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Abstract: We studied the dynamics of thermodynamic Cucker–Smale (TCS) particles moving with
a constant speed constraint. The TCS model describes the collective dynamics of the population of
birds with a time varying internal variable, and it was first introduced as the generalization of the
Cucker–Smale (CS) model. In this paper, we considered a modification of the TCS model in which
each agent moves at a constant speed, such as the Vicsek model, and we additionally considered the
effect of time-delays due to the finiteness of the information propagation speed between agents. Then,
we presented several sufficient conditions in terms of initial data and system parameters to exhibit
asymptotic flocking. We presented two kinds of results for this purpose. One was an estimate of the
diameter of the velocity and temperature configuration, and the other was an estimate of the diameter
of the configuration within the time-delay bound τ.

Keywords: Cucker-Smale; flocking; multi-agent system; thermodynamic; time-delay effect;
unit-speed constraint

1. Introduction

Emergent behaviors of interacting multi-agent systems are often observed in our daily life. For
example, aggregation of bacteria [34], flocking of migrating birds [17], schooling of moving
fish [18, 33], synchronization of fireflies and pacemaker cells [6, 19, 38], etc. For a brief introduction
to this subject, we also refer to the articles and books [1, 4, 20, 29, 30, 32, 36, 37]. In this work, we are
interested in self-propelled flocking dynamics in which all agents move at a common velocity with
limited surroundings and simple rules. After the seminal work done by Vicsek [35], many
mathematical models describing flocking behavior have been widely studied in the mathematics
community. Among them, the Cucker–Smale (CS) model [17] is one of the most successful models
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that represents flocking which has been studied from various perspectives, to name a few, local
interactions [27], kinetic descriptions [7, 24], hydrodynamic descriptions [21, 26], stochastic
descriptions [8], time-delay [10, 13, 14], etc.

In [23], Ha and Ruggeri proposed a CS-type flocking model with internal variable, which was
called a temperature variable in their context. They considered the standard balance laws (mass,
momentum, energy conservation) for the finitely many mixtures of spatially homogeneous ideal gases,
together with specific constitutive equations suggested in [31] consistent with the entropy principle
in thermodynamics. To fix the idea, let xi, vi,Ti be the position, velocity, and temperature of the i-th
flocking agent, respectively. Then, the thermodynamic Cucker-Smale model (TCS in short) is given by
the following second-order ordinary differential equations (ODEs) for position–velocity–temperature
variables {(xi, vi,Ti)}Ni=1:



dxi

dt
= vi, t > 0, i ∈ [N] := {1, . . . ,N}, (1.1a)

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j∥)
(

v j

T j
−

vi

Ti

)
, (1.1b)

d
dt

(
Ti +

1
2
∥vi∥

2
)
=
κ2

N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
, (1.1c)

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Rd × (0,∞), (1.1d)

where κ1 and κ2 are nonnegative scale parameters of the velocity and temperature communication
weights, respectively. As in the CS model, the authors in [23] assumed that ϕ, ζ : [0,∞) → [0,∞) are
nonnegative, locally Lipschitz, and monotonically decreasing, so that (1.1) is locally well-posed and
the interaction becomes weaker as the distance between the two agents increases. However, it might
be questionable whether the fact that

each bird’s motion depends on the temperature of the other birds

is natural in terms of a flocking model. Therefore, when we think of the TCS-type models as the
flocking models, we would like to suggest another interpretation for the temperature variable Ti. For
instance, we may interpret 1/Ti as a time-varying measure of how attractive each bird is relative to
other birds in the population. Then, each bird decides which direction to accelerate in proportion to the
velocities and attractiveness of others, even for birds with the same velocity, and it becomes a matter
of finding the initial conditions of all birds’ velocities and attractiveness to converge to the same value.
However, out of respect for the first authors’ expressions, we decided to continue to refer to it as the
TCS model throughout the paper.

Meanwhile, recent experiments on starling flocks [5, 9] indicate that the speed fluctuations of birds
are very small during their flights, demonstrating the need for us to study constant speed flocking
models as [35]. Since the velocities of CS and TCS models converge to the same value under well-
prepared initial conditions, the CS model and the TCS model can be said to have similar asymptotic
behavior to their constant speed counterparts. Recently, [2] studied a new TCS-type flocking model
in which the speed of each particle is constant. The main idea of [2] to create the new model was the
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same idea that led to the unit speed CS model [12] from the CS model: replace the right-hand side of
(1.1b) by its orthogonal projection onto vi, i.e.,

replace ϕ(∥xi − x j∥)
(

v j

T j
−

vi

Ti

)
to

ϕ(∥xi − x j∥)
T j

(
v j −
⟨v j, vi⟩

∥vi∥
2 vi

)
.

Note that because it is an orthogonal projection to vi, the vi term disappears from the original TCS
model, and the only interaction that appears to be asymmetric remains. As a result, the TCS model
with a unit-speed constraint was given as

dxi

dt
= vi, t > 0, i ∈ [N],

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j∥)
T j

(
v j −
⟨v j, vi⟩

∥vi∥
2 vi

)
,

dTi

dt
=
κ2

N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
,

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Sd−1 × (0,∞),

(1.2)

where the assumptions for κ1, κ2, ϕ, and ζ are the same as for the system (1.1), and Sd−1 is the (d − 1)-
dimensional unit sphere embedded in Rd, i.e.,

Sd−1 :=

x = (x1, . . . , xd)
∣∣∣∣∣ d∑

i=1

|xi|2 = 1

 .
In addition to [2] and [12], there have been several mathematical studies on CS-type models with

constant speed constraint. For example, [15] provided a sufficient condition to exhibit a bi-cluster
flocking of unit speed CS ensemble, and [22] found a critical coupling strength to exhibit an
asymptotic flocking for the same model. In particular, [11] conducted a study on a modified unit
speed CS model which also considers the constant time-delay effects. Such time-delay effects are in
fact prevalent in both physical and biological systems due to the fundamental constraint that
information transmission cannot occur instantaneously during mutual communication
processes [16, 25]. This limitation on the speed of communication propagation has found significant
application within the mathematical biology literature.

In this paper, we study the unit speed TCS model with nonconstant time-delays. More precisely,
we define τ ji(t) as the time-delay for the i-th agent to detect a signal from the j-th agent at time t ≥ 0,
where we assume τii(t) = 0 for all i ∈ [N] to avoid a self-processing time-delay. Furthermore, we
assume τ ji(t) : [0,∞) → [0,∞) nonnegative, continuous, and uniformly bounded by a constant τ for
each pair (i, j) ∈ [N]2, i.e.,

τ ji(·) ∈ C([0,∞); [0,∞)), sup
t≥0

max
i, j∈[N]

τ ji(t) ≤ τ, τii(·) ≡ 0, i, j ∈ [N].

Taking account these time-delay effects to Eq (1.2), we propose the following unit speed TCS model
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with time-delay (in short TCSUT):

dxi

dt
= vi, t > 0, i ∈ [N],

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j(t − τ ji(t))∥)
T j(t − τ ji(t))

(
v j(t − τ ji(t)) −

⟨v j(t − τ ji(t)), vi⟩vi

∥vi∥
2

)
,

dTi

dt
=
κ2

N

N∑
j=1

ζ(∥xi − x j(t − τ ji(t))∥)
(

1
Ti
−

1
T j(t − τ ji(t))

)
,

(xi(t), vi(t),Ti(t)) = (x0
i (t), v0

i (t),T 0
i (t)) ∈ Rd × Sd−1 × (0,∞), t ∈ [−τ, 0].

(1.3)

For this flocking model, our main concern in this paper is to find sufficient conditions on the
communication weights and initial data that guarantee the asymptotic flocking to occur. To do this,
we first define the asymptotic flocking phenomenon rigorously.

Definition 1.1. (Asymptotic flocking) Let Z = {(xi, vi,Ti)}Ni=1 be a solution to the system (1.3). The
configuration Z exhibits asymptotic flocking if

sup
t≥0

max
i, j∈[N]

∥xi(t) − x j(t)∥ < ∞,

lim
t→∞

max
i, j∈[N]

∥v j(t) − vi(t)∥ = 0,

lim
t→∞

max
i, j∈[N]

|T j(t) − Ti(t)| = 0.

Note that the nonconstant time-delay in (1.3) means that each i-th bird receives information about
the other birds at different points in time to determine its velocity and temperature. Therefore, if we
want to analyze the diameters

DX(t) := max
i, j∈[N]

∥xi(t) − x j(t)∥, DV(t) := max
i, j∈[N]

∥vi(t) − v j(t)∥, DT (t) := max
i, j∈[N]

|Ti(t) − T j(t)| (1.4)

to show the asymptotic flocking in Definition 1.1, there are some additional technical difficulties
compared to the constant time-delay models. Since it may not be enough to simply use the diameters
in (1.4) to fully control the right-hand side of (1.3), we need to measure the upper bound of the error
that each velocity and temperature can have due to the time-delay effect. For simplicity, we set

X := (x1, . . . , xN), V := (v1, . . . , vN), T := (T1, . . . ,TN),

and for every Z ∈ {X,V,T }, we define the delayed diameter Dτ
Z and perturbation ∆τZ as

Dτ
Z(t) := max

s∈[t−τ,t]
max
i, j∈[N]

∥zi(s) − z j(t)∥, ∆τZ(t) := max
s∈[t−τ,t]

max
i∈[N]
∥zi(s) − zi(t)∥, (1.5)

which satisfy
DZ(t) ≤ Dτ

Z(t), t > 0, Z ∈ {X,V,T }.

Then, the right-hand side of (1.3) can be controlled by using Eq (1.5), since

∥vi(t) − v j(t − τ ji(t))∥ ≤ Dτ
V(t) ≤ DV(t) + ∆τV(t), t > 0, i, j ∈ [N],

|Ti(t) − T j(t − τ ji(t))| ≤ Dτ
T (t) ≤ DT (t) + ∆τT (t), t > 0, i, j ∈ [N],
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and the main result of this paper is to find sufficient conditions for DX to be uniformly bounded and
DV ,DT to converge to zero.

To this end, we will consider two different approaches: constructing a differential inequality for
diameters (DX,DV ,DT ) and constructing a differential inequality for delayed diameters (Dτ

X,D
τ
V ,D

τ
T ).

The analysis of diameters is similar to the method used in [3] and other related works, but the analysis
of delayed diameter is, to the best of the authors’ knowledge, the first attempt on studies of flocking
models with time-delays.

The rest of this paper is organized as follows. In Section 2, we provide some basic properties and
previous flocking estimate for the unit speed TCS model (1.2) without time-delay. In Section 3, we
present several preparatory lemmas which are crucially used to guarantee the global well-posedness of
the system (1.3) and also used to construct differential inequalities for the delayed diameters in Section
4. In Section 4, we derive a system of differential inequalities for the delayed-diameters (Dτ

X,D
τ
V ,D

τ
T )

and present the first main result. In Section 5, we present a system of differential inequalities for the
diameters (DX,DV ,DT ) and the second main result. We also present several numerical experiments in
Section 6 to demonstrate our theoretical results. Finally, Section 7 is devoted to summarizing the main
results of this paper and some discussion on the remaining issues to be investigated in a future work.
In Appendix A and B, we provide the detailed proof of Lemma 3.1 and Lemma 4.1, respectively.

Notation: Throughout this paper, we employ the following notation for simplicity.

∥ · ∥ := standard l2-norm, ⟨·, ·⟩ = standard inner product, [N] := {1, . . . ,N},
zτ ji

j (t) := z j(t − τ ji(t)) for Z = (z1, . . . , zN) ∈ {X,V,T }, t ≥ 0,

ψ
τ ji

ji (t) := ψ(∥xτ ji

j (t) − xi(t)∥) for ψ ∈ {ϕ, ζ}, t ≥ 0,

Tm = min
i∈[N]

Ti, TM = max
i∈[N]

Ti, T τ
m(t) = min

s∈[t−τ,t]
Tm(s), T τ

M(t) = max
s∈[t−τ,t]

TM(s).

2. Preliminaries

In this section, we briefly review several basic properties and previous results of the TCS model
with a unit speed constraint obtained in [2]. Readers with sufficient background knowledge in this
subject may skip this section.

2.1. The unit speed TCS model

In this subsection, we introduce the unit speed TCS model in the absence of time-delay. Recall that
the unit speed TCS model was given as
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dxi

dt
= vi, t > 0, i ∈ [N],

dvi

dt
=
κ1

N

N∑
j=1

ϕ(∥xi − x j∥)
T j

(
v j −
⟨v j, vi⟩

∥vi∥
2 vi

)
,

dTi

dt
=
κ2

N

N∑
j=1

ζ(∥xi − x j∥)
(

1
Ti
−

1
T j

)
,

(xi(0), vi(0),Ti(0)) = (x0
i , v

0
i ,T

0
i ) ∈ Rd × Sd−1 × (0,∞).

(2.1)

Even if we consider Ti as an internal variable other than temperature, the 1st and 2nd laws of
thermodynamics still hold for the original TCS model, since it is derived from the standard balance
laws for spatially homogeneous gas mixtures. Similarly, in the model with the constant speed
condition added, the law of energy conservation and entropy principle hold for Ti’s, which are as
follows.

Proposition 2.1. Let (X,V,T ) be a solution to the system (2.1). Then, the following assertions hold:

1. (Energy conservation) The total internal energy
∑N

i=1 Ti is conserved.

2. (Entropy principle) The total entropy S :=
∑N

i=1 ln Ti is monotonically increasing.

However, these laws can be considered only as long as each Ti exists as a positive real number, since
the solution of (2.1) blows up if any Ti approaches zero. Therefore, in order to see how the solution of
the equation behaves for t → ∞, it must be ensured that all Ti’s cannot be smaller than some positive
real number, which can be seen in the following proposition.

Proposition 2.2. Let {(x0
i , v

0
i ,T

0
i )}Ni=1 ⊂ R

d × Sd−1 × (0,∞) be an arbitrary initial configuration. Then,
the equation (2.1) admits a unique global solution on t > 0 and

0 < Tm(0) ≤ Tm(t) ≤ Ti(t) ≤ TM(t) ≤ TM(0), ∀ i ∈ [N], t ≥ 0.

What Proposition 2.2 means is that we can always be guaranteed that the extreme values of the
temperatures will approach each other, even though they may not actually converge to the same value.
Therefore, a natural question to ask is whether we can expect a similar behavior for velocity vectors,
and the answer to this question can be found in the following proposition.

Proposition 2.3. Let (X,V,T ) be a solution to (2.1) subject to initial data {(x0
i , v

0
i ,T

0
i )}Ni=1 satisfying

min
i, j∈[N]
⟨v0

i , v
0
j⟩ > 0.

Then, the function

A(t) := min
i, j∈[N]
⟨vi(t), v j(t)⟩ = 1 −

1
2

DV(t)2

is monotonically increasing in t.
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2.2. Previous results

In this subsection, we review previous flocking estimates for (2.1) obtained from [2] and discuss
whether they can be improved. We begin with a system of differential inequalities in terms of DX,DV

and DT .

