Research article

Interplay of a unit-speed constraint and time-delay in the flocking model with internal variables

  • Received: 30 August 2024 Revised: 13 October 2024 Accepted: 21 October 2024 Published: 24 October 2024
  • We studied the dynamics of thermodynamic Cucker–Smale (TCS) particles moving with a constant speed constraint. The TCS model describes the collective dynamics of the population of birds with a time varying internal variable, and it was first introduced as the generalization of the Cucker–Smale (CS) model. In this paper, we considered a modification of the TCS model in which each agent moves at a constant speed, such as the Vicsek model, and we additionally considered the effect of time-delays due to the finiteness of the information propagation speed between agents. Then, we presented several sufficient conditions in terms of initial data and system parameters to exhibit asymptotic flocking. We presented two kinds of results for this purpose. One was an estimate of the diameter of the velocity and temperature configuration, and the other was an estimate of the diameter of the configuration within the time-delay bound $ \tau $.

    Citation: Hyunjin Ahn, Woojoo Shim. Interplay of a unit-speed constraint and time-delay in the flocking model with internal variables[J]. Networks and Heterogeneous Media, 2024, 19(3): 1182-1230. doi: 10.3934/nhm.2024052

    Related Papers:

  • We studied the dynamics of thermodynamic Cucker–Smale (TCS) particles moving with a constant speed constraint. The TCS model describes the collective dynamics of the population of birds with a time varying internal variable, and it was first introduced as the generalization of the Cucker–Smale (CS) model. In this paper, we considered a modification of the TCS model in which each agent moves at a constant speed, such as the Vicsek model, and we additionally considered the effect of time-delays due to the finiteness of the information propagation speed between agents. Then, we presented several sufficient conditions in terms of initial data and system parameters to exhibit asymptotic flocking. We presented two kinds of results for this purpose. One was an estimate of the diameter of the velocity and temperature configuration, and the other was an estimate of the diameter of the configuration within the time-delay bound $ \tau $.



