In this paper, we study the positive solutions of the periodic-parabolic logistic equation with indefinite weight function and nonhomogeneous diffusion coefficient. By employing sufficient conditions to guarantee negative principal eigenvalue, we obtain the existence, uniqueness, and stability of the positive periodic solutions. Moreover, we prove that the positive periodic solution tends to the unique positive solution of the corresponding non-autonomous logistic equation when the diffusion rate is large.
Citation: Mingming Fan, Jianwen Sun. Positive solutions for the periodic-parabolic problem with large diffusion[J]. Networks and Heterogeneous Media, 2024, 19(3): 1116-1132. doi: 10.3934/nhm.2024049
In this paper, we study the positive solutions of the periodic-parabolic logistic equation with indefinite weight function and nonhomogeneous diffusion coefficient. By employing sufficient conditions to guarantee negative principal eigenvalue, we obtain the existence, uniqueness, and stability of the positive periodic solutions. Moreover, we prove that the positive periodic solution tends to the unique positive solution of the corresponding non-autonomous logistic equation when the diffusion rate is large.
[1] | R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Chichester, UK, 2003. https://doi.org/10.1002/0470871296 |
[2] | P. Hess, Periodic-parabolic boundary value problems and positivity, Bull. London Math. Soc., 247 (1991). https://doi.org/10.1112/blms/24.6.619 |
[3] | Y. Du, R. Peng, The periodic logistic equation with spatial and temporal degeneracies, Trans. Am. Math. Soc., 364 (2012), 6039–6070. https://doi.org/10.1090/S0002-9947-2012-05590-5 doi: 10.1090/S0002-9947-2012-05590-5 |
[4] | Y. Du, R. Peng, Sharp spatiotemporal patterns in the diffusive time-periodic logistic equation, J. Differ. Equations, 254 (2013), 3794–3816. https://doi.org/10.1016/j.jde.2013.02.004 doi: 10.1016/j.jde.2013.02.004 |
[5] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. https://doi.org/10.1137/1018114 doi: 10.1137/1018114 |
[6] | H. Brézis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. Theory Methods Appl., 10 (1986), 55–64. https://doi.org/10.1016/0362-546X(86)90011-8 doi: 10.1016/0362-546X(86)90011-8 |
[7] | W. T. Li, J. López-Gómez, J. W. Sun, Sharp blow-up profiles of positive solutions for a class of semilinear elliptic problems, Adv. Nonlinear Stud., 21 (2021), 751–765. https://doi.org/10.1515/ans-2021-2149 doi: 10.1515/ans-2021-2149 |
[8] | W. T. Li, J. López-Gómez, J. W. Sun, Sharp patterns of positive solutions for some weighted semilinear elliptic problems, Calc. Var. Partial Differ. Equations, 60 (2021), 1–36. https://doi.org/10.1007/s00526-021-01993-9 doi: 10.1007/s00526-021-01993-9 |
[9] | I. Antón, J. López-Gómez, Principal eigenvalues of weighted periodic-parabolic problems, Rend. Istit. Mat. Univ. Trieste, 49 (2017), 287–318. https://doi.org/10.13137/2464-8728/16217 doi: 10.13137/2464-8728/16217 |
[10] | I. Antón, J. López-Gómez, Principal eigenvalue and maximum principle for cooperative periodic-parabolic systems, Nonlinear Anal., 178 (2019), 152–189. https://doi.org/10.1016/j.na.2018.07.014 doi: 10.1016/j.na.2018.07.014 |
[11] | S. Cano-Casanova, S. Fernández-Rincón, J. López-Gómez, A singular perturbation result for a class of periodic-parabolic BVPs, Open Math., 22 (2024), 20240020. https://doi.org/10.1515/math-2024-0020 doi: 10.1515/math-2024-0020 |
[12] | J. López-Gómez, Protection zones in periodic-parabolic problems, Adv. Nonlinear Stud., 20 (2020), 253–276. https://doi.org/10.1515/ans-2020-2084 doi: 10.1515/ans-2020-2084 |
[13] | J. López-Gómez, E. Muñoz-Hernández, Global structure of subharmonics in a class of periodic predator-prey models, Nonlinearity, 33 (2020), 34–71. https://doi.org/10.1088/1361-6544/ab49e1 doi: 10.1088/1361-6544/ab49e1 |
[14] | W. Shen, Y. Yi, Dynamics of almost periodic scalar parabolic equations, J. Differential Equations, 122 (1995), 114–136. https://doi.org/10.1006/jdeq.1995.1141 doi: 10.1006/jdeq.1995.1141 |
[15] | D. Aleja, I. Antón, J. López-Gómez, Global structure of the periodic positive solutions for a general class of periodic-parabolic logistic equations with indefinite weights, J. Math. Anal. Appl., 487 (2020), 123961. https://doi.org/10.1016/j.jmaa.2020.123961 doi: 10.1016/j.jmaa.2020.123961 |
[16] | E. N. Dancer, P. Hess, Behaviour of a semi-linear periodic-parabolic problem when a parameter is small, in Functional-Analytic Methods for Partial Differential Equations: Proceedings of a Conference and a Symposium held in Tokyo, Japan, July 3–9, 1989, Heidelberg: Springer Berlin Heidelberg, Berlin, (2006), 12–19. https://doi.org/10.1007/BFb0084895 |
[17] | D. Daners, J. López-Gómez, The singular perturbation problem for the periodic-parabolic logistic equation with indefinite weight functions, J. Dyn. Differ. Equations, 6 (1994), 659–670. https://doi.org/10.1007/BF02218853 doi: 10.1007/BF02218853 |