Proposition 2.4. (Differential inequalities for diameters) Let (X,V,T ) be a solution to the system (2.1)
subject to initial data {(x0

i , v
0
i ,T

0
i )}Ni=1 satisfying A(0) > 0. Then, we have∣∣∣∣∣dDX

dt

∣∣∣∣∣ ≤ DV ,
dDV

dt
≤ −

κ1A(0)ϕ(DX)
TM(0)

DV ,
dDT

dt
≤ −

κ2ζ(DX)
TM(0)2 DT .

In particular, the function

L±(DX,DV) := DV ±
κ1A(0)
TM(0)

Φ(DX)

is monotonically decreasing with respect to t, where

Φ(a) :=
∫ a

0
ϕ(s)ds, ∀ a ≥ 0.

SinceL(DX,DV) is monotonically decreasing,Φ(DX) has a uniform in time upper bound determined
by the initial data. Therefore, if this upper bound is smaller than Φ(∞) ∈ [0,∞], we know that the
diameter DX is uniformly bounded in time. Then, Proposition 2.4 determines the exponential decay
rate of the diameters DV and DT .

Proposition 2.5. (Asymptotic flocking) Let (X,V,T ) be a solution to the system (2.1) subject to initial
data {(x0

i , v
0
i ,T

0
i )}Ni=1 satisfying

0 ≤
TM(0)

κ1

∫ ∞
DX(0)

ϕ(s)ds
<

A(0)
DV(0)

=
1 − 1

2 DV(0)2

DV(0)
. (2.2)

Then, we have

DX(t) ≤ D∞X , DV(t) ≤ DV(0) exp
(
−
κ1A(0)ϕ(D∞X )

TM(0)
t
)
, DT (t) ≤ DT (0) exp

(
−
κ2ζ(D∞X )
TM(0)2 t

)
,

where D∞X is the unique positive number satisfying

TM(0)

κ1

∫ D∞X
DX(0)

ϕ(s)ds
=

1 − 1
2 DV(0)2

DV(0)
.

Remark 2.1. We make a few remarks about the optimality of Proposition 2.5.

(1) In [2], the author provided two sufficient frameworks for the asymptotic flocking of (2.1). One is
the result stated in Proposition 2.5, which uses the Lyapunov functional L+, and there was another
result using ‘the bootstrapping argument’ according to their context. However, with more precise
calculations we can show that the result is weaker under stronger conditions than Proposition 2.5.
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(2) In fact, according to the proof of Proposition 2.4, one can obtain

dDV(t)
dt

≤ −
κ1A(t)ϕ(DX(t))

TM(0)
DV(t) = −

κ1ϕ(DX(t))
TM(0)

(
1 −

1
2

D2
V(t)

)
DV(t).

Then, the function

L(DX,DV) :=
1
√

2
ln

 √2 + DV
√

2 − DV

 + κ1Φ(DX)
TM(0)

is monotonically decreasing with respect to t, and we have

DV(t)2

2 − DV(t)2 ≤
DV(0)2

2 − DV(0)2 exp
(
−

2κ1ϕ(D∞X )
TM(0)

t
)
,

whenever the initial data satisfies

0 ≤
∫ ∞

DX(0)
ϕ(s)ds >

TM(0)
√

2κ1

ln
 √2 + DV(0)
√

2 − DV(0)

 .
In Section 3, we will show that the generalizations of Proposition 2.2 and Proposition 2.3 hold in

the time-delayed model (1.3). These will be crucially used to prove the well-posedness of (1.3) and to
find some flocking estimates corresponding to Proposition 2.5.

3. Basic properties of the time-delayed model

In this section, we present the global well-posedness and some basic properties of the system (1.3).
To fix the idea, consider a following time-delayed ODE:

dx(t)
dt
= f (x(t), x(t − τ(t))), τ(·) ∈ C(R; [0, τ]).

Then, x(t − τ(t)) does not play a crucial role to the well-posedness of the solution. Instead, it is
more appropriate to view it as an independently given function that does not depend on the value of
x(t). Therefore, the local well-posedness of the ODE can be obtained when f (y, z) is Lipschitz in y,
continuous in z, and t 7→ x(t − τ(t)) is continuous. Because of the above reasons, it is clear that the
global well-posedness of the system (1.3) can be obtained by the invariance of ∥vi∥ and the boundedness
of 1/Ti for each i ∈ [N], and the invariance of each ∥vi∥ is given by the relation

1
2

d∥vi∥
2

dt
=
κ1

N

N∑
j=1

ϕ
τ ji

ji

T τ ji

j

〈
vτ ji

j −
⟨vτ ji

j , vi⟩vi

∥vi∥
2 , vi

〉
= 0, ∀ i ∈ [N].

Then, due to the uniqueness of the solution and the unit-speed constraint for initial data, we can rewrite
the system (1.3) as the following simplified form:

dxi

dt
= vi, t > 0, i ∈ [N],

dvi

dt
=
κ1

N

N∑
j=1

ϕ
τ ji

ji

T τ ji

j

(
vτ ji

j − ⟨v
τ ji

j , vi⟩vi

)
,

dTi

dt
=
κ2

N

N∑
j=1

ζ
τ ji

ji

 1
Ti
−

1
T τ ji

j

 ,
(xi(t), vi(t),Ti(t)) = (x0

i (t), v0
i (t),T 0

i (t)) ∈ Rd × Sd−1 × (0,∞), ∀ t ∈ [−τ, 0].

(3.1)
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In [10], the authors proved the monotonicity of the maximum and minimum temperatures for the
TCS model with time-delay, which does not have the invariance of speeds as Eq (3.1). Although not
rigorously proved in previous works, their basic idea was to use the following lemma to the minimum
and maximum temperatures. We here present a rigorous proof for the completeness of this paper and
for the use of this lemma in future work.

Lemma 3.1. Let f ∈ C(R;R), and define F = T [ f ] : R→ R as

T [ f ](t) := min
s∈[t−τ,t]

f (s), ∀t ∈ R.

Then, the following assertions hold:

1. If f (t0) > F(t0) for some t0 ∈ R, there exists δ > 0 such that

F(t0) ≤ F(t), ∀t ∈ [t0, t0 + δ].

2. F is monotonically increasing if D+ f (t∗) ≥ 0 for all t∗ ∈ R satisfying F(t∗) = f (t∗).

3. If f ∈ LipL(R,R) for some L > 0, then F ∈ LipL(R,R).

Proof. Since the proof is lengthy and technical, we leave it to Appendix A. □

Remark 3.1. To preempt some possible misconceptions about the relation between f and T [ f ], we
present the following examples.

1. Convergence of F = T [ f ] does not imply the convergence of f . For example, if f (t) = cos
(

2πt
τ

)
,

the function F = T [ f ] is a constant function F ≡ −1. In fact, if F is monotonically increasing,
we have

lim
t→∞

F(t) = lim
t→∞

min
t≤s

F(s) = lim
t→∞

inf
t−τ≤s

f (s) = lim inf
t→∞

f (t).

2. There may not be a ‘first point’ that does not satisfy the condition in Lemma 3.1 (2). For example,
if f (t) = −max {0, t}2, the function f is monotonically decreasing. Then, T [ f ] ≡ f and f ′(t) =
−2 max {0, t} ≥ 0 for only t ≤ 0, and therefore

F(t) = f (t) for all t ∈ R, but D+ f (t) ≥ 0 for only t ≤ 0.

Using Lemma 3.1, one can prove monotonic increase in minimum temperature and monotonic
decrease in maximum temperature, similar to the original models without delay [2,23]. More precisely,
we can prove that T τ

m is monotonically increasing and T τ
M is monotonically decreasing when the initial

values of both functions are positive real numbers.

Lemma 3.2. (Monotonicity of T τ
m and T τ

M) Let (X,V,T ) be a solution to Eq (3.1), where the initial
data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞)

is continuous for every i ∈ [N]. Then, T τ
m and −T τ

M are monotonically increasing, i.e.,

0 < T τ
m(0) ≤ T τ

m(t) ≤ Ti(t) ≤ T τ
M(t) ≤ T τ

M(0), ∀ t ≥ 0, i ∈ [N].
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Proof. Let us denote by
f (t) := min

j∈[N]
T j(t), F := T [ f ].

Then, the constraint for the initial data can be written as F(0) > 0, and we want to prove F(t) ≥ F(0)
for every t ≥ 0. If ε > 0 and t0 is the first time satisfying F(t) = F(0) − ε > 0, then whenever
F(t∗) = f (t∗) in t∗ ∈ [0, t0], we can consider the maximal index set I ⊂ [N] such that

F(t∗) = f (t∗) = T j(t∗), ∀ j ∈ I.

Then, since each Tk(t) is differentiable in t, we have

Tk(t) = Tk(t∗) +
dTk

dt
(t∗)(t − t∗) + o(|t − t∗|), ∀ k ∈ [N],

and by taking the minimum in k, one can obtain

f (t) = f (t∗) +min
j∈I

dT j

dt
(t∗)(t − t∗) + o(|t − t∗|), ∀ 0 < t − t∗ ≪ 1.

Therefore, the Dini derivative D+ f at t = t∗ satisfies

D+ f (t∗) = min
j∈I

dT j

dt
(t∗)

= min
j∈I

κ2

N

N∑
k=1

ζ
τk j

k j

 1
T j(t∗)

−
1

T τk j

k (t∗)


= min

j∈I

κ2

N

N∑
k=1

ζ
τk j

k j

 1
F(t∗)

−
1

T τk j

k (t∗)


≥ 0,

where we used T τk j

k (t∗) ≥ F(t∗) > F(0)− ε > 0 in the last inequality. By using Lemma 3.1, the function
F is therefore monotonically increasing in [0, t0], which contradicts to F(t0) = F(0) − ε < F(0).
Therefore, we have

0 < T τ
m(0) = F(0) ≤ F(t) = T τ

m(t) ≤ Ti(t), ∀ t ≥ 0, i ∈ [N].

In addition, by letting each s ≥ 0 be a new starting time, this also shows that F is monotonically
increasing in [0,∞):

0 < T τ
m(s) = F(s) ≤ F(t) = T τ

m(t) ≤ Ti(t), ∀ t ≥ s ≥ 0, i ∈ [N].

We can also obtain the monotonic decreasing property of T τ
M by choosing f = −TM and F = T [ f ] =

−T τ
M. □

What we want to emphasize in this proof is that we assumed the first point t0 where the value of F
is less than or equal to F(0) − ε and then applied Lemma 3.1 on the interval [0, t0] to prove its
contradiction. This is because, as we pointed out in Remark 3.1. (2), there may not be the first point at
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which the condition of Lemma 3.1(2) does not hold.

Then, by applying the classical Cauchy-Lipschitz theory, the global existence of the solution to
(3.1) can be guaranteed from the invariance of the speed and the existence of positive lower bound
for temperatures. However, the use of Lemma 3.1 goes beyond simply showing the monotonicity of
extreme temperatures. To be specific, every open hemisphere U ⊂ Sd−1 contains all v1(t), . . . , vN(t)
uniformly in t ≥ 0, whenever U contains all initial velocities.

Lemma 3.3. Let (X,V,T ) be a solution to Eq (3.1), where the initial data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞)

is continuous for every i ∈ [N]. If initial data satisfies

min
s∈[−τ,0]

min
j∈[N]
⟨u, v j(s)⟩ > 0 (3.2)

for some u ∈ Sd−1, the function
t 7→ min

s∈[t−τ,t]
min
j∈[N]
⟨u, v j(s)⟩

is monotonically increasing.

Proof. We can employ a similar argument to Lemma 3.2. In this case, we set

f (t) := min
j∈[N]
⟨u, v j(t)⟩, F := T [ f ].

If ε > 0 and t0 is the first time satisfying F(t) = F(0)−ε > 0, then whenever F(t∗) = f (t∗) in t∗ ∈ [0, t0],
we can consider the maximal index set I ⊂ [N] such that

F(t∗) = f (t∗) = ⟨u, v j(t∗)⟩, ∀ j ∈ I.

Then, the Dini derivative D+ f at t = t∗ satisfies

D+ f (t∗) = min
j∈I

〈
dv j

dt
(t∗), u

〉
= min

j∈I

κ1

N

N∑
k=1

ϕ
τk j

k j

T τk j

k

〈
vτk j

k (t∗) − ⟨v
τk j

k (t∗), v j(t∗)⟩v j(t∗), u
〉

≥ min
j∈I

κ1

N

N∑
k=1

ϕ
τk j

k j

T τk j

k

F(t∗)(1 − ⟨v
τk j

k (t∗), v j(t∗)⟩)

≥ 0,

where we used ⟨u, vτk j

k (t∗)⟩ ≥ F(t∗) ≥ 0 in the second inequality. By using Lemma 3.1, the function F
is monotonically increasing in [0, t0], which contradicts to F(t0) = F(0) − ε < F(0). Therefore, we
have F(t) ≥ F(0) for all t ≥ 0, and by letting each s ≥ 0 be a new starting time, this also shows that F
is monotonically increasing in [0,∞). □
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What should be noted here is that Lemma 3.3 alone cannot prove the desired flocking phenomenon,
since the unit vector u ∈ Sd−1 satisfying (3.2) is not unique if it exists. Instead, it is better to use an
indicator that can show that individual velocities are getting closer to each other. The most intuitive
way to achieve this is to assume that all initial velocities can be used as the vector ‘u’ in Eq (3.2), so
that all velocities approach each other. Under such initial conditions, the lemma below implies that the
inner product ⟨vi(t1), v j(t2)⟩ is strictly positive for all i, j ∈ [N] and t1, t2 ≥ −τ.

Lemma 3.4. Let (X,V,T ) be a solution to (3.1), where the initial data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞)

is continuous for every i ∈ [N]. If the initial data satisfies

min
s1∈[−τ,0]
s2∈[−τ,0]

min
i, j∈[N]
⟨vi(s1), v j(s2)⟩ > 0, (3.3)

then the function
Aτ,τ(t1, t2) := min

s1∈[t1−τ,t1]
s2∈[t2−τ,t2]

min
i, j∈[N]
⟨vi(s1), v j(s2)⟩

is monotonically increasing in both t1 and t2.

Proof. Since Aτ,τ(t1, t2) = Aτ,τ(t2, t1) for all t1, t2 ≥ 0, we only need to show the monotonic increasing
property in one variable, which is sufficient to verify

Aτ,τ(0, t2) ≥ Aτ,τ(0, 0), ∀ t2 ≥ 0,

by taking each positive number as a new starting time as in Lemma 3.2 and Lemma 3.3. For every
s1 ∈ [−τ, 0] and i ∈ [N], we apply Lemma 3.3 to u = vi(s1) and obtain

t 7→ min
s2∈[t−τ,t]

min
j∈[N]
⟨vi(s1), v j(s2)⟩

is monotonically increasing. Therefore, we have

Aτ,τ(0, t2) = min
s1∈[−τ,0]

min
i∈[N]

min
s2∈[t2−τ,t2]

min
j∈[N]
⟨vi(s1), v j(s2)⟩

≥ min
s1∈[−τ,0]

min
i∈[N]

min
s2∈[−τ,0]

min
j∈[N]
⟨vi(s1), v j(s2)⟩

= Aτ,τ(0, 0),

which is the desired result. □

Before we close this section, we provide several estimates which will play crucial roles in Section
4. Recall that we defined the diameter and perturbation functions affected by the time-delay as follows:
for Z = (z1, . . . , zN) ∈ {X,V,T },

Dτ
Z(t) := max

s∈[t−τ,t]
max
i, j∈[N]

∥zi(s) − z j(t)∥, ∆τZ(t) := max
s∈[t−τ,t]

max
i∈[N]
∥zi(s) − zi(t)∥.