    加载中


    [1] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137–185. https://doi.org/10.1103/RevModPhys.77.137 doi: 10.1103/RevModPhys.77.137
    [2] H. Ahn, Emergent behaviors of thermodynamic Cucker–Smale ensemble with a unit-speed constraint, Discrete Contin. Dyn. Syst. B, 28 (2023), 4800–4825. https://doi.org/10.3934/dcdsb.2023042 doi: 10.3934/dcdsb.2023042
    [3] H. Ahn, Asymptotic flocking of the relativistic Cucker-Smale model with time-delay, Netw. Heterog. Media, 18 (2023), 29–47. https://doi.org/10.3934/nhm.2023002 doi: 10.3934/nhm.2023002
    [4] G. Albi, N. Bellomo, L. Fermo, S. Y. Ha, J. Kim, L. Pareschi, et al., Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math Models Methods Appl Sci, 29 (2019), 1901–2005. https://doi.org/10.1142/S0218202519500374 doi: 10.1142/S0218202519500374
    [5] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, A. Jelic, S. Melillo, et al., Information transfer and behavioural inertia in starling flocks, Nat. Phys., 10 (2014), 691–696. https://doi.org/10.1038/nphys3035 doi: 10.1038/nphys3035
    [6] J. Buck, E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562–564. https://doi.org/10.1038/211562a0 doi: 10.1038/211562a0
    [7] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/090757290 doi: 10.1137/090757290
    [8] P. Cattiaux, F. Delebecque, L. Pedeches, Stochastic Cucker–Smale models: old and new, Ann. Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400 doi: 10.1214/18-AAP1400
    [9] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, et al., Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci., 107 (2010), 11865–11870. https://doi.org/10.1073/pnas.1005766107 doi: 10.1073/pnas.1005766107
    [10] H. Cho, J. G. Dong, S. Y. Ha, Emergent behaviors of a thermodynamic Cucker–Smale flock with a time-delay on a general digraph, Math. Methods Appl. Sci., 45 (2021), 164–196. https://doi.org/10.1002/mma.7771 doi: 10.1002/mma.7771
    [11] S. H. Choi, S. Y. Ha, Interplay of the unit-speed constraint and time-delay in Cucker–Smale flocking, J. Math. Phys., 59 (2018), 082701. https://doi.org/10.1063/1.4996788 doi: 10.1063/1.4996788
    [12] S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed, Commun. Math. Sci., 14 (2016), 953–972. https://doi.org/10.4310/CMS.2016.v14.n4.a4. doi: 10.4310/CMS.2016.v14.n4.a4
    [13] Y. P. Choi, J. Haskovec, Cucker–Smale model with normalized communication weights and time-delay, Kinet. Relat. Models, 10 (2017), 1011–1033. https://doi.org/10.3934/krm.2017040 doi: 10.3934/krm.2017040
    [14] Y. P. Choi, Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time-delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018 doi: 10.1016/j.aml.2018.06.018
    [15] J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39–73. https://doi.org/10.1142/S0219530515400023 doi: 10.1142/S0219530515400023
    [16] K. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86 (1982), 592–627. https://doi.org/10.1016/0022-247X(82)90243-8 doi: 10.1016/0022-247X(82)90243-8
    [17] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
    [18] P. Degond, S. Motsch, Large-scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989–1022. https://doi.org/10.1007/s10955-008-9529-8 doi: 10.1007/s10955-008-9529-8
    [19] G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29 (1991), 571–585. https://doi.org/10.1007/BF00164052 doi: 10.1007/BF00164052
    [20] E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, M. Dorigo, Self-organized flocking with a mobile robot swarm: a novel motion control method, Adapt. Behav., 20 (2012), 460–477. https://doi.org/10.1177/1059712312462248 doi: 10.1177/1059712312462248
    [21] A. Figalli, M. Kang, A rigorous derivation from the kinetic Cucker–Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843
    [22] S. Y. Ha, D. Ko, Y. Zhang, Remarks on the critical coupling strength for the Cucker-Smale model with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763–2793. https://doi.org/10.3934/dcds.2018116 doi: 10.3934/dcds.2018116
    [23] S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3 doi: 10.1007/s00205-016-1062-3
    [24] S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415–435. https://doi.org/10.3934/krm.2008.1.415 doi: 10.3934/krm.2008.1.415
    [25] J. Hale, N. Sternberg, Onset of chaos in differential delay equations, J. Comput. Phys., 77 (1988), 221–239. https://doi.org/10.1016/0021-9991(88)90164-7 doi: 10.1016/0021-9991(88)90164-7
    [26] T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–Smale flocking model, Math Models Methods Appl Sci, 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050
    [27] S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 141 (2011), 923–947. https://doi.org/10.1007/s10955-011-0285-9 doi: 10.1007/s10955-011-0285-9
    [28] E. A. Ok, Real Analysis with Economics Applications, Princeton University Press, Princeton, 2007,306. https://doi.org/10.1515/9781400840892
    [29] R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans. Automat. Contr., 51 (2006), 401–420. https://doi.org/10.1109/TAC.2005.864190 doi: 10.1109/TAC.2005.864190
    [30] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1119/1.1475332
    [31] T. Ruggeri, S. Simić, On the Hyperbolic System of a Mixture of Eulerian Fluids: A Comparison Between Single and Multi-Temperature Model, Math. Methods Appl. Sci., 30 (2007), 827–849. https://doi.org/10.1002/mma.813 doi: 10.1002/mma.813
    [32] S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1–20. https://doi.org/10.1016/S0167-2789(00)00094-4 doi: 10.1016/S0167-2789(00)00094-4
    [33] J. Toner, Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828–4858. https://doi.org/10.1103/PhysRevE.58.4828 doi: 10.1103/PhysRevE.58.4828
    [34] C. M. Topaz, A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152–174. https://doi.org/10.1137/S0036139903437424 doi: 10.1137/S0036139903437424
    [35] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226 doi: 10.1103/PhysRevLett.75.1226
    [36] T. Vicsek, A. Zefeiris, Collective motion, Phys. Rep., 517 (2012), 71–140. https://doi.org/10.1016/j.physrep.2012.03.004 doi: 10.1016/j.physrep.2012.03.004
    [37] A. T. Winfree, The geometry of biological time, Springer, New York, 1980. https://doi.org/10.1007/978-1-4757-3484-3
    [38] A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15–42. https://doi.org/10.1016/0022-5193(67)90051-3 doi: 10.1016/0022-5193(67)90051-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(40) PDF downloads(3) Cited by(0)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog