002 0.97
10 1.598832244742653E-002 - 5.686789803899872E-002 -

P! 20 4.097513364765737E-003 1.96 1.528257735763527E-002 1.90
40 1.041526776316258E-003 1.98 3.971585348418571E-003 1.94
80 2.628167072630438E-004 1.99 1.010931387972480E-003 1.97
10 8.202233189327410E-004 - 3.688835494435471E-003 -

P? 20 1.046335884353141E-004 2.97 4.924187268000053E-004 2.90
40 1.322262608804521E-005 2.98 6.319441722133412E-005 2.96
80 1.664863445486945E-006 2.99 7.992959526761934E-006 2.98

. . . . k . _ _ 1 _
Table 3. Spatial accuracy test using piecewise P* polynomials. @ = 1.6, At = 15, T = 1.

N L?-error order L>-error order
10 0.264187268000053 - 0.422262608804521 -

P° 20 0.149065278286237 0.90 0.231864190270472 0.87
40 7.417919351101487E-002 0.95 0.121332832597304 0.94
80 3.772448055981137E-002 0.98 6.182817795510087E-002 0.97
10 1.598831804196817E-002 - 5.686793765736797E-002 -

P! 20 4.097513048158760E-003 1.96 1.528258267024296E-002 1.90
40 1.041526756818823E-003 1.98 3.971586011891404E-003 1.94
80 2.628167067819486E-004 1.99 1.010931514054292E-003 1.97
10 8.202233183462588E-004 - 3.688835501201323E-003 -

P? 20 1.046335885436331E-004 2.97 4.924187316523287E-004 2.90
40 1.322262585850249E-005 2.98 6.319440504411021E-005 2.96
80 1.664861326824847E-006 2.99 7.992891888367049E-006 2.98
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. . . . k . _ _ 1 _
Table 4. Spatial accuracy test using piecewise P* polynomials. @ = 1.8, At = 155, T = 1.

N L?-error order L>-error order
10 0.268602489555734 - 0.420388004556405 -

P° 20 0.140643401016234 0.90 0.233799701362584 0.87
40 7.415946963940129E-002 0.95 0.123508583403740 0.94
80 3.772590217169987E-002 0.98 6.182992210789384E-002 0.97
10 1.594211241651383E-002 - 5.682364033051722E-002 -

P! 20 4.097514540221151E-003 1.96 1.528255760663999E-002 1.90
40 1.041526856361772E-003 1.98 3.971582800122109E-003 1.94
80 2.628167133465506E-004 1.99 1.010930931959475E-003 1.97
10 8.202233236779249E-004 - 3.688835463357487E-003 -

P? 20 1.046335885513895E-004 297 4.924187401504371E-004 2.90
40 1.322262577431816E-005 2.98 6.319441252891346E-005 2.96
80 1.664860645729182E-006 2.99 7.992970942741207E-006 2.98

We further examine the temporal convergence of the proposed scheme. For « = 1.3 and @ = 1.7,
the numerical errors and convergence rates in the L>-norm and L*-norm are reported in Table 5. It is
evident that, when sufficiently small spatial steps are employed, the total error is dominated by the pure
temporal term (A#)*~?, resulting in a temporal convergence rate of 3 — a, in excellent agreement with
the theoretical predictions.

Table 5. Temporal errors and convergence rates using piecewise P? basis functions when
N =200,T =1.

M L2-error order L>®-error order

5 4.423464658635612E-003 - 2.235465465435201E-003 -
a=13 10 1.330751848856013E-003 1.67 6.976495787941314E-004 1.68
20 4.124358284335621E-004 1.69 2.117707524889009E-004 1.72
40 1.323327058236111E-004 1.64 6.608997492394428E-005 1.68
5 3.435616859211621E-003 - 2.812091403979456E-003 -
a=1.7 10 1.444498950548263E-003 1.25 1.119056260712752E-003 1.24
20 5.825965873323327E-004 1.31 4.902683343623456E-004 1.28
40 2.432596859907130E-004 1.26 2.004957399603285E-004 1.29

Example 4.2. Consider the fourth-order time-fractional diffusion-wave problem with the
exact solution
u(x, 1) = £x%(1 — x)%.
The corresponding source term f(x, ¢) is computed from the exact solution as
6t3—(7
I'd-a

For numerical tests, one can take Ar = 1/1000 and spatial step sizes h = 1/5,1/10,1/20, 1/40.
Errors are measured in the L?>-norm and L®-norm for different fractional orders. @ = 1.3,1.7 are
plotted in Figures 1 and 2 to verify the accuracy and convergence of the proposed method.

f(x,0) = +24.
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Figure 1. Spatial accuracy test using piecewise P' polynomials for Example 4.2 at the time

t = 1.0 when Ar = 1/1000, @ = 1.3.
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Figure 2. Spatial accuracy test using piecewise P! polynomials for Example 4.2 at the time

t = 1.0 when A7 = 1/1000, @ = 1.5.

5. Conclusions

log(h)

In this work, we study a high-order finite difference/LDG method for a fourth-order fractional
diffusion-wave system. A discretization formula for approximating the fractional derivatives with
1 < a < 2 1is derived. We then propose a fully discrete scheme and rigorously prove its unconditional
stability and convergence. Several numerical examples are provided to demonstrate the excellent
performance and accuracy of the proposed method.

For future work, it will be interesting to extend the present LDG scheme to higher-order spatial
elements, such as P;, and develop fully discrete LDG schemes for two- or three-dimensional
fourth-order fractional diffusion-wave models.
handling auxiliary variables, the LDG framework is well-suited for such high-dimensional extensions.
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In addition, meshless methods, such as the element-free Galerkin approach [42], may provide
promising alternatives for solving high-dimensional fractional partial differential equations. These
directions are expected to further improve the accuracy and broaden the applicability of the
proposed method.
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