Consequently, one can easily obtain ∆τZ ≤ Dτ
Z by definition, and Lemma 3.4 yields

Dτ
V(t)2 = 2 − 2 min

s∈[t−τ,t]
min

i, j∈[N]
⟨vi(s), v j(t)⟩ ≤ 2 − 2Aτ,τ(t, t) ≤ 2 − 2Aτ,τ(0, 0),

provided that Eq (3.3) holds, i.e., Aτ,τ(0, 0) > 0. In addition, we can estimate perturbation functions
∆τV(t) and ∆τT (t) by using the integration of ∥żi∥ in [t − τ, t].
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Lemma 3.5. Let (X,V,T ) be a solution to (3.1), where the initial data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞)

is Lipschitz continuous for every i ∈ [N]. Then, for every t ≥ 0, we have

∆τV(t) ≤ max{τ − t, 0}max
i∈[N]
∥v0

i ∥Lip +
(N − 1)κ1ϕ(0)

NT τ
m(0)

∫ t

max{t−τ,0}
Dτ

V(s)ds,

∆τT (t) ≤ max{τ − t, 0}max
i∈[N]
∥T 0

i ∥Lip+
(N − 1)κ2ζ(0)

NT τ
m(0)2

∫ t

max{t−τ,0}
Dτ

T (s)ds.

Proof. For given Z ∈ {V,T } and t ≥ 0, suppose we have

∆τZ(t) = ∥zi(s) − zi(t)∥, s ∈ [t − τ, t].

Then, by using the triangle inequality, one has

∥zi(s) − zi(t)∥ ≤
∫ max{s,0}

s
∥żi(u)∥ du +

∫ t

max{s,0}
∥żi(u)∥ du

≤ max{τ − t, 0}∥z0
i ∥Lip +

∫ t

max{t−τ,0}
∥żi(u)∥ du.

Below, we estimate the upper bound of ∥żi(u)∥ in u ≥ 0 one by one. For the velocity derivative, we
have ∥∥∥∥∥dvi(t)

dt

∥∥∥∥∥ =
∥∥∥∥∥∥∥κ1

N

N∑
j=1

ϕ
τ ji

ji

T τ ji

j

(
vτ ji

j − ⟨v
τ ji

j , vi⟩vi

)∥∥∥∥∥∥∥
≤

κ1ϕ(0)
NT τ

m(0)

∑
j∈[N]

j,i

∥∥∥∥vτ ji

j − ⟨v
τ ji

j , vi⟩vi

∥∥∥∥
=

κ1ϕ(0)
NT τ

m(0)

∑
j∈[N]

j,i

√
1 − ⟨vτ ji

j , vi⟩
2

≤
κ1ϕ(0)
NT τ

m(0)

∑
j∈[N]

j,i

√
2 − 2⟨vτ ji

j , vi⟩

≤
(N − 1)κ1ϕ(0)

NT τ
m(0)

Dτ
V(t), ∀ t ≥ 0,

where we used
ϕ(∥xi(t) − x j(t − τ ji(t))∥) ≤ ϕ(0), T j(t − τ ji(t)) ≥ T τ

m(0),
2 − 2⟨v j(t − τ ji(t)), vi(t)⟩ = ∥v j(t − τ ji(t)) − vi(t)∥2 ≤ Dτ

V(t)2,

in the first and the last inequality, respectively. Similarly, for the temperature derivative, we apply
Lemma 3.2 to Eq (3.1) to obtain∣∣∣∣∣dTi(t)

dt

∣∣∣∣∣ = κ2

N

∑
j∈[N]

j,i

ζ(∥xi(t) − x j(t − τ ji(t))∥)

∣∣∣∣∣∣Ti(t) − T j(t − τ ji(t))
Ti(t)T j(t − τ ji(t))

∣∣∣∣∣∣
≤

(N − 1)κ2ζ(0)
NT τ

m(0)2 Dτ
T (t), ∀ t ≥ 0,
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where we used
ζ(∥xi(t) − x j(t − τ ji(t))∥) ≤ ζ(0), Ti(t)T j(t − τ ji(t)) ≥ T τ

m(0)2,

|Ti(t) − T j(t − τ ji(t))| ≤ Dτ
T (t), ∀ t ≥ 0,

in the last inequality. □

Remark 3.2. Since ż0
i (s) is not given in the differential equation (3.1), we need to use the Lipschitz

constant of the initial data {z0
i }

N
i=1 to evaluate ∆τZ(t) in t ∈ [0, τ). In addition, the integration of ∥v̇i(u)∥

in u ∈ [s, t] is greater than or equal to the ‘geodesic distance’ between vi(s) and vi(t), since velocities
are moving on the unit sphere Sd−1. Therefore, it is possible to modify Lemma 3.5 to

cos−1
(
1 −

1
2
∆τV(t)2

)
≤

(N − 1)κ1ϕ(0)
NT τ

m(0)

∫ t

t−τ
Dτ

V(s)ds, t ≥ τ.

Finally, the last thing we need to check is that the diameter functions Dτ
Z are absolutely continuous,

so it satisfies the fundamental theorem of calculus. If we verify this, we can use the system of
differential inequalities for Dτ

X,D
τ
V , and Dτ

T , which we will prove in the next section, to find sufficient
framework that guarantees the desired flocking phenomenon.

Lemma 3.6. Let (X,V,T ) be a solution to (3.1), where the initial data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞)

is Lipschitz continuous for every i ∈ [N]. Then, Dτ
X,D

τ
V , and Dτ

T are globally Lipschitz in t ≥ 0.

Proof. By using the uniform boundedness of dzi
dt obtained from Lemma 3.2, one can see that

s1 7→ − ∥zi(s1) − w∥

is globally Lipschitz. Since the minimum of finitely many Lipschitz continuous functions is Lipschitz
by the relation

min{ f1, f2} =
f1 + f2 − | f1 − f2|

2
,

we have the global Lipschitz continuity of the function

s 7→ −max
i∈[N]
∥zi(s) − w∥ ,

for every fixed w. In addition, by using Lemma 3.1(3), one can also obtain the Lipschitz continuity of

t 7→ max
s∈[t−τ,t]

max
i∈[N]
∥zi(s) − w∥ .

Now, let us denote a nonempty, compact set CZ(t) by

CZ(t) := {zi(s) : s ∈ [t − τ, t], i ∈ [N]} .

Then, the function
t 7→ max

z∈CZ (t)
∥z − w∥
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is globally Lipschitz, and the function

s2 7→ max
z∈CZ (t1)

∥z − z j(s2)∥

is also globally Lipschitz since z j(s2) is Lipschitz in s2 and the Lipschitz constant of the function
w 7→ max

z∈CZ (t)
∥z−w∥ is not greater than 1. Therefore, all delayed diameter functions are globally Lipschitz,

i.e.,
Dτ

Z(t) = max
j∈[N]

max
z∈CZ (t)

∥z − z j(t)∥

is globally Lipschitz in t. □

4. Asymptotic behavior of the delayed diameters

In this section, we present a system of differential inequalities on delayed diameters Dτ
X,D

τ
V , and

Dτ
T to deduce suitable sufficient frameworks for the asymptotic flocking of the system (3.1). Unlike the

commonly used diameter DZ(t) = maxi, j∈[N] ∥zi(t) − z j(t)∥, each delayed diameter does not specify at
which point in time the distance between two vectors are evaluated. Therefore, in order to estimate the
derivative of the delayed diameter, we need to know the behavior of the function given by a maximum
value of a differentiable function over a certain range.

Lemma 4.1. Let f : R × R→ R be a continuous function, and define

S(t) := [t − τ, t] × {t} ∪ {t} × [t − τ, t], m[ f ](t) := max
(s1,s2)∈S(t)

f (s1, s2), t ∈ R.

If there is a continuous function λ : R × R→ R and t0 ∈ R such that

lim sup
h→0+

f (t1 + h, t2 + h) − f (t1, t2)
h

≤ λ(t1, t2), ∀ (t1, t2) ∈ R2,

λ(t1, t2) ≤ c whenever m[ f ](t0) = f (t1, t2) and (t1, t2) ∈ S(t0),

we have
D+m[ f ](t0) ≤ c.

Proof. Basically, the main idea to prove this lemma is finding a uniform upper bound of the Dini
derivative of h 7→ f (t1 + h, t2 + h) for all points (t1, t2) which maximizes f on S(t). However, since
we are considering the values of f on an infinite set S(t) and analyzing the temporal evolution of
their maximum, we want the Dini derivative to be uniformly bounded by a reasonable value in the
neighborhood of every maximum point in S(t). This is why we required a continuous upper bound λ,
and the technical difficulties of the proof can be resolved with some simple preparation and with the
help of the Berge maximum theorem (see [28] for details). We leave the detailed proof to Appendix
B. □

Now, we present the differential inequalities of the delayed diameters. For every Z ∈ {X,V}, Dτ
Z(t)2

can be represented as the maximum value of

S(t) ∋ (t1, t2) 7→ fZ(t1, t2) := max
i, j∈[N]

∥zi(t1) − z j(t2)∥2.
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Once we find a continuous upper bound λ of the Dini derivative of the function fZ in the (1, 1) direction,
we can use the maximum of λ over the maximizing set of fZ as the upper bound of the Dini derivative
of (Dτ

Z)2. Therefore, by expressing the value of the upper bound λ in terms of the value of fZ, we can
obtain a differential inequality for the delayed diameters.

Lemma 4.2. Let (X,V,T ) be a solution to (3.1), where the initial data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞)

are Lipschitz continuous functions satisfying dx0
i

dt = v0
i for all i ∈ [N] and

Aτ,τ(0, 0) = cos δ, δ ∈ (0,
π

2
).

In addition, we define a continuous function S τ
X as

S τ
X(t) = Dτ

X(0) +
∫ t

0
Dτ

V(s)ds, t ≥ 0.

Then, the following differential inequalities hold:

1.
dDτ

X(t)
dt

≤ Dτ
V(t), a.e. t > 0.

2.
dDτ

V(t)
dt

≤ −
κ1ϕ(S τ

X(t)) cos δ
T τ

M(0)
Dτ

V(t) +
3κ1ϕ(0)
T τ

m(0)
max

s∈[t−τ,t]
∆τV(s), a.e. t > τ.

3.
dDτ

T (t)
dt

≤ −
κ2ζ(S τ

X(t))
T τ

M(0)2 Dτ
T (t) +

3κ2ζ(0)
T τ

m(0)2 max
s∈[t−τ,t]

∆τT (s), a.e. t > τ.

Proof. (1) For every i, j ∈ N and t1, t2 ≥ 0, define

fi j(t1, t2) := ∥xi(t1) − x j(t2)∥2.

Then, for the continuous function fX := max
i, j∈[N]

fi j,

lim sup
h→0+

fX(t1 + h, t2 + h) − fX(t1, t2)
h

≤ max
i, j∈[N]

lim
h→0+

fi j(t1 + h, t2 + h) − fi j(t1, t2)
h

= max
i, j∈[N]

2⟨xi(t1) − x j(t2), vi(t1) − v j(t2)⟩

=: λ(t1, t2).

In particular, for every (t1, t2) ∈ S(t), we have

λ(t1, t2) ≤ 2Dτ
X(t)Dτ

V(t).

Therefore, by using Lemma 4.1, one can obtain

D+[(Dτ
X)2](t) = D+m[ fX](t) ≤ 2Dτ

X(t)Dτ
V(t),

which implies
dDτ

X(t)
dt

≤ Dτ
V(t)
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whenever Dτ
X is differentiable at t. Finally, from the Lipschitz continuity of Dτ

X in Lemma 3.6, we have
the desired result.

(2) For the velocity diameter Dτ
V , we set

fi j(t1, t2) = ∥vi(t1) − v j(t2)∥2, fV = max
i, j∈[N]

fi j.

Then, we have

lim
h→0+

fi j(t1 + h, t2 + h) − fi j(t1, t2)
h

= 2⟨vi(t1) − v j(t2), v̇i(t1) − v̇ j(t2)⟩
= −2⟨vi(t1), v̇ j(t2)⟩ − 2⟨v j(t2), v̇i(t1)⟩

= −
2κ1

N

∑
k∈[N]

ϕ
τk j

k j (t2)

T τk j

k (t2)

〈
vi(t1), vτk j

k (t2) − ⟨vτk j

k (t2), v j(t2)⟩v j(t2)
〉

−
2κ1

N

∑
k∈[N]

ϕτki
ki (t1)

T τki
k (t1)

〈
v j(t2), vτki

k (t1) − ⟨vτki
k (t1), vi(t1)⟩vi(t1)

〉
=: −

2κ1

N

∑
k∈[N]

ϕ
τk j

k j (t2)

T τk j

k (t2)
Ii jk(t1, t2) −

2κ1

N

∑
k∈[N]

ϕτki
ki (t1)

T τki
k (t1)

I jik(t2, t1),

where each Ii jk(t1, t2) satisfies

Ii jk(t1, t2) =
〈
vi(t1), vτk j

k (t2) − ⟨vτk j

k (t2), v j(t2)⟩v j(t2)
〉

=

〈
vi(t1) − v j(t2), vτk j

k (t2) − vk(t2) − ⟨vτk j

k (t2) − vk(t2), v j(t2)⟩v j(t2)
〉

+

〈
vi(t1), vk(t2) − ⟨vk(t2), v j(t2)⟩v j(t2)

〉
≥ −∥vi(t1) − v j(t2)∥∆τV(t2) +

〈
vi(t1), vk(t2) − ⟨vk(t2), v j(t2)⟩v j(t2)

〉
.

