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Abstract: In this paper, we study the positive solutions of the periodic-parabolic logistic equation
with indefinite weight function and nonhomogeneous diffusion coefficient. By employing sufficient
conditions to guarantee negative principal eigenvalue, we obtain the existence, uniqueness, and stability
of the positive periodic solutions. Moreover, we prove that the positive periodic solution tends to the
unique positive solution of the corresponding non-autonomous logistic equation when the diffusion rate
is large.
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1. Introduction

In this paper, we study the positive solutions of the periodic-parabolic problem
ut = µk(x, t)∆u + m(x, t)u − c(x, t)up, in Ω × R,
∂u
∂ν
= 0, on ∂Ω × R,

u(x, 0) = u(x,T ), in Ω,

(1.1)

where Ω is a bounded domain of RN(N ≥ 1) with smooth boundary ∂Ω, ν is the outward normal
vector of ∂Ω, µ > 0 and p > 1 is constant, m(x, t) ∈ Cα,

α
2 (Ω̄ × R) (0 < α < 1) is T -periodic in t,

k(x, t), c(x, t) ∈ Cα,1(Ω̄ × R) are positive and T -periodic in t. It is known that the periodic reaction-
diffusion equation (1.1) can be accurately used to describe different diffusion phenomena in infectious
diseases, microbial growth, and population ecology, see [1–4]. From a biological point of view, Ω
represents the habitat of species u and µk(x, t) stands for the diffusion rate, which is time and space
dependent. The function m(x, t) represents the growth rate of species. In this situation, in the subset
{(x, t) ∈ Ω × R : m(x, t) > 0}, the species will increase, while in {(x, t) ∈ Ω × R : m(x, t) < 0}, species
will decrease. The coefficient c(x, t) means that environment Ω can accommodate species u. There are
many interesting conclusions about the study of the reaction-diffusion equation, see [5–8] for the elliptic
problems and [9–14] for the periodic problems.
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In particular, if k(x, t) ≡ k(t) for x ∈ Ω̄, problem (1.1) has been well investigated by Hess [2], Cantrell
and Cosner [1]. Let λ(µ) be the unique principal eigenvalue of the eigenvalue problem

ut − µk(t)∆u − m(x, t)u = λ(µ)u, in Ω × R,
∂u
∂ν
= 0, on ∂Ω × R,

u(x, 0) = u(x,T ), in Ω.

It follows from [2, 15] that Eq (1.1) has a positive periodic solution θµ(x, t) if and only if λ(µ) < 0.
In addition, Dancer and Hess [16] and Daners and López-Gómez [17] studied the effect of µ on the
positive periodic solution of Eq (1.1) with various boundary conditions. The most interesting conclusion
of [11, 16, 17] is that

lim
µ→0+
θµ(x, t) = θ(x, t) locally uniformly in Ω × [0,T ],

here θ(x, t) is the maximum nonnegative periodic solution ofut = m(x, t)u − c(x, t)up, t ∈ R,

u(x, 0) = u(x,T ).

However, there is little result on the associated large diffusion and the effect of large diffusion on
positive solutions.

Our goal is to study the existence and uniqueness of positive periodic solutions of Eq (1.1) and the
asymptotic behavior of positive periodic solutions when the diffusion rate µ is large. To this end, let
λ(µ; m) be the principal eigenvalue of

ut − µk(x, t)∆u − m(x, t)u = λ(µ; m)u, in Ω × R,
∂u
∂ν
= 0, on ∂Ω × R,

u(x, 0) = u(x,T ), in Ω.

(1.2)

It is well known that λ(µ; m) plays a major role in the study of the positive periodic solution of Eq (1.1).
The properties of λ(µ; m) will be established in Section 2. In addition, let W2,p

ν (Ω) = {u ∈ W2,p(Ω) : ∂u
∂ν
=

0}(N < p < ∞). If u0 ∈ W2,p
ν (Ω), it follows from [2] that the semilinear initial value problem
ut = µk(x, t)∆u + m(x, t)u − c(x, t)up, in Ω × R,
∂u
∂ν
= 0, on ∂Ω × R,

u(x, 0) = u0(x), in Ω,

has a unique solution U(x, t) = U(x, t; u0) satisfying

U(x, t) ∈ C1+α, 1+α2 (Ω̄ × [0,T ]) ∩C2+α,1+ α2 (Ω̄ × (0,T ]).