In particular, if fi j(t1, t2) = fV(t1, t2) for some i, j ∈ [N] and t1, t2 ≥ 0,

lim
h→0+

fi j(t1 + h, t2 + h) − fi j(t1, t2)
h

= −
2κ1

N

∑
k∈[N]

ϕ
τk j

k j (t2)

T τk j

k (t2)
Ii jk(t1, t2) −

2κ1

N

∑
k∈[N]

ϕτki
ki (t1)

T τki
k (t1)

I jik(t2, t1)

≤

(
2κ1ϕ(0)
T τ

m(t2)
∆τV(t2) +

2κ1ϕ(0)
T τ

m(t1)
∆τV(t1)

)
∥vi(t1) − v j(t2)∥

−
2κ1

N
ϕ(Dτ

X(t2))
T τ

M(t2)

∑
k∈[N]

〈
vi(t1), vk(t2) − ⟨vk(t2), v j(t2)⟩v j(t2)

〉
−

2κ1

N
ϕ(Dτ

X(t1))
T τ

M(t1)

∑
k∈[N]

〈
v j(t2), vk(t1) − ⟨vk(t1), vi(t1)⟩vi(t1)

〉
,
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where we used ⟨vi(t1), v j(t2)⟩ ≥ Aτ,τ(t1, t2) > 0 and

∥xi(t1) − xτki
k (t1)∥ ≤ Dτ

X(t1), ∥x j(t2) − xτk j

k (t2)∥ ≤ Dτ
X(t2),〈

vi(t1), vk(t2) − ⟨vk(t2), v j(t2)⟩v j(t2)
〉
≥

〈
vi(t1), v j(t2)

〉
(1 − ⟨vk(t2), v j(t2)⟩) ≥ 0,〈

v j(t2), vk(t1) − ⟨vk(t1), vi(t1)⟩vi(t1)
〉
≥

〈
vi(t1), v j(t2)

〉
(1 − ⟨vk(t1), vi(t1)⟩) ≥ 0,

in the last inequality. In addition, by using the inequality〈
vi(t1), vk(t2) − ⟨vk(t2), v j(t2)⟩v j(t2)

〉
+

〈
v j(t2), vk(t1) − ⟨vk(t1), vi(t1)⟩vi(t1)

〉
=

(
⟨vi(t1), vk(t2)⟩ + ⟨vk(t1), v j(t2)⟩

)(
1 − ⟨vi(t1), v j(t2)⟩

)
− ⟨vk(t1) − vk(t2), vi(t1) − v j(t2)⟩⟨vi(t1), v j(t2)⟩

≥ ⟨vi(t1), v j(t2)⟩∥vi(t1) − v j(t2)∥
(
∥vi(t1) − v j(t2)∥ − ∥vk(t2) − vk(t1)∥

)
,

we have

lim
h→0+

fV(t1 + h, t2 + h) − fV(t1, t2)
h

≤

(
2κ1ϕ(0)
T τ

m(t2)
∆τV(t2) +

2κ1ϕ(0)
T τ

m(t1)
∆τV(t1)

) √
fV(t1, t2)

− 2κ1 min
{
ϕ(Dτ

X(t1))
T τ

M(t1)
,
ϕ(Dτ

X(t2))
T τ

M(t2)

}
×(

1 −
1
2

fV(t1, t2)
) √

fV(t1, t2)
(√

fV(t1, t2) −max
k∈[N]
∥vk(t2) − vk(t1)∥

)
=: λ(t1, t2).

Therefore, by using Lemma 4.1, one can obtain

D+[(Dτ
V)2](t) = D+m[ fV](t) ≤

(
2κ1ϕ(0)
T τ

m(0)
∆τV(t) +

2κ1ϕ(0)
T τ

m(0)
max

s∈[t−τ,t]
∆τV(s)

)
Dτ

V(t)

−
2κ1ϕ(S τ

X(t))
T τ

M(0)

(
1 −

1
2

Dτ
V(t)2

)
Dτ

V(t)
(
Dτ

V(t) − ∆τV(t)
)
,

which implies the following inequalities whenever Dτ
V is differentiable at t:

dDτ
V(t)

dt
≤

(
κ1ϕ(0)
T τ

m(0)
∆τV(t) +

κ1ϕ(0)
T τ

m(0)
max

s∈[t−τ,t]
∆τV(s)

)
−
κ1ϕ(S τ

X(t))
T τ

M(0)

(
1 −

1
2

Dτ
V(t)2

) (
Dτ

V(t) − ∆τV(t)
)

≤ −
κ1ϕ(S τ

X(t))
T τ

M(0)

(
1 −

1
2

Dτ
V(t)2

)
Dτ

V(t) +
3κ1ϕ(0)
T τ

m(0)
max

s∈[t−τ,t]
∆τV(s),

≤ −
κ1ϕ(S τ

X(t)) cos δ
T τ

M(0)
Dτ

V(t) +
3κ1ϕ(0)
T τ

m(0)
max

s∈[t−τ,t]
∆τV(s).
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Similar to the case of Dτ
X, we reach the desired result due to the Lipschitz continuity of Lemma 3.6.

(3) In this case, we define

fi j(t1, t2) = Ti(t1) − T j(t2), fT = max
i, j∈[N]

fi j.

Then, whenever fi j(t1, t2) = fT (t1, t2) and t1, t2 ≤ t, we get

lim
h→0+

fi j(t1 + h, t2 + h) − fi j(t1, t2)
h

= Ṫi(t1) − Ṫ j(t2)

=
κ2

N

∑
k∈[N]

ζτki
ki (t1)

(
1

Ti(t1)
−

1
T τki

k (t1)

)
−
κ2

N

∑
k∈[N]

ζ
τk j

k j (t2)
 1
T j(t2)

−
1

T τk j

k (t2)


≤
κ2

N

∑
k∈[N]

ζτki
ki (t1)

(
1

Ti(t1)
−

1
Tk(t1)

)
−
κ2

N

∑
k∈[N]

ζ
τk j

k j (t2)
(

1
T j(t2)

−
1

Tk(t2)

)
+ κ2ζ(0)

(
∆τT (t1)
T τ

m(t1)2 +
∆τT (t2)
T τ

m(t2)2

)
.

By using the relations

1
Ti(t1)

−
1

Tk(t1)
=

1
TM(t1)

−
1

Tk(t1)
≤ 0 ≤

1
Tm(t2)

−
1

Tk(t2)
=

1
T j(t2)

−
1

Tk(t2)
,

the above inequality reduces to

lim
h→0+

fi j(t1 + h, t2 + h) − fi j(t1, t2)
h

≤
κ2

N

∑
k∈[N]

ζ(S τ
X(t1))

(
1

TM(t1)
−

1
Tk(t1)

)
−
κ2

N

∑
k∈[N]

ζ(S τ
X(t2))

(
1

Tm(t2)
−

1
Tk(t2)

)
+ κ2ζ(0)

(
∆τT (t1)
T τ

m(t1)2 +
∆τT (t2)
T τ

m(t2)2

)
≤
κ2

N

∑
k∈[N]

ζ(S τ
X(t))

(
1

TM(t1)
−

1
Tk(t1)

−
1

Tm(t2)
+

1
Tk(t2)

)
+ κ2ζ(0)

(
∆τT (t1)
T τ

m(t1)2 +
∆τT (t2)
T τ

m(t2)2

)
≤ −κ2ζ(S τ

X(t))
(

1
Tm(t2)

−
1

TM(t1)

)
+

κ2ζ(0)
T τ

m(t1)T τ
m(t2)

max
k∈[N]
|Tk(t1) − Tk(t2)|

+ κ2ζ(0)
(
∆τT (t1)
T τ

m(t1)2 +
∆τT (t2)
T τ

m(t2)2

)
=: λ(t1, t2).

Therefore, by using Lemma 4.1, one can show that

D+[Dτ
T ](t) ≤ −

κ2ζ(S τ
X(t))

T τ
M(0)2 Dτ

T (t) +
κ2ζ(0)
T τ

m(0)2

(
2∆τT (t) + max

s∈[t−τ,t]
∆τT (s)

)
,

Networks and Heterogeneous Media Volume 19, Issue 3, 1182–1230.



1201

which implies
dDτ

T (t)
dt

≤ −
κ2ζ(S τ

X(t))
T τ

M(0)2 Dτ
T (t) +

3κ2ζ(0)
T τ

m(0)2 max
s∈[t−τ,t]

∆τT (s),

whenever Dτ
T is differentiable at t. □

Note that the differential inequality in Lemma 4.2 holds for (almost every) t > τ. This is because
we need to estimate the derivative of fZ at all points on S(t). Since the ODE (3.1) only gives the
derivative of żi(s) for s > 0, we require t − τ > 0 in Lemma 4.2.

The next lemma allows us to present the upper bound of the objective function when the differential
inequalities as Lemma 3.5 and Lemma 4.2 are given.

Lemma 4.3. Let y : [0,∞) → [0,∞) be a Lipschitz continuous function and f : [0,∞) → R be a
continuous function. Assume that y and f satisfy

ẏ(t) ≤ −ay(t) + max
s∈[t−τ,t]

f (s), t > τ, (4.1a)

f (t) ≤ d
∫ t

t−τ
y(s)ds, t > τ, (4.1b)

for some constants a, d > 0 and τ ≥ 0. If τ is sufficiently small to satisfy

τ <
a
d
,

and the following assertions hold.

(1) There are two constants b, c > 0 such that

L(c) ≤
1
d
, L : (0, a)→ R, L(x) :=

exτ(exτ − 1)
x(a − x)

,

y(τ) ≤
becτ

a − c
, max

t∈[0,2τ]
f (t)ec(t−τ) < b.

(4.2)

(2) Whenever b, c > 0 satisfy (4.2), we have

y(t) < y(τ)e−a(t−τ) +
becτ

a − c

(
e−c(t−τ) − e−a(t−τ)

)
, t > τ,

f (t) < be−c(t−τ), t ≥ 0.
(4.3)

Proof. Since L is continuous and

lim
x→0+

L(x) =
τ

a
<

1
d
, lim

x→a−
L(x) = +∞,

one can find a positive number c ∈ (0, a) satisfying L(c) ≤ 1
d , and one can also choose a sufficiently

large b to satisfy (4.2). Now, assume there exists the first time t∗ ∈ (2τ,∞) such that

f (t∗)ec(t∗−τ) = b. (4.4)
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Then, from the definition of t∗, we have

f (t) < be−c(t−τ), t ∈ [0, t∗), (4.5)

and we substitute (4.5) to (4.1) to obtain

ẏ(t) < −ay(t) + be−c(t−2τ), t ∈ (τ, t∗). (4.6)

Consequently, the Grönwall inequality (4.6) yields

y(t) < y(τ)e−a(t−τ) +
becτ

a − c

(
e−c(t−τ) − e−a(t−τ)

)
=

becτ

a − c
e−c(t−τ) +

(
y(τ) −

becτ

a − c

)
e−a(t−τ)

≤
becτ

a − c
e−c(t−τ), ∀ t ∈ (τ, t∗],

(4.7)

where we used Eq (4.2) in the last inequality. On the other hand, by using Eq (4.7) to Eq (4.1b) at
t = t∗, one can also obtain

f (t∗) ≤ d
∫ t∗

t∗−τ
y(t)dt

< d
∫ t∗

t∗−τ

becτ

a − c
e−c(t−τ)dt

=
bdecτ

c(a − c)

(
e−c(t∗−2τ) − e−c(t∗−τ)

)
= bde−c(t∗−τ)L(c)
≤ be−c(t∗−τ),

which leads to a contradiction in Eq (4.4). Therefore, we have

f (t) < be−c(t−τ)

for all t ≥ 0, which implies the desired result for Eq (4.3).
□

Remark 4.1. For the case when τ = 0, the function L becomes a constant function 0. Then, we can
choose any number c from (0, a) to satisfy L(c) ≤ 1

d , and every positive b satisfying b ≥ (a− c)y(0) also
satisfies the condition (4.2). Therefore, we have

y(t) < y(0)e−at + (y(0) +
1
n

)(e−(a− 1
n )t − e−at), ∀ t > 0, n ∈ N,

which implies
y(t) ≤ y(0)e−at, ∀ t > 0.

Since inequality (4.1) for τ = 0 is

ẏ(t) ≤ −ay(t) + f (t), f (t) ≤ 0, ∀ t > 0,

we can say that Lemma 4.3 gives the optimal upper bound for τ = 0.
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Now, we introduce the first sufficient framework for the emergence of flocking.

• (F 1): Aτ,τ(0, 0) = cos δ > 0, δ ∈ (0, π2 ).
• (F 2): There exists a constant Dτ,∞

X > 0 satisfying

Φ(Dτ,∞
X ) > Φ

(
Dτ

X(0)
)
+

T τ
M(0)

κ1 cos δ
· 2 sin

δ

2
, Φ(x) :=

∫ x

0
ϕ(u)du.

• (F 3): The time-delay bound τ ≥ 0 is sufficiently small to satisfy

Φ(Dτ,∞
X ) > Φ

(
Dτ

X(0) + 2τ sin
δ

2

)
+

T τ
M(0)

κ1 cos δ
·

(
2 sin

δ

2
+ d1τ ·

βec1τ

c1

)
,

a1 = c1 + d1τec1τ ·
ec1τ − 1

c1τ
, a2 = c2 + d2τec2τ ·

ec2τ − 1
c2τ

,

(4.8)

for some c1 ∈ (0, a1], c2 ∈ (0, a2], where the constants a1, a2, d1, d2, and β are given by

a1 =
κ1ϕ(Dτ,∞

X ) cos δ
T τ

M(0)
, a2 =

κ2ζ(Dτ,∞
X )

T τ
M(0)2 ,

d1 =
3(N − 1)

N

(
κ1ϕ(0)
T τ

m(0)

)2

, d2 =
3(N − 1)

N

(
κ2ζ(0)
T τ

m(0)2

)2

,

β := max

2 sin
δ

2
,

maxi∈[N] ∥v0
i ∥Lip

(N−1)κ1ϕ(0)
NT τ

m(0)

 .
Now, we are ready to provide the first main result on the asymptotic flocking of time-delayed unit

speed TCS model (3.1), by showing that Dτ
X is uniformly bounded and Dτ

V ,D
τ
T converge to zero.

Theorem 4.1. Let (X,V,T ) be a solution to (3.1), where the initial data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞), i ∈ [N]

are Lipschitz continuous functions satisfying dx0
i

dt = v0
i and (F 1)–(F 3). Then, we estimate

Dτ
X(t) ≤ S τ

X(t) < Dτ,∞
X ∀ t > 0,

Dτ
V(t) ≤

βc1τ

1 − e−c1τ
· e−c1(t−τ) ∀ t > τ, ∆τV(t) ≤

(N − 1)κ1ϕ(0)
NT τ

m(0)
βτe−c1(t−2τ) ∀ t ≥ 0,

Dτ
T (t) ≤

γc2τ

1 − e−c2τ
· e−c2(t−τ) ∀ t > τ, ∆τT (t) ≤

(N − 1)κ2ζ(0)
NT τ

m(0)2 γτe−c2(t−2τ) ∀ t ≥ 0,

where the constant γ is given by

γ := max

T τ
M(0) − T τ

m(0),
maxi∈[N] ∥T 0

i ∥Lip
(N−1)κ2ζ(0)

NT τ
m(0)2

 .
Therefore, the solution (X,V,T ) exhibits the asymptotic flocking.
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Proof. (Step 1) First, we find the range of t such that Dτ
V and Dτ

T satisfy the inequalities playing the
role of y(t) in Lemma 4.3. Assume there exists a minimum t∗ < ∞ among all t satisfying S τ

X(t) ≥ Dτ,∞
X .