Our first result is the existence and uniqueness of positive periodic solutions of Eq (1.1). For
simplicity, in the rest of this paper, we use the following notations:

k∗(t) =
∫
Ω

1
k(x, t)

dx, m∗(t) =
∫
Ω

m(x, t)
k(x, t)

dx, c∗(t) =
∫
Ω

c(x, t)
k(x, t)

dx.
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Theorem 1.1. Suppose that
∫ T

0
m∗(t) dt > 0. Then Eq (1.1) admits a unique positive periodic solution

θµ(x, t) for all µ > 0.

Remark 1.1. By the result of Section 3, we know that there exists a unique positive solution to Eq (1.1)
if and only if λ(µ; m) < 0. In the case

∫ T

0
m∗(t) dt > 0, we obtain that λ(µ; m) < 0.

Next, we study the asymptotic behavior of positive periodic solutions when the diffusion rate is large.

Theorem 1.2. Suppose that
m∗(t) > 0 for t ∈ [0,T ]. (1.3)

Let θµ(x, t) be the unique positive periodic solution of Eq (1.1) for µ > 0. Then we have

lim
µ→∞
θµ(x, t) = ω(t) in C1, 12 (Ω̄ × [0,T ]), (1.4)

where ω(t) is the unique positive periodic solution ofut =
m∗(t)
k∗(t)

u − c∗(t)
k∗(t)

up, t ∈ R,

u(0) = u(T ).
(1.5)

Remark 1.2. With the approach of local upper-lower solutions developed by Daners and López-
Gómez [17] in the study of classical periodic-parabolic logistic equations, we can prove that

lim
µ→0+
θµ(x, t) = θ(x, t) locally uniformly in Ω × [0,T ],

provided maxΩ
∫ T

0
m(x, t) dt > 0. It also shows that when m∗(t) < 0 <

∫ T

0
maxΩm(x, t) dt, populations

with small dispersal rates survive, while populations with large dispersal rates perish. This means that a
small diffusion rate is a better strategy than a large diffusion rate under appropriate circumstances.

The rest of this paper is arranged as follows: In Section 2, we study the properties of principal eigen-
values for the periodic eigenvalue problems. In Section 3, we mainly study the existence, uniqueness
and stability of the positive solution to Eq (1.1). Moreover, we investigate the asymptotic profiles of the
positive periodic solution to Eq (1.1) as µ→ ∞ in Section 4.

2. Periodic eigenvalue equation

In this section, we consider the principal eigenvalue of Eq (1.2). To this end, we first study the linear
initial value problem 

ut − µk(x, t)∆u − a(x, t)u = 0, in Ω × (τ,T ],
∂u
∂ν
= 0, on ∂Ω × (τ,T ],

u(x, τ) = u0(x), in Ω,

(2.1)

where 0 ≤ τ < T , u0 ∈ W2,p
ν (Ω)(N < p < ∞) and a(x, t) ∈ Cα,

α
2 (Ω̄ × [τ,∞)). It is well known that there

is a one-to-one correspondence between Eq (2.1) and the evolution operator Uµ(t, τ). Then we can
define that u(x, t) = Uµ(t, τ)u0 is the solution of Eq (2.1). For simplicity, let X = Lp(Ω)(N < p < ∞),
X1 = W2,p

ν (Ω) and
F = {u ∈ Cα,

α
2 (Ω̄ × R) : u(·, t + T ) = u(·, t) in R}.

Networks and Heterogeneous Media Volume 19, Issue 3, 1116–1132.
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Inspired by the classical works of Hess [2], we first give some important results of Eq (2.1), which
will be used in the rest of this paper.

Lemma 2.1. If u0 ∈ X is positive, then Uµ(t, τ)u0 > 0 in C1
ν(Ω̄) for 0 ≤ τ < t ≤ T.