Then, by using Lemma 3.4, we have

Φ(Dτ,∞
X ) = Φ(S τ

X(t∗)) = Φ
(
Dτ

X(0) +
∫ t∗

0
Dτ

V(s)ds
)

≤ Φ
(
Dτ

X(0) +
√

2 − 2Aτ,τ(0, 0)t∗
)
= Φ

(
Dτ

X(0) + 2t∗ sin
δ

2

)
,

which implies t∗ > τ from the condition (4.8). We then use the monotone decreasing property of ϕ, ζ
and Lemma 3.5 and Lemma 4.2 to obtain

dDτ
V(t)

dt
≤ −a1Dτ

V(t) + max
s∈[t−τ,t]

3κ1ϕ(0)
T τ

m(0)
∆τV(s), a.e. t ∈ (τ, t∗),

3κ1ϕ(0)
T τ

m(0)
∆τV(t) ≤ d1

∫ t

t−τ
Dτ

V(s)ds, t ∈ (τ, t∗),
(4.9)

for the delayed diameter Dτ
V , and similarly,

dDτ
T (t)

dt
≤ −a2Dτ

T (t) + max
s∈[t−τ,t]

3κ2ζ(0)
T τ

m(0)2 ∆
τ
T (s), a.e. t ∈ (τ, t∗),

3κ2ζ(0)
T τ

m(0)2 ∆
τ
T (t) ≤ d2

∫ t

t−τ
Dτ

T (s)ds, t ∈ (τ, t∗),
(4.10)

for the delayed diameter Dτ
T .

(Step 2) Now, we will show that t∗ cannot be a finite number so that Eqs (4.9) and (4.10) hold for all
t ∈ (τ,∞). For every positive number b1, b2 satisfying

b1 > βec1τ · d1τ, b2 > γec2τ · d2τ, (4.11)

one can verify that (4.2) holds for (b1, c1) and (b2, c2). More precisely, by using Eqs (4.8) and (4.11)
and Lemma 3.4, we show that

b1ec1τ

a1 − c1
=

b1

d1τ
·

c1τ

ec1τ − 1
> β ·

c1τ

1 − e−c1τ
≥ β ≥ 2 sin

δ

2
≥ Dτ

V(τ).

In addition, we use the monotonic increasing property of Aτ,τ(t, t) (see Lemma 3.4) to verify

3κ1ϕ(0)
T τ

m(0)
∆τV(t) ≤

3κ1ϕ(0)
T τ

m(0)

[
max{τ − t, 0}max

i∈[N]
∥v0

i ∥Lip +
(N − 1)κ1ϕ(0)

NT τ
m(0)

∫ t

max{0,t−τ}
Dτ

V(u)du
]

≤
3κ1ϕ(0)
T τ

m(0)

[
max{τ − t, 0}max

i∈[N]
∥v0

i ∥Lip +
(N − 1)κ1ϕ(0)

NT τ
m(0)

∫ t

max{0,t−τ}

√
2 − 2Aτ,τ(0,0)du

]
=

3κ1ϕ(0)
T τ

m(0)

[
max{τ − t, 0}max

i∈[N]
∥v0

i ∥Lip +
(N − 1)κ1ϕ(0)

NT τ
m(0)

(t −max{0, t − τ})
(
2 sin

δ

2

)]
=

3κ1ϕ(0)
T τ

m(0)

[
max{τ − t, 0}max

i∈[N]
∥v0

i ∥Lip +
(N − 1)κ1ϕ(0)

NT τ
m(0)

(min{t, τ})
(
2 sin

δ

2

)]
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≤
3κ1ϕ(0)
T τ

m(0)

[
max{τ − t, 0}

(N − 1)κ1ϕ(0)
NT τ

m(0)
β +

(N − 1)κ1ϕ(0)
NT τ

m(0)
(min{t, τ})β

]
=

3κ1ϕ(0)
T τ

m(0)
·

(N − 1)κ1ϕ(0)
NT τ

m(0)
· β [max{τ − t, 0} +min{t, τ}]

=
3κ1ϕ(0)
T τ

m(0)
·

(N − 1)κ1ϕ(0)
NT τ

m(0)
· β [max{τ, t} +min{t, τ} − t]

=
3κ1ϕ(0)
T τ

m(0)
·

(N − 1)κ1ϕ(0)
NT τ

m(0)
· β [τ + t − t]

= β · d1τ, ∀ t ∈ [0, 2τ],

which implies

max
t∈[0,2τ]

3κ1ϕ(0)
T τ

m(0)
∆τV(t)ec1(t−τ) ≤ βec1τ · d1τ < b1.

Similarly, by using Eqs (4.8) and (4.11) and Lemma 3.2, we have

b2ec2τ

a2 − c2
=

b2

d2τ
·

c2τ

ec2τ − 1
> γ ·

c2τ

1 − e−c2τ
≥ γ ≥ T τ

M(0) − T τ
m(0),

and we use the monotonic decreasing property of Dτ
T (t) = T τ

M(t) − T τ
m(t) (see Lemma 3.2) to derive

3κ2ζ(0)
T τ

m(0)2 ∆
τ
T (t) ≤

3κ2ζ(0)
T τ

m(0)2

[
max{τ − t, 0}max

i∈[N]
∥T 0

i ∥Lip +
(N − 1)κ2ζ(0)

NT τ
m(0)2

∫ t

max{0,t−τ}
Dτ

T (u)du
]

≤
3κ2ζ(0)
T τ

m(0)2

[
max{τ − t, 0}max

i∈[N]
∥T 0

i ∥Lip +
(N − 1)κ2ζ(0)

NT τ
m(0)2

∫ t

max{0,t−τ}
Dτ

T (0)du
]

=
3κ2ζ(0)
T τ

m(0)2

[
max{τ − t, 0}max

i∈[N]
∥T 0

i ∥Lip +
(N − 1)κ2ζ(0)

NT τ
m(0)2 Dτ

T (0)(min{t, τ})
]

≤
3κ2ζ(0)
T τ

m(0)2

[
max{τ − t, 0} ·

(N − 1)κ2ζ(0)
NT τ

m(0)2 · γ +
(N − 1)κ2ζ(0)

NT τ
m(0)2 · γ ·min{t, τ}

]
=

3κ2ζ(0)
T τ

m(0)2 ·
(N − 1)κ2ζ(0)

NT τ
m(0)2 · γ [max{τ − t, 0} +min{t, τ}]

= γ · d2τ,

which implies

max
t∈[0,2τ]

3κ2ζ(0)
T τ

m(0)2 ∆
τ
T (t)ec2(t−τ) ≤ γec2τ · d2τ < b2.

Therefore, we apply Lemma 4.3 to (4.9) and (4.10) for all b1, b2 satisfying (4.11) to obtain

3κ1ϕ(0)
T τ

m(0)
∆τV(t) ≤ d1τβe−c1(t−2τ),

3κ2ζ(0)
T τ

m(0)2 ∆
τ
T (t) ≤ d2τγe−c2(t−2τ), ∀ t ∈ (0, t∗). (4.12)

In particular, we employ the result of Lemma 4.2 to (4.12) to get

d
dt

[
Dτ

V(t) +
κ1Φ(S τ

X(t)) cos δ
T τ

M(0)

]
≤ d1τβe−c1(t−2τ), ∀ t ∈ (τ, t∗). (4.13)
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However, from direct calculation, (4.8) and (4.13) yield

Dτ
V(t∗) +

κ1Φ(S τ
X(t∗)) cos δ

T τ
M(0)

≤ Dτ
V(τ) +

κ1Φ(S τ
X(τ)) cos δ

T τ
M(0)

+ d1τ ·
βec1τ

c1
(1 − e−c1(t∗−τ))

≤ 2 sin
δ

2
+
κ1Φ(Dτ

X(0) + 2τ sin δ
2 ) cos δ

T τ
M(0)

+ d1τ ·
βec1τ

c1

<
κ1Φ(Dτ,∞

X ) cos δ
T τ

M(0)
,

which contradicts to S τ
X(t∗) = Dτ,∞

X obtained from the existence of t∗ < ∞. Therefore, we have S τ
X(t) <

Dτ,∞
X for all t > τ, and we apply Lemma 4.3 to (4.9) and (4.10) for all b1, b2 satisfying (4.11) to reach

the desired results. □

Remark 4.2. Theorem 4.1 is also applicable when time-delay τ is set to 0. If τ = 0, the framework
(F 1)–(F 3) becomes

A(0) > 0,
∫ ∞

DX(0)
ϕ(s)ds >

TM(0)DV(0)
κ1A(0)

,

which coincides with the condition (2.2). In addition, the condition (4.8) reduces to

c1 = a1, c2 = a2, β = DV(0), γ = DT (0).

Therefore, Theorem 4.1 exactly coincides with Proposition 2.5 for τ = 0.

5. Asymptotic behavior of the diameters

In this section, we provide a system of differential inequalities on diameters DX,DV , and DT . In this
case, the Lipschitz continuity of the diameters can be easily obtained from the Lipschitz continuity of
X,V,T . The goal of this section is to find a sufficient framework without the condition (F 1), so that
the initial data might allow ⟨vi(t1), v j(t2)⟩ < 0 for some i, j ∈ [N] and t1, t2 ∈ [−τ, 0]. More precisely,
we will replace (F 1) to the weaker condition that

max
i, j∈[N]
⟨vi(0), v j(0)⟩ > 0.

In this case, since we cannot apply the result of Lemma 3.4, the proof of Theorem 4.1 cannot be applied
as is, and we must consider the possibility that Aτ,τ may oscillate at the beginning rather than increasing
monotonically. The overall flow of this section is that we can still control the diameter DV under the
condition that τ is sufficiently small.

Lemma 5.1. Let (X,V,T ) be a solution to Eq (3.1) subject to the continuous initial data {(x0
i , v

0
i ,T

0
i )}Ni=1

satisfying dx0
i

dt = v0
i for all i ∈ [N]. Then, the following differential inequalities hold:

1. Whenever DX is differentiable at time t > −τ, we have

dDX(t)
dt

≤ DV(t).
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2. Whenever DV is differentiable at time t > 0 and DV(t) ≤
√

2, we have

dDV(t)
dt

≤ −
κ1ϕ(DX(t) + τ)

T τ
M(t)

[
1 −

N − 1
2N

DV(t)2
]

DV(t) +
2(N − 1)κ1ϕ(0)

NT τ
m(t)

∆τV(t).

3. Whenever DT is differentiable at time t > 0, we have

dDT (t)
dt

≤ −κ2ζ(DX(t) + τ)
(

1
Tm(t)

−
1

TM(t)

)
+

2(N − 1)κ2ζ(0)
N(T τ

m(t))2 ∆τT (t).

Proof. We can prove this lemma by using a similar argument to Lemma 4.2.
(1) For every i, j ∈ [N] and t > −τ, we have

d
dt
∥xi(t) − x j(t)∥2 = 2⟨xi(t) − x j(t), vi(t) − v j(t)⟩ ≤ 2DX(t)DV(t).

Therefore, one can obtain

D+[(DX)2](t) ≤ 2 max
i, j∈[N]
⟨xi(t) − x j(t), vi(t) − v j(t)⟩ ≤ 2DX(t)DV(t),

which implies

2DX(t)
dDX(t)

dt
≤ 2DX(t)DV(t),

whenever DX is differentiable at time t.

(2) Let J(t) be the set of all index pairs (i, j) which maximize the difference between two velocities at
time t, i.e.,

(i, j) ∈ J(t) ⇐⇒ ∥vi(t) − v j(t)∥ = DV(t) ≤
√

2.
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Then, for every (i, j) ∈ J(t), we can split the derivative of ∥vi − v j∥
2 at time t into four parts as follows:

d
dt

∥∥∥vi(t) − v j(t)
∥∥∥2

= 2
〈
vi(t) − v j(t),

dvi

dt
(t) −

dv j

dt
(t)

〉
= −

2κ1

N

∑
k∈[N]−{i}

ϕτki
ki

T τki
k

(t)
〈
v j(t), v

τki
k (t) − ⟨vτki

k (t), vi(t)⟩vi(t)
〉

−
2κ1

N

∑
k∈[N]−{ j}

ϕ
τk j

k j

T τk j

k

(t)
〈
vi(t), v

τk j

k (t) − ⟨vτk j

k (t), v j(t)⟩v j(t)
〉

= −
2κ1

N

∑
k∈[N]−{i}

ϕτki
ki

T τki
k

(t)
〈
v j(t), vk(t) − ⟨vk(t), vi(t)⟩vi(t)

〉
−

2κ1

N

∑
k∈[N]−{ j}

ϕ
τk j

k j

T τk j

k

(t)
〈
vi(t), vk(t) − ⟨vk(t), v j(t)⟩v j(t)

〉
−

2κ1

N

∑
k∈[N]−{i}

ϕτki
ki

T τki
k

(t)
〈
v j(t), v

τki
k (t) − vk(t) − ⟨v

τki
k (t) − vk(t), vi(t)⟩vi(t)

〉
−

2κ1

N

∑
k∈[N]−{ j}

ϕ
τk j

k j

T τk j

k

(t)
〈
vi(t), v

τk j

k (t) − vk(t) − ⟨v
τk j

k (t) − vk(t), v j(t)⟩v j(t)
〉

=: L11 +L12 +L13 +L14.

Below, we estimate these four parts separately into two parts.

⋄ (Estimate of L11 +L12): In this case, one can verify the following inequalities at time t:〈
v j, vk − ⟨vk, vi⟩vi

〉
≥ ⟨v j, vi⟩ − ⟨v j, vi⟩⟨vk, vi⟩ = ⟨v j, vi⟩ (1 − ⟨vk, vi⟩) ≥ 0,〈

vi, vk − ⟨vk, v j⟩v j

〉
≥ ⟨vi, v j⟩ − ⟨vi, v j⟩⟨vk, v j⟩ = ⟨vi, v j⟩

(
1 − ⟨vk, v j⟩

)
≥ 0,

where we used ⟨vi, v j⟩ = 1 − 1
2 D2

V ≥ 0 in the last inequality. This implies that both L11 and L12 are
nonpositive numbers, and therefore

L11 +L12 ≤ −
2κ1

N

∑
k∈[N]−{i}

ϕ(DX + τ)
T τ

M

〈
v j, vk − ⟨vk, vi⟩vi

〉
−

2κ1

N

∑
k∈[N]−{ j}

ϕ(DX + τ)
T τ

M

〈
vi, vk − ⟨vk, v j⟩v j

〉
= −

2κ1ϕ(DX + τ)
NT τ

M

∑
k∈[N]−{i, j}

[〈
v j, vk − ⟨vk, vi⟩vi

〉
+

〈
vi, vk − ⟨vk, v j⟩v j

〉]
−

2κ1ϕ(DX + τ)
NT τ

M

∑
k∈{i, j}

[1 − ⟨vi, v j⟩
2],

(5.1)
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where we used the monotonic decreasing property of ϕ and

∥xi − xτki
k ∥ ≤ ∥xi − xk∥ + ∥xk − xτki

k ∥ ≤ DX + τ, Ti(t − τki(t)) ≤ T τ
M(t),

∥x j − xτk j

k ∥ ≤ ∥x j − xk∥ + ∥xk − xτk j

k ∥ ≤ DX + τ, T j(t − τk j(t)) ≤ T τ
M(t),

in the first inequality. Then, we use ⟨vi + v j, vk⟩ ≥ 2⟨vi, v j⟩ and

∑
k∈{i, j}

(1 − ⟨vi, v j⟩) =

 2(1 − ⟨vi, v j⟩) (i , j)
0 (i = j)

= 2(1 − ⟨vi, v j⟩) (5.2)

in Eq (5.1) to obtain

L11 +L12

≤ −
2κ1ϕ(DX + τ)

NT τ
M

(
1 − ⟨vi, v j⟩

)  ∑
k∈[N]−{i, j}

2⟨vi, v j⟩ +
∑

k∈{i, j}

(1 + ⟨vi, v j⟩)


= −

2κ1ϕ(DX + τ)
NT τ

M

(
1 − ⟨vi, v j⟩

) 2N⟨vi, v j⟩ +
∑

k∈{i, j}

(1 − ⟨vi, v j⟩)


= −

2κ1ϕ(DX + τ)
T τ

M

(
1 − ⟨vi, v j⟩

) [
2⟨vi, v j⟩ +

2
N

(1 − ⟨vi, v j⟩)
]
.

(5.3)

⋄ (Estimate of L13 +L14): From direct calculation, we have

L13 +L14 = −
2κ1

N

∑
k∈[N]−{i}

ϕτki
ki

T τki
k

〈
v j − vi, v

τki
k − vk − ⟨v

τki
k − vk, vi⟩vi

〉
−

2κ1

N

∑
k∈[N]−{ j}

ϕ
τk j

k j

T τk j

k

〈
vi − v j, v

τk j

k − vk − ⟨v
τk j

k − vk, v j⟩v j

〉
≤

4(N − 1)κ1ϕ(0)
NT τ

m
∥vi − v j∥∆

τ
V ,

(5.4)

where we used

ϕτki
ki ≤ ϕ(0), T τ

m ≤ T τki
k ,

∥∥∥vτki
k − vk − ⟨v

τki
k − vk, vi⟩vi

∥∥∥ ≤ ∥vτki
k − vk∥ ≤ ∆

τ
V ,

ϕ
τk j

k j ≤ ϕ(0), T τ
m ≤ T τk j

k ,
∥∥∥vτk j

k − vk − ⟨v
τk j

k − vk, v j⟩v j

∥∥∥ ≤ ∥vτk j

k − vk∥ ≤ ∆
τ
V ,

in the last inequality.

Therefore, we combine Eqs (5.3) and (5.4) to obtain

D+[(DV)2](t) ≤ −
κ1ϕ(DX + τ)

T τ
M

D2
V

[
2 −

(
1 −

1
N

)
D2

V

]
+

4(N − 1)κ1ϕ(0)
NT τ

m
DV∆

τ
V ,

which implies
dDV

dt
≤ −

κ1ϕ(DX + τ)
T τ

M
DV

[
1 −

N − 1
2N

D2
V

]
+

2(N − 1)κ1ϕ(0)
NT τ

m
∆τV ,
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whenever DV is differentiable and DV ≤
√

2.

(3) Let M(t),m(t) be the set of all indices such that

i ∈ M(t), j ∈ m(t) ⇐⇒ Ti(t) = TM(t), T j(t) = Tm(t).

Then, for every i ∈ M(t) and j ∈ m(t), we can split the derivative of Ti − T j at time t into two parts as
follows:

d
dt

(Ti − T j) =
κ2

N

N∑
k=1

ζτki
ki

(
1
Ti
−

1
T τki

k

)
−
κ2

N

N∑
k=1

ζ
τk j

k j

 1
T j
−

1
T τk j

k


=
κ2

N

N∑
k=1

ζτki
ki

(
1
Ti
−

1
Tk

)
−
κ2

N

N∑
k=1

ζ
τk j

k j

(
1
T j
−

1
Tk

)

+
κ2

N

N∑
k=1

ζτki
ki

(
1
Tk
−

1
T τki

k

)
−
κ2

N

N∑
k=1

ζ
τk j

k j

 1
Tk
−

1
T τk j

k


=: L21 +L22.

Then, we estimate these two parts separately.

⋄ (Estimate of L21): From a direct calculation, it follows that

L21 ≤ −
κ2ζ(DX + τ)

N

 ∑
k∈[N]−{i}

(
1
Tk
−

1
Ti

)
+

∑
k∈[N]−{ j}

(
1
T j
−

1
Tk

)
= −

κ2ζ(DX + τ)
N

 ∑
k∈[N]−{i, j}

(
1
Tk
−

1
Ti

)
+

∑
k∈[N]−{i, j}

(
1
T j
−

1
Tk

)
+

∑
k∈{i, j}

(
1
T j
−

1
Ti

)
= −κ2ζ(DX + τ)

(
1
T j
−

1
Ti

)
,

where we used T j(t) ≤ Tk(t) ≤ Ti(t) for all i ∈ M(t) and j ∈ m(t) in the first inequality.

⋄ (Estimate of L22): In this case, we use Lemma 3.2 to obtain

L22 ≤
κ2ζ(0)

N

∑
k∈[N]−{i}

|Tk − T τki
k |

TkT
τki
k

+
κ2ζ(0)

N

∑
k∈[N]−{ j}

|Tk − T τk j

k |

TkT
τk j

k

≤
2(N − 1)κ2ζ(0)

N
·
∆τT

(T τ
m)2 .

Therefore, we combine these two estimates to obtain

D+[DT ](t) ≤ −κ2ζ(DX(t) + τ)
(

1
Tm(t)

−
1

TM(t)

)
+

2(N − 1)κ2ζ(0)
N(T τ

m(t))2 ∆τT (t),

which implies the desired result. □
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Remark 5.1. One thing to keep in mind during the proof of Lemma 5.1 is that the acceleration may
not be zero even if there is a point at which the velocity diameter DV is zero, due to the time-delay
effect. Therefore, even if we find i, j with DV = ∥vi − v j∥, we cannot exclude the possibility that i and
j are equal. Another thing to keep in mind is that the condition DV(t) ≤

√
2 is necessary to obtain a

meaningful inequality for DV because of the technical reason, otherwise the values

⟨vi, vk − ⟨vk, v j⟩v j⟩ = ⟨vi, vk⟩ − ⟨vk, v j⟩⟨vi, v j⟩,

⟨v j, vk − ⟨vk, vi⟩vi⟩ = ⟨v j, vk⟩ − ⟨vk, vi⟩⟨v j, vi⟩,

can be negative when ⟨vi, vk⟩ = ⟨v j, vk⟩ = ⟨vi, v j⟩ < 0.

Similar to what we have done in Section 4, we prepare a lemma to present the upper bound of
(DX,DV ,DT ) and (∆V ,∆T ) by using Lemma 3.5 and Lemma 5.1.

Lemma 5.2. Let y : [0,∞) → [0,∞) be a Lipschitz continuous function and f : [0,∞) → R be a
continuous function. Assume that y and f satisfy

ẏ(t) ≤ −χy(t) + 2θ f (t), t > 0, (5.5a)

f (t) ≤ L max {τ − t, 0} + θ
∫ t

max{t−τ,0}
(y(s) + f (s))ds, t > 0, (5.5b)

for some constants χ, θ, L > 0 and τ ≥ 0. If τ is sufficiently small to satisfy

τθ

(
2θ
χ
+ 1

)
< 1, (5.6)

the following assertions hold.

(1) There are two constants ξ > 0 and µ ∈ (0, χ) such that[
Leµτ

ξ
+ θ

(
2θ
χ − µ

+ 1
)
·

eµτ − 1
µτ

]
τ ≤ 1, y(0) ≤

2θξ
χ − µ

, f (0) < ξ. (5.7)

(2) Whenever ξ, µ > 0 satisfy Eq (5.7), we have

y(t) < y(0)e−χt +
2ξθ
χ − µ

(
e−µt − e−χt) , t > 0,

f (t) < ξe−µt, t ≥ 0.
(5.8)

Proof. From Eqs (5.5) and (5.6), we can choose a sufficiently large ξ satisfying

f (0) ≤ Lτ <
Lτ

1 − τθ
(

2θ
χ
+ 1

) < ξ, y(0) ≤
2θξ
χ
.

Then, the condition (5.7) holds for sufficiently small positive number µ ∈ (0, χ). Now, assume there
exists a minimum t∗ ∈ (0,∞) among all t satisfying

f (t) = ξe−µt (5.9)
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Then, we have
f (t) < ξe−µt, t ∈ [0, t∗), (5.10)

and we substitute (5.10) to (5.5) to obtain

ẏ(t) < −χy(t) + 2θξe−µt, t ∈ (0, t∗).

Consequently, this Grönwall’s inequality yields

y(t) < y(0)e−χt +
2θξ
χ − µ

(
e−µt − e−χt)

≤
2θξ
χ − µ

e−µt t ∈ (0, t∗],
(5.11)

where we used Eq (5.7) in the last inequality. On the other hand, by using Eqs (5.10) and (5.11) to
(5.5b) at t = t∗, we have

f (t∗) ≤ L max {τ − t∗, 0} + θ
∫ t∗

max{t∗−τ,0}
(y(s) + f (s))ds

< L max {τ − t∗, 0} + θ
∫ t∗

max{t∗−τ,0}

(
2θξ
χ − µ

+ ξ

)
e−µsds

= L max {τ − t∗, 0} +
θ

µ

(
2θξ
χ − µ

+ ξ

) (
e−µmax{t∗−τ,0} − e−µt∗

)
=

[
L max {τ − t∗, 0} eµt∗ +

θ

µ

(
2θξ
χ − µ

+ ξ

) (
eµmin{t∗,τ} − 1

)]
e−µt∗

≤

[
Lτeµτ +

θ

µ

(
2θξ
χ − µ

+ ξ

)
(eµτ − 1)

]
e−µt∗

=

[
Leµτ + θξ

(
2θ
χ − µ

+ 1
) (

eµτ − 1
µτ

)]
τe−µt∗

≤ ξe−µt∗ ,

where we used Eq (5.7) in the last inequality. However, this leads a contradiction to Eq (5.9), and
therefore

f (t) < ξe−µt, ∀ t ≥ 0,

which implies the desired inequality (5.8). □

Unlike in Section 4, we need to guarantee DV(t) ≤
√

2 to apply Lemma 5.2 to Lemma 5.1. From
Eqs (5.7) and (5.8), one can find a time-invariant upper bound for y(t). Since the function

t 7→ y(0)e−χt +
2ξθ
χ − µ

(e−µt − e−χt)

has a maximum at t = t0 satisfying

−µ
2θ
χ − µ

e−µt0 + χ

(
2ξθ
χ − µ

− y(0)
)

e−χt0 = 0,
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we have

y(0)e−χt0 +
2ξθ
χ − µ

(e−µt0 − e−χt0) =
2ξθ
χ − µ

e−µt0 −

(
2ξθ
χ − µ

− y(0)
)

e−χt0

=

(
1 −

µ

χ

)
2ξθ
χ − µ

e−µt0

=
2ξθ
χ

e−µt0 ≤
2ξθ
χ
.

Therefore, we have the following time-invariant upper bound for y(t):

y(t) <
2ξθ
χ
, ∀ t > 0.

Now, by using Lemma 5.1 and 5.2, we can construct another sufficient framework leading to the
asymptotic flocking. In this case, we assume DX(0) and DV(0) sufficiently small, instead of assuming
the smallness of Dτ

X(0) and Dτ
V(0).

• (F 1)′: DV(0) = 2 sin δ
2 , δ ∈ (0, π2 ).

• (F 2)′: There exists a constant D∞X > 0 satisfying

Φ(D∞X + τ) > Φ(DX(0) + τ) +
T τ

M(0)
κ1 cos δ

· 2 sin
δ

2
.

• (F 3)′: The time-delay bound τ > 0 is sufficiently small to satisfy

Φ(D∞X + τ) > Φ(DX(0) + τ) +
T τ

M(0)
κ1 cos δ

·

(
2 sin

δ

2
+

2(χ1 − µ1)
µ1

)
, (5.12a)[

θ1L1eµ1τ

χ1 − µ1
+ θ1

(
2θ1

χ1 − µ1
+ 1

)
·

eµ1τ − 1
µ1τ

]
τ = 1, (5.12b)[

2θ2L2eµ2τ

(χ2 − µ2)(T τ
M(0) − T τ

m(0))
+ θ2

(
2θ2

χ2 − µ2
+ 1

)
·

eµ2τ − 1
µ2τ

]
τ = 1, (5.12c)

χ1 − µ1

χ1
<

1
2

min

√2,

√
N

N − 1
DV(0)

 , (5.12d)

for some µ1 ∈ (0, χ1) and µ2 ∈ (0, χ2), where the constants χ1, χ2, θ1, θ2, L1, L2 are defined as

χ1 =
κ1ϕ(D∞X + τ)

T τ
M(0)

·

(
1 −

1
2

DV(0)2
)
, χ2 =

κ2ζ(D∞X + τ)
T τ

M(0)2 ,

θ1 =
(N − 1)κ1ϕ(0)

NT τ
m(0)

, θ2 =
(N − 1)κ2ζ(0)

NT τ
m(0)2 ,

L1 = max
i∈[N]
∥v0

i ∥Lip, L2 = max
i∈[N]
∥T 0

i ∥Lip.

Note that from the equality conditions in (5.12), µ1 tends to χ1 during τ → +0. Therefore, (F 3)′ is
indeed a condition that holds for sufficiently small τ.
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Finally, we are ready to provide the second main result, which also shows that DX is uniformly
bounded and DV ,DT converge to zero. Although the proof might not be intuitive and its implications
are hard to grasp at first glance, we wrote it down in detail for the completeness.

Theorem 5.1. Let (X,V,T ) be a solution to Eq (3.1), where the initial data

(x0
i , v

0
i ,T

0
i ) : [−τ, 0]→ Rd × Sd−1 × (0,∞), i ∈ [N]

are Lipschitz continuous functions satisfying dx0
i

dt = v0
i and (F 1)′–(F 3)′. Then, the following

inequalities hold for all t > 0:

DX(t) < D∞X ,

DV(t) < DV(0)e−χ1t + 2
(
e−µ1t − e−χ1t) ,

DT (t) < DT (0)e−χ2t + (T τ
M(0) − T τ

m(0))
(
e−µ2t − e−χ2t) ,

∆V(t) <
χ1 − µ1

θ1
e−µ1t, ∆T (t) <

(χ2 − µ2)(T τ
M(0) − T τ

m(0))
2θ2

e−µ2t.

Therefore, the solution (X,V,T ) exhibits the asymptotic flocking.