Proof. Note that X1 is compactly embedded in X. The operator Uµ(t, τ)/X1 : X1 → X1 can be con-
tinuously extended to the positive operator Uµ(t, τ) ∈ L(X, X1). Thus Uµ(t, τ)u0 ≥ 0 in X1. Since
s 7→ Uµ(s, τ)u0 is continuous from [τ,T ] to X1 and Uµ(τ, τ)u0 = u0 , 0, we can get that Uµ(s, τ)u0 > 0
in X1 as s > τ goes to τ. In addition, we have

Uµ(t, τ)u0 = Uµ(t, s)Uµ(s, τ)u0,

for τ < s < t. Thus it can be obtained that Uµ(t, τ)u0 > 0 for 0 ≤ τ < t ≤ T .

We now study the periodic-parabolic eigenvalue problem
ut − µk(x, t)∆u − a(x, t)u = λ(µ; a)u, in Ω × (0,T ],
∂u
∂ν
= 0, on ∂Ω × (0,T ],

u(x, 0) = u(x,T ), in Ω.

(2.2)

If there is a nontrivial solution u(x, t) of Eq (2.2), then λ(µ; a) is called the eigenvalue. In particular,
if u(x, t) is positive, then λ(µ; a) is the principal eigenvalue.

Theorem 2.1. Let Kµ := Uµ(T, 0) and r be the spectral radius of Kµ. Then r is the principal eigenvalue
of Kµ with positive eigenfunction u0 if and only if λ(µ; a) = − 1

T ln r is the principal eigenvalue of Eq (2.2)
with positive eigenfunction u(x, t) = eλ(µ;a)tUµ(t, 0)u0.

Proof. It can be proved by the similar arguments as in [2, Proposition 14.4]. For the completeness,
we provide a proof in the following. Suppose that r is the principal eigenvalue of Kµ with positive
eigenfunction u0 ∈ X1. Let u(x, t) = eλ(µ;a)tUµ(t, 0)u0. Then u(x, t) satisfies

ut − µk(x, t)∆u − a(x, t)u = λ(µ; a)u, in Ω × (0,T ],
∂u
∂ν
= 0, on ∂Ω × (0,T ],

u(x, 0) = u0 =
1
r Kµu0 = eλ(µ;a)T Kµu0 = u(x,T ), in Ω.

According to the regularity results, we have u(x, t) ∈ C2+α,1+ α2 (Ω̄ × R). This means that µ =
− 1

T ln r is the principal eigenvalue of Eq (2.2), while u(x, t) = eλ(µ;a)tUµ(t, 0)u0 is the corresponding
positive eigenfunction.

On the contrary, suppose that λ(µ; a) = − 1
T ln r is the eigenvalue of Eq (2.2) with positive eigenfunc-

tion u(x, t). Set v(x, t) = e−λ(µ;a)tu(x, t). Then v(x, t) is the solution of
vt − µk(x, t)∆v − a(x, t)v = 0, in Ω × (0,T ],
∂v
∂ν
= 0, on ∂Ω × (0,T ],

v(x, 0) = u(x) =: u0, in Ω.

Thus, we obtain v(x, t) = Uµ(t, 0)u0 for 0 ≤ t ≤ T and u0 ∈ X1 is positive. Hence,

v(T ) = e−λ(µ;a)T u0 = Kµu0.

It follows from Krein-Rutman theorem that e−λ(µ;a)T = r.

Networks and Heterogeneous Media Volume 19, Issue 3, 1116–1132.
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Remark 2.1. For τ < t, it follows that Uµ(t, τ) is a compact and strongly positive operator on X1.
Moreover, by Krein-Rutman theorem, we obtain r > 0, and r is the unique principal eigenvalue of Kµ.
This implies that Eq (2.2) has the unique principal eigenvalue λ(µ; a) for any µ > 0.

Lemma 2.2. Let a1(x, t), a(x, t) ∈ F satisfy

a1(x, t) < a2(x, t) in Ω̄ × [0,T ].

Then λ(µ; a2) < λ(µ; a1) for any µ > 0.