Proof. (Step 1) Assume there exists a minimum t∗ < ∞ among all t satisfying

DX(t) ≥ D∞X or 1 −
N − 1

2N
DV(t)2 ≤ 1 −

1
2

DV(0)2 or DV(t) ≥
√

2. (5.13)

Then, we will show that, in fact, only the first condition among the three can be satisfied, i.e., DX(t∗) =
D∞X . First, one can obtain t∗ > 0 by using (F 1)′, (F 2)′, and the continuity of DV , and we use the
monotonic decreasing property of ϕ, ζ, Lemma 3.5, and Lemma 5.1 to obtain

dDV(t)
dt

≤ −χ1DV(t) + 2θ1∆
τ
V(t), a.e. t ∈ (0, t∗),

∆τV(t) ≤ L1 max {τ − t, 0} + θ1

∫ t

max{t−τ,0}
(DV(s) + ∆τV(s))ds, t ∈ (0, t∗),

(5.14)

for the diameter DV , and similarly,

dDT (t)
dt

≤ −χ2DT (t) + 2θ2∆
τ
T (t), a.e. t ∈ (0, t∗),

∆τT (t) ≤ L2 max {τ − t, 0} + θ2

∫ t

max{t−τ,0}
(DT (s) + ∆τT (s))ds, t ∈ (0, t∗),

(5.15)

for the diameter DT . Now, for the two constants ξ1, ξ2 defined as

ξ1 =
χ1 − µ1

θ1
=

L1eµ1τ + 2θ1

1 − θ1τ
(

eµ1τ−1
µ1τ

)τ,
ξ2 =

(χ2 − µ2)(T τ
M(0) − T τ

m(0))
2θ2

=
L2eµ2τ + (T τ

M(0) − T τ
m(0))θ2

1 − θ2τ
(

eµ2τ−1
µ2τ

) τ,
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one can verify that (5.7) holds for (L1, χ1, µ1, ξ1) and (L2, χ2, µ2, ξ2). More precisely, the first condition
of (5.7) is immediately obtained from (5.12b) and (5.12c), and the third condition is obtained from

∆τV(0) ≤ L1τ, ∆τT (0) ≤ L2τ,

which is a consequence of Lemma 3.5 for t = 0. The second condition of (5.7) can also be verified by
the relation

DV(0) ≤ 2 =
2ξ1θ1

χ1 − µ1
, DT (0) ≤ T τ

M(0) − T τ
m(0) =

2θ2ξ2

χ2 − µ2
.

As a consequence, we apply Lemma 5.2 to Eqs (5.14) and (5.15) to get the following inequalities for
t ∈ (0, t∗):

DV(t) < DV(0)e−χ1t + 2
(
e−µ1t − e−χ1t) ,

∆V(t) <
χ1 − µ1

θ1
e−µ1t,

DT (t) < DT (0)e−χ2t + (T τ
M(0) − T τ

m(0))
(
e−µ2t − e−χ2t) ,

∆T (t) <
(χ2 − µ2)(T τ

M(0) − T τ
m(0))

2θ2
e−µ2t.

(5.16)

Then, we use Eq (5.12d) to obtain

DV(t) <
2ξ1θ1

χ1
=

2(χ1 − µ1)
χ1

< min

√2,

√
N

N − 1
DV(0)

 , t ∈ (0, t∗),

and therefore, the only possible case to satisfy (5.13) is the first case, i.e., DX(t∗) = D∞X .
(Step 2) Therefore, we can apply Lemma 5.1 (2) to t ∈ (0, t∗) to obtain

dDV(t)
dt

≤ −
κ1ϕ(DX(t) + τ)

T τ
M(t)

[
1 −

N − 1
2N

DV(t)2
]

DV(t) +
2(N − 1)κ1ϕ(0)

NT τ
m(t)

∆τV(t)

≤ −
κ1ϕ(DX(t) + τ)

T τ
M(0)

[
1 −

1
2

DV(0)2
]

DV(t) + 2ξ1θ1e−µ1t, t ∈ (0, t∗),

which implies that

d
dt

DV(t) +
κ1

(
1 − 1

2 DV(0)2
)

T τ
M(0)

Φ(DX(t) + τ) +
2ξ1θ1

µ1
e−µ1t

 ≤ 0, t ∈ (0, t∗). (5.17)

However, (5.17) yields

κ1

(
1 − 1

2 DV(0)2
)

T τ
M(0)

Φ(DX(t∗) + τ) ≤ DV(0) +
κ1

(
1 − 1

2 DV(0)2
)

T τ
M(0)

Φ(DX(0) + τ) +
2ξ1θ1

µ1
,

which leads a contradiction to (5.12a). Thus, there is no t∗ ∈ (0,∞) satisfying (5.13), and the
inequalities in (5.16) hold for all t > 0. □
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Remark 5.2. Similar to the case in Remark 4.2, Theorem 5.1 is also applicable when time-delay τ is
set to 0. If τ = 0, the framework (F 1)′ − (F 3)′ becomes

A(0) > 0,
∫ ∞

DX(0)
ϕ(s)ds >

TM(0)DV(0)
κ1A(0)

,

which coincides with the condition (2.2). In addition, the condition (5.12) reduces to

µ1 = χ1, µ2 = χ2.

Therefore, Theorem 5.1 also exactly coincides with Proposition 2.5 for τ = 0.

6. Numerical simulation

In this section, we perform numerical simulations on (1.3) to verify the results of Theorem 4.1 and
Theorem 5.1, and to explore whether there are other properties that we could not prove due to technical
reasons. For the numerical implementation, we used the Euler method with time step ∆t = 0.05, and
we fixed N, ϕ, ζ as

N = 50, ϕ(r) =
1

1 + r2 , ζ(r) =
1

1 + r3/2 , r ≥ 0. (6.1)

In addition, for the time delay τi j, we set

τi j(t) := τ ×
[
2 + sin(0.1(i + j)t)

3

]
, t ≥ 0, (6.2)

for each i, j ∈ [N]. Thus, we compare how the dynamics of (1.3) vary with respect to κ1, κ2, τ, and
initial data.

In particular, we prepare two types of initial data for equation (1.3), which we will refer to as ‘good
initial’ and ‘bad initial’ based on the velocity range. The way we set the initial conditions for X and T
is common to both types and is as follows. For each i ∈ [N] and n ∈ [−τ/∆t, 0], we randomly select
xi(n) from a uniform distribution on (0, 1)3 and Ti(n) from a uniform distribution on (1, 3.5). Then, the
‘good initial’ refers to the initial data for which

Lemma 3.4 and Theorem 4.1 can be applied.

To achieve this, for each i ∈ [N] and n ∈ [−τ/∆t, 0], we randomly select ṽi(n) from a uniform
distribution on (0, 1)3, just like the initial positions xi(n). Then, we normalize their norms to 1 as
follows:

vi(n) :=
ṽi(n)
∥ṽi(n)∥

, i ∈ [N], n ∈ [−τ/∆t, 0]. (6.3)

If so, the discretized version of Aτ,τ(0, 0), i.e.,

min
n1∆t∈[−τ,0]
n2∆t∈[−τ,0]

min
i, j∈[N]
⟨vi(n1), v j(n2)⟩

is strictly positive, and we can expect that (the discrete analogue of) Aτ,τ(t1, t2) will be monotonically
increasing, as proven in Lemma 3.4. On the other hand, by ‘bad initial,’ we refer to the initial data for
which
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Lemma 3.4 and Theorem 4.1 cannot be applied, but Theorem 5.1 can be applied.

In other words, it refers to the initial conditions that do not satisfy the condition (F 1) but satisfy the
condition (F 1)′. We meet these requirements by randomly selecting ṽi(n) from a uniform distribution
on (−1, 1)3 for each i ∈ [N] and n ∈ [−τ/∆t,−1], and also select ṽi(0) randomly from a uniform
distribution on (0, 1)3. Then, we normalize their norms to 1 as in Eq (6.3) to satisfy the unit speed
constraint. In this case, we can expect that flocking can occur when τ is sufficiently small, according
to Theorem 5.1. However, since we cannot apply Lemma 3.4, Aτ,τ may not be increasing
monotonically at the beginning. Thus, one of the goals of this section is to confirm that the initial
behavior of Aτ,τ differs between good initial and bad initial based on the applicability of Lemma 3.4.
However, when we actually ran the simulations, we found that observing the behavior of DV(t) is
sufficient to clearly distinguish between the two cases. Therefore, to save computation time, we only
display DX(t),DV(t),TM(t), and Tm(t) over t (time) in all figures of this section.

6.1. Simulations for good initial data

In Figures 1 and 2, we fix τ = 1.8, κ1 = κ2 = 8 and used the good initial data to simulate the
solution of (1.3) for t ∈ [0, 50]. The first two plots in Figure 1 are the temporal evolution of DX(t) and
DV(t) over t, and Figure 2 shows the temporal evolution of TM(t) and Tm(t). These plots show that the
solution exhibited asymptotic flocking under the given setting. The last two plots in Figure 1 confirm
that the speeds of all particles remained at 1 throughout the simulation. In the case of DV , it exhibits
a monotonically decreasing behavior over time, while we can also observe an inflection point around
t = 2.4. In fact, such inflection points were consistently observed in DV throughout the simulations,
and we found that their position was always approximately at 4τ

3 . We suspect that the value 4
3 itself is

not particularly important, but rather that the average of τi j set in Eq (6.2) is 2τ
3 , and something special

seems to occur around twice that time.

Figure 1. Good initial data, τ = 1.8, κ1 = κ2 = 8.
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Figure 2. Good initial data, τ = 1.8, κ1 = κ2 = 8.

In Figure 3, we fix τ = 6, κ1 = κ2 = 8 and used the good initial data to simulate the solution of
Eq (1.3) for t ∈ [0, 500]. Once again, asymptotic flocking occurred, but the rate of convergence was
significantly slower compared to the previous examples. Additionally, we observed an inflection point
in DV around t = 4τ

3 = 8.

Figure 3. Good initial data, τ = 6, κ1 = κ2 = 8.
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In Figure 4, we fix τ = 30, κ1 = κ2 = 8 and used the good initial data to simulate the solution
of (1.3) for t ∈ [0, 10000]. As τ increases, the time it takes for DV to saturate becomes much longer.
Therefore, to verify whether flocking occurs, we had to observe the behavior of diameters for such
a long time. For this reason, the inflection point is not clearly visible; however, the position of the
dashed line set in this figure is also at t = 4τ

3 = 40. Additionally, in this figure, we can see that DV

does not converge to 0, indicating that the solution did not exhibit flocking. This means that even if the
condition (F 1) is satisfied and κ1, κ2 are fixed, flocking will no longer occur if τ becomes sufficiently
large.

Figure 4. Good initial data, τ = 30, κ1 = κ2 = 8.

In Figure 5, we fix τ = 1.8, κ1 = κ2 = 1 and used the good initial data to simulate the solution of
(1.3) for t ∈ [0, 2500]. In this case, although τ is small as in Figures 1 and 2, the small values of κ1, κ2

result in a situation where flocking does not occur. Notably, due to the small value of κ2, DT did not
converge to 0 in this case.

Networks and Heterogeneous Media Volume 19, Issue 3, 1182–1230.



1220

Figure 5. Good initial data, τ = 1.8, κ1 = κ2 = 1.

6.2. Simulations for bad initial data

In Figures 6 and 7, we fix τ = 1.8, κ1 = κ2 = 8 and used the bad initial data to simulate (1.3).

Figure 6. Bad initial data, τ = 1.8, κ1 = κ2 = 8.
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Figure 7. Bad initial data, τ = 1.8, κ1 = κ2 = 8.

In other words, we are using the same τ and κ1, κ2 as in Figures 1 and 2, but with the bad initial data.
The first two plots in Figure 6 illustrate the behavior of DX and DV from the given bad initial data up
to time t = 5, while the last two plots show the behavior up to t = 100 for the same initial data. A
notable feature observed in this figure is that, similar to Figure 1, the behavior of DV changes around
the time t = 4τ

3 = 2.4. However, the behavior of DV(t) for t ∈ [0, 2.4] becomes unstable rather than just
monotonically decreasing, which is a result not observed in any simulations using good initial data.
Nevertheless, as demonstrated in Theorem 5.1, even with bad initial data, the asymptotic flocking can
still occur if τ is sufficiently small and κ1, κ2 are sufficiently large.

Figure 8. Bad initial data, τ = 6, κ1 = κ2 = 8.
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In Figures 8 and 9, we fix τ = 6, κ1 = κ2 = 8 and used the bad initial data to simulate (1.3). In other
words, we are using the same τ and κ1, κ2 as in Figure 3, but with bad initial data. The first two plots in
Figure 6 illustrate the behavior of DX and DV from the given bad initial data up to time t = 10, while
the last two plots show the behavior up to t = 250 for the same initial data. In this case, DV shows a
very unstable oscillation before t = 4τ

3 = 8, and it even becomes larger than DV(0) at t = 8. However,
this effect disappears after t = 8 and DV begins to decrease monotonically. Nevertheless, since both
DV and DT do not converge to 0 in this case, asymptotic flocking does not occur. This contrasts with
the occurrence of asymptotic flocking in Figure 3, demonstrating that the condition (F 1) also affects
the occurrence of asymptotic flocking.

Figure 9. Bad initial data, τ = 6, κ1 = κ2 = 8.

Figure 10. Bad initial data, τ = 1.8, κ1 = κ2 = 1.
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Finally, in Figures 10 and 11, we fix τ = 1.8, κ1 = κ2 = 1 and used the bad initial data to simulate
(1.3).

Figure 11. Bad initial data, τ = 1.8, κ1 = κ2 = 1.

That is, we are using the same τ and κ1, κ2 as in Figures 5, but with the bad initial data. The first
two plots in Figure 10 illustrate the behavior of DX and DV from the given bad initial data up to time
t = 5, while the last two plots show the behavior up to t = 150 for the same initial data. In this case,
DV shows a small oscillation before t = 4τ

3 = 2.4, but decrease monotonically after t = 2.4. However,
as with the use of good initial data in Figure 5, asymptotic flocking did not occur in this case either.