Proof. Assume that there exists µ1 > 0 such that λ(µ1; a2) ≥ λ(µ1; a1). Let u1(x, t) and u2(x, t) be
corresponding positive eigenfunctions, chosen in such a way that

0 < u1(x, t) < u2(x, t) in Ω̄ × [0,T ].

Then ω(x, t) = u2(x, t) − u1(x, t) satisfies
ωt − µ1k(x, t)∆ω − a1(x, t)ω > λ(µ1; a1)ω, in Ω × (0,T ],
∂ω
∂ν
= 0, on ∂Ω × (0,T ],

ω(x, 0) = ω(x,T ), in Ω.

Set ϕ(x, t) = e−λ(µ1;a1)tω(x, t), then we have
ϕt − µ1k(x, t)∆ϕ − a1(x, t)ϕ > 0, in Ω × (0,T ],
∂ϕ

∂ν
= 0, on ∂Ω × (0,T ],

ϕ(x, 0) = ω(x, 0) = ω(x,T ), in Ω.

Thus, for any x ∈ Ω, we can obtain

ϕ(x,T ) > Kµ1ω(x, 0) and ϕ(x,T ) = e−λ(µ1;a1)Tω(x, 0).

Hence, we obtain
(e−λ(µ1;a1)T − Kµ1)ω(x, 0) > 0 in X1.

Note that ω(x, 0) > 0, it follows from [2, Theorem 7.3] that

e−λ(µ1;a1)T = rµ1 < e−λ(µ1;a1)T ,

where rµ1 is the principal eigenvalue of Kµ1 . This is a contradiction.

Lemma 2.3. Suppose that for any n ∈ N, an(x, t) ∈ F satisfies

lim
n→∞

an(x, t) = a(x, t) in C1(Ω̄ × [0,T ]).

Then for fixed µ > 0, we have
lim
n→∞
λ(µ; an) = λ(µ; a).

Networks and Heterogeneous Media Volume 19, Issue 3, 1116–1132.
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Proof. For any given ε > 0, there exists nε ∈ N such that for any n > nε, there holds

a(x, t) − ε < an(x, t) < a(x, t) + ε in Ω̄ × [0,T ].

Notice that λ(µ; a ± ε) = λ(µ; a) ∓ ε. From Lemma 2.2, we have

λ(µ; a) − ε < λ(µ; an) < λ(µ; a) + ε,

for any n > nε.

Lemma 2.4. Let λ(µ; a) be the principal eigenvalue of Eq (2.2) for µ > 0. Then we have

λ(µ; a) ≤ −

∫ T

0
a∗(t) dt∫ T

0
k∗(t) dt

, (2.3)

here a∗(t) =
∫
Ω

a(x,t)
k(x,t) dx.

Proof. First, we consider the case ∫ T

0

∫
Ω

kt(x, t)
k2(x, t)

dxdt , 0.

Let φ(x, t) be the positive eigenfunction corresponding to the principal eigenvalue λ(µ; a). Taking
α > 0 satisfies

lnα =
−
∫ T

0

∫
Ω

kt(x,t) lnφ(x,t)
k2(x,t) dxdt∫ T

0

∫
Ω

kt(x,t)
k2(x,t) dxdt

.

Then φα := αφ(x, t) is also the principal eigenfunction of Eq (2.2). It is easy to obtain

λ(µ; a)
∫ T

0

∫
Ω

1
k(x, t)

dxdt

= −

∫ T

0

∫
Ω

a(x, t)
k(x, t)

dxdt − µ
∫ T

0

∫
Ω

∆φα
φα

dxdt

= −

∫ T

0

∫
Ω

a(x, t)
k(x, t)

dxdt − µ
∫ T

0

∫
Ω

|Dφα|2

φ2
α

dxdt.

(2.4)

This implies that Eq (3.2) holds.
Next, we consider the case of ∫ T

0

∫
Ω

kt(x, t)
k2(x, t)

dxdt = 0.