7. Conclusion

In this paper, we have demonstrated several sufficient frameworks for the asymptotic flocking
dynamics of the thermodynamic CS model with a unit-speed constraint and time-delay. To do this, we
first proved the monotonic property of extreme temperatures and maximal angle between velocities,
and then we provided basic estimates concerning position–velocity–temperature diameters and
perturbation functions. Then, we derived dissipative inequalities with respect to the diameters and
delayed diameters, and proposed suitable ansatz for the decay rate of the perturbation function to find
the sufficient framework to exhibit asymptotic flocking of (1.3). However, there are still some
interesting topics that might be studied in the future. For instance, we wonder if it is possible to find
differential inequalities for Aτ,τ to show the asymptotic flocking. Since we have already shown that
Aτ,τ is monotonically increasing, we expect that if we succeed in obtaining a differential inequality for
the Aτ,τ itself, we will not need to use perturbation functions ∆τV and suggest an ansatz on its
exponential decay rate. We leave this issue for future work.
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1. J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model:
A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137–185.
https://doi.org/10.1103/RevModPhys.77.137

2. H. Ahn, Emergent behaviors of thermodynamic Cucker–Smale ensemble with
a unit-speed constraint, Discrete Contin. Dyn. Syst. B, 28 (2023), 4800–4825.
https://doi.org/10.3934/dcdsb.2023042

3. H. Ahn, Asymptotic flocking of the relativistic Cucker-Smale model with time-delay, Netw.
Heterog. Media, 18 (2023), 29–47. https://doi.org/10.3934/nhm.2023002

4. G. Albi, N. Bellomo, L. Fermo, S. Y. Ha, J. Kim, L. Pareschi, et al., Vehicular
traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications
and research perspectives, Math Models Methods Appl Sci, 29 (2019), 1901–2005.
https://doi.org/10.1142/S0218202519500374

5. A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, A. Jelic, S. Melillo, et al.,
Information transfer and behavioural inertia in starling flocks, Nat. Phys., 10 (2014), 691–696.
https://doi.org/10.1038/nphys3035

6. J. Buck, E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562–564.
https://doi.org/10.1038/211562a0

7. J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics
for the kinetic Cucker–Smale model, SIAM J. Math. Anal., 42 (2010), 218–236.
https://doi.org/10.1137/090757290

8. P. Cattiaux, F. Delebecque, L. Pedeches, Stochastic Cucker–Smale models: old and new, Ann.
Appl. Probab., 28 (2018), 3239–3286. https://doi.org/10.1214/18-AAP1400

9. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, et al., Scale-
free correlations in starling flocks, Proc. Natl. Acad. Sci., 107 (2010), 11865–11870.
https://doi.org/10.1073/pnas.1005766107

Networks and Heterogeneous Media Volume 19, Issue 3, 1182–1230.

https://dx.doi.org/https://doi.org/10.1103/RevModPhys.77.137
https://dx.doi.org/https://doi.org/10.3934/dcdsb.2023042
https://dx.doi.org/https://doi.org/10.3934/nhm.2023002
https://dx.doi.org/https://doi.org/10.1142/S0218202519500374
https://dx.doi.org/https://doi.org/10.1038/nphys3035
https://dx.doi.org/https://doi.org/10.1038/211562a0
https://dx.doi.org/https://doi.org/10.1137/090757290
https://dx.doi.org/https://doi.org/10.1214/18-AAP1400
https://dx.doi.org/https://doi.org/10.1073/pnas.1005766107


1225

10. H. Cho, J. G. Dong, S. Y. Ha, Emergent behaviors of a thermodynamic Cucker–Smale flock
with a time-delay on a general digraph, Math. Methods Appl. Sci., 45 (2021), 164–196.
https://doi.org/10.1002/mma.7771

11. S. H. Choi, S. Y. Ha, Interplay of the unit-speed constraint and time-delay in Cucker–Smale
flocking, J. Math. Phys., 59 (2018), 082701. https://doi.org/10.1063/1.4996788

12. S. H. Choi, S. Y. Ha, Emergence of flocking for a multi-agent system moving with constant speed,
Commun. Math. Sci., 14 (2016), 953–972. https://doi.org/10.4310/CMS.2016.v14.n4.a4.

13. Y. P. Choi, J. Haskovec, Cucker–Smale model with normalized communication weights and time-
delay, Kinet. Relat. Models, 10 (2017), 1011–1033. https://doi.org/10.3934/krm.2017040

14. Y. P. Choi, Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time-
delays, Appl. Math. Lett., 86 (2018), 49–56. https://doi.org/10.1016/j.aml.2018.06.018

15. J. Cho, S. Y. Ha, F. Huang, C. Jin, D. Ko, Emergence of bi-cluster flocking
for agent-based models with unit speed constraint, Anal. Appl., 14 (2016), 39–73.
https://doi.org/10.1142/S0219530515400023

16. K. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal.
Appl., 86 (1982), 592–627. https://doi.org/10.1016/0022-247X(82)90243-8

17. F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Contr., 52 (2007), 852–
862. https://doi.org/10.1109/TAC.2007.895842

18. P. Degond, S. Motsch, Large-scale dynamics of the persistent turning walker model of fish
behavior, J. Stat. Phys., 131 (2008), 989–1022. https://doi.org/10.1007/s10955-008-9529-8

19. G. B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math.
Biol., 29 (1991), 571–585. https://doi.org/10.1007/BF00164052

20. E. Ferrante, A. E. Turgut, A. Stranieri, C. Pinciroli, M. Dorigo, Self-organized flocking with
a mobile robot swarm: a novel motion control method, Adapt. Behav., 20 (2012), 460–477.
https://doi.org/10.1177/1059712312462248

21. A. Figalli, M. Kang, A rigorous derivation from the kinetic Cucker–Smale model to
the pressureless Euler system with nonlocal alignment, Anal. PDE., 12 (2019), 843–866.
https://doi.org/10.2140/apde.2019.12.843

22. S. Y. Ha, D. Ko, Y. Zhang, Remarks on the critical coupling strength for the Cucker-
Smale model with unit speed, Discrete Contin. Dyn. Syst., 38 (2018), 2763–2793.
https://doi.org/10.3934/dcds.2018116

23. S. Y. Ha, T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch.
Ration. Mech. Anal., 223 (2017), 1397–1425. https://doi.org/10.1007/s00205-016-1062-3

24. S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet.
Relat. Models, 1 (2008), 415–435. https://doi.org/10.3934/krm.2008.1.415

25. J. Hale, N. Sternberg, Onset of chaos in differential delay equations, J. Comput. Phys., 77 (1988),
221–239. https://doi.org/10.1016/0021-9991(88)90164-7

26. T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker–
Smale flocking model, Math Models Methods Appl Sci, 25 (2015), 131–163.
https://doi.org/10.1142/S0218202515500050

Networks and Heterogeneous Media Volume 19, Issue 3, 1182–1230.

https://dx.doi.org/https://doi.org/10.1002/mma.7771
https://dx.doi.org/https://doi.org/10.1063/1.4996788
https://dx.doi.org/https://doi.org/10.4310/CMS.2016.v14.n4.a4.
https://dx.doi.org/https://doi.org/10.3934/krm.2017040
https://dx.doi.org/https://doi.org/10.1016/j.aml.2018.06.018
https://dx.doi.org/https://doi.org/10.1142/S0219530515400023
https://dx.doi.org/https://doi.org/10.1016/0022-247X(82)90243-8
https://dx.doi.org/https://doi.org/10.1109/TAC.2007.895842
https://dx.doi.org/https://doi.org/10.1007/s10955-008-9529-8
https://dx.doi.org/https://doi.org/10.1007/BF00164052
https://dx.doi.org/https://doi.org/10.1177/1059712312462248
https://dx.doi.org/https://doi.org/10.2140/apde.2019.12.843
https://dx.doi.org/https://doi.org/10.3934/dcds.2018116
https://dx.doi.org/https://doi.org/10.1007/s00205-016-1062-3
https://dx.doi.org/https://doi.org/10.3934/krm.2008.1.415
https://dx.doi.org/https://doi.org/10.1016/0021-9991(88)90164-7
https://dx.doi.org/https://doi.org/10.1142/S0218202515500050


1226

27. S. Motsch, E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat.
Phys., 141 (2011), 923–947. https://doi.org/10.1007/s10955-011-0285-9

28. E. A. Ok, Real Analysis with Economics Applications, Princeton University Press, Princeton, 2007,
306. https://doi.org/10.1515/9781400840892

29. R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Trans.
Automat. Contr., 51 (2006), 401–420. https://doi.org/10.1109/TAC.2005.864190

30. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear
sciences, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1119/1.1475332
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Appendix A Proof of Lemma 3.1

Proof. (1) Suppose we have f (t0) > F(t0) for some t0 ∈ R. Then, there exists t1 ∈ [t0 − τ, t0) such that
f (t1) = F(t0) < f (t0). Since f is continuous, one can find δ > 0 such that

t1 + δ ∈ [t0 − τ, t0), max
s∈[t1,t1+δ]

f (s) < min
s∈[t0,t0+δ]

f (s).
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Therefore, we have
F(t) = min

s∈[t−τ,t]
f (s)

= min
{

min
s∈[t−τ,t0]

f (s), min
s∈[t0,t]

f (s)
}

≥ min
{

min
s∈[t0−τ,t0]

f (s), max
s∈[t1,t1+δ]

f (s)
}

= min
s∈[t0−τ,t0]

f (s) = F(t0), ∀t ∈ [t0, t0 + δ].

(2) To show that F is monotonically increasing, we claim the following:

for every point t ∈ R, we have D+F(t) ≥ 0.

Once we prove the above claim, we can show F(t0) ≤ F(t1) for all t0 < t1. To see this, consider a
function

G(t) := F(t) −
F(t1) − F(t0)

t1 − t0
(t − t0), t ∈ [t0, t1].

This function has a maximum point c ∈ [t0, t1] as a consequence of the Weierstrass extreme value
theorem. In addition, since G(t0) = G(t1) = F(t0), we may assume c ∈ [t0, t1). Therefore, we have

0 ≥ lim sup
y→c+

G(y) −G(c)
y − c

= lim sup
y→c+

F(y) − F(c)
y − c

−
F(t1) − F(t0)

t1 − t0

= D+F(c) −
F(t1) − F(t0)

t1 − t0

≥ −
F(t1) − F(t0)

t1 − t0
,

which implies F(t0) ≤ F(t1).

Now, suppose we have D+F(t∗) < 0 for some t∗ ∈ R. Then, one can obtain f (t∗) = F(t∗) from the
result (1), and we have

lim inf
h→0+

f (t∗ + h) − F(t∗ + h)
h

= lim inf
h→0+

f (t∗ + h) − f (t∗) + f (t∗) − F(t∗ + h)
h

= lim inf
h→0+

f (t∗ + h) − f (t∗) + F(t∗) − F(t∗ + h)
h

≥ lim inf
h→0+

f (t∗ + h) − f (t∗)
h

− D+F(t∗)

= D+ f (t∗) − D+F(t∗) > 0,

where we used f (t∗) = F(t∗) in the second equality. Therefore, there exist two constants δ, ε > 0 such
that

f (t∗ + h) > F(t∗ + h) + εh, ∀h ∈ (0, δ). (A.1)
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From (A.1), we can employ Lemma 3.1(1) to t0 := t∗ + h for each h ∈ (0, δ) and obtain

F(t1) ≤ F(t2), ∀t∗ < t1 ≤ t2 < t∗ + δ,

and since F is continuous (∵ Berge’s maximum theorem), we have

F(t∗) ≤ F(t), ∀t ∈ [t∗, t∗ + δ),

which leads to a contradiction in D+F(t∗) < 0.

(3) It is sufficient to prove that

∀ t ∈ R, ∃ δ > 0 such that |F(t) − F(s)| ≤ L|t − s|, ∀ s ∈ [t, t + δ].

If f (t0) > F(t0), one can find δ > 0 such that

F(t0) + Lδ < min
s∈[t0,t0+δ]

f (s),

due to the continuity of f . Therefore, we have

F(t) = min
s∈[t−τ,t]

f (s)

= min
{

min
s∈[t−τ,t0]

f (s), min
s∈[t0,t]

f (s)
}

≤ min
{

min
s∈[t0−τ,t0]

f (s) + L|t − t0|, min
s∈[t0,t]

f (s)
}

≤ F(t0) + L|t − t0|, ∀ t ∈ [t0, t0 + δ],

where we used the Lipschitz continuity of f . On the other hand, if f (t0) = F(t0), then

F(t0 + h) = min
s∈[t0−τ+h,t0+h]

f (s)

= min
{

min
s∈[t0−τ+h,t0]

f (s), min
s∈[t0,t0+h]

f (s)
}

= min
{

F(t0), min
s∈[t0,t0+h]

f (s)
}
, ∀ h ∈ (0, τ),

where we used
min

s∈[t0−τ+h,t0]
f (s) = f (t0) = F(t0)

in the last equality. Therefore, we have

|F(t0 + h) − F(t0)| =

∣∣∣∣∣∣min
{

0, min
s∈[t0,t0+h]

f (s) − F(t0)
}∣∣∣∣∣∣

=

∣∣∣∣∣∣min
{

0, min
s∈[t0,t0+h]

f (s) − f (t0)
}∣∣∣∣∣∣

≤ Lh,

where we used the Lipschitz continuity of f in the last inequality. □
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Appendix B Proof of Lemma 4.1

Proof. From the Berge maximum theorem, the set valued map

t 7→ C(t) := arg max { f (t1, t2) : t1, t2 ∈ S(t)}

is upper hemi-continuous with nonempty and compact values. This means that for every t ≥ 0, if
V(⊂ R2) contains C(t), there exists a neighborhood U of t such that for all t ∈ U, C(t) is a subset of V .

Now, fix arbitrary ε > 0, and define g(t1, t2) := f (t1, t2) − (c + ε) max{t1, t2}. Then, we have

lim sup
h→0+

g(s1 + h, s2 + h) − g(s1, s2)
h

≤ λ(s1, s2) − (c + ε), ∀ (s1, s2) ∈ S(t).

Since λ is continuous, there exists an open neighborhood

V(s, t0) := {(s + h1 + h2, t0 + h2) : |h1| < δ(s,t0) < t0 − s, |h2| < δ(s,t0)}

for each (s, t0) ∈ C(t0), s < t0, such that λ(s1, s2) < c + ε
2 for all (s1, s2) ∈ V(s, t0). Similarly, for each

(t0, s) ∈ C(t0), s < t0, there exists an open neighborhood

V(t0, s) := {(t0 + h2, s + h1 + h2) : |h1| < δ(t0,s) < t0 − s, |h2| < δ(t0,s)}

such that λ(s1, s2) < c + ε
2 for all (s1, s2) ∈ V(t0, s). Finally, there exists an open set

V(t0, t0) :=
{
(t1 + h, t2 + h) : max{t1, t2} = t0,min{t1, t2} > t0 − δ(t0,t0), |h| < δ(t0,t0)

}
such that λ(s1, s2) < c + ε

2 for all (s1, s2) ∈ V(t0, t0). Then, {V(s1, s2) : (s1, s2) ∈ C(t0)} is an open cover
of C(t0). In addition, since C(t0) is compact, we can find its finite subcover {V1, . . . ,Vn}. Therefore, we
can find an open subset V0 of S (t0) such that

C(t0) ⊂ V0, V := {(s1 + h, s2 + h) : (s1, s2) ∈ V0, |h| < δ} ⊂
n⋃

i=1

Vi.

Therefore, by using the Berge maximum theorem, there exists a positive number δ0 < δ such that
C(t) ⊂ V for all t ∈ (t0 − δ0, t0 + δ0). This means that the Dini derivative D+Gt1,t2(h) of

Gt1,t2(h) := g(t1 + h, t2 + h)

is less than or equal to − ε2 for all (t1, t2) ∈ V0 and |h| < δ0, and therefore Gt1,t2(h) is monotonically
decreasing in |h| < δ0 for all (t1, t2) ∈ V0. By using this result, we have

m[g](t0 + h) = max
(s1,s2)∈S(t0+h)

g(s1, s2)

= max
(s1,s2)∈V0

g(s1 + h, s2 + h)

≤ max
(s1,s2)∈V0

g(s1, s2)

= max
(s1,s2)∈S(t)

g(s1, s2)

= m[g](t0), ∀ |h| < δ0,
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which implies that for every |h| < δ0,

m[ f ](t0 + h) = max
(t1,t2)∈S(t0+h)

f (t1, t2)

= max
(t1,t2)∈S(t0+h)

[
g(t1, t2) + (c + ε) max{t1, t2}

]
= max

(t1,t2)∈S(t0+h)
g(t1, t2) + (c + ε)(t0 + h)

≤ max
(t1,t2)∈S(t0)

g(t1, t2) + (c + ε)(t0 + h)

= max
(t1,t2)∈S(t0)

f (t1, t2) + (c + ε)h

= m[ f ](t0) + (c + ε)h.

Since ε can be any positive number, we have

D+m[ f ](t0) ≤ c.

□
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