We can find smooth T -periodic functions {kn(x, t)} such that

lim
n→∞

kn(x, t) = k(x, t) in C(Ω̄ × [0,T ]),

and ∫ T

0

∫
Ω

(kn(x, t))t

k2
n(x, t)

dxdt , 0.
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It follows from Lemma 2.3 that
lim
n→∞
λn(µ; a) = λ(µ; a),

where λn(µ; a) is the principal eigenvalue of Eq (2.2) with k(x, t) replaced by kn(x, t). It is clear from
Eq (2.4) that

λn(µ; a) = −
∫ T

0

∫
Ω

a(x, t)
kn(x, t)

dxdt − µ
∫ T

0

∫
Ω

|Dφα|2

φ2
α

dxdt.

Letting n→ ∞, we have Eq (3.2).

Remark 2.2. In Eq (3.2), we obtain upper estimates for the principal eigenvalue of the Neumann
problem Eq (2.2). Indeed, let λD be the principal eigenvalue of the eigenvalue problem

ut − µk(x, t)∆u − a(x, t)u = λDu, in Ω × (0,T ],
u = 0, on ∂Ω × (0,T ],
u(x, 0) = u(x,T ), in Ω.

By a similar way as in [2], we can show

λD ≤ −
1
T

∫ T

0
[µk(x, s) + a(s)] ds,

for any µ > 0.

3. Positive solutions of periodic-parabolic equation

In this section, we study the existence and uniqueness of positive solutions of Eq (1.1). First, we
show that if Eq (1.2) has negative principal eigenvalues, then Eq (1.1) has a unique positive solution. To
this end, we recall the upper-lower solutions of Eq (1.1). For the sake of convenience, let

QT = Ω × (0,T ], Q1 = ∂Ω × (0,T ].

Definition 3.1. The continuous function ū(x, t) is called the upper-solution of Eq (1.1), if
ut ≥ µk(x, t)∆u + m(x, t)u − c(x, t)up, in QT ,
∂u
∂ν
≥ 0, on Q1,

u(x, 0) ≥ u(x,T ), in Ω,

is satisfied.

The definition of the lower-solution is similar. We then can prove the following result, see [2,4,5,15].

Theorem 3.1. Suppose that ū(x, t), u(x, t) are a pair of ordered bounded upper-lower solutions of
Eq (1.1). Then Eq (1.1) has a unique positive periodic solution θµ(x, t) ∈ C1+α,(1+α)/2(Q̄T ) that satisfies

u(x, t) ≤ θµ(x, t) ≤ ū(x, t) in Q̄T .

Networks and Heterogeneous Media Volume 19, Issue 3, 1116–1132.
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Proof. Let
f (x, t, u) = m(x, t)u − c(x, t)up.

Then there exists a constant K > 0 such that

| f (x, t, u2) − f (x, t, u1)| ≤ K|u2 − u1|,

for any (x, t, ui) ∈ Q̄T × [u(x, t), ū(x, t)], i = 1, 2. It follows from Lp theory that for any u ∈ Cα,
α
2 (Q̄T )

satisfying [u(x, t), ū(x, t)], the linear initial value problem
vt − µk(x, t)∆v + Kv = Ku + f (x, t, u), in QT ,
∂v
∂ν
= 0, on Q1,

v(x, 0) = u(x,T ), in Ω,

admits a unique solution v. Thus, a nonlinear operator v = F u is defined. We will prove that there is a
fixed point for F in four steps.

Step 1. In this step, we prove that if u ≤ u1 ≤ u2 ≤ ū, then u ≤ v1 = F u1 ≤ v2 = F u2 ≤ ū.

Take ω1 = v2 − v1, then ω1 satisfies
[ω1]t − µk(x, t)∆ω1 + Kω1 = K(u2 − u1) + f (x, t, u2) − f (x, t, u1) ≥ 0, in QT ,
∂ω1
∂ν
= 0, on Q1,

ω1(x, 0) = u2(x,T ) − u1(x,T ) ≥ 0, in Ω.

By the comparison principle, we obtain ω1 ≥ 0. This implies F u2 ≥ F u1. Similarly, let ω2 = v1 − u,
then ω2 satisfies

[ω2]t − µk(x, t)∆ω2 + Kω2 = K(u1 − u) + f (x, t, u1) − f (x, t, u) ≥ 0, in QT ,
∂ω2
∂ν
= 0, on Q1,

ω1(x, 0) = u1(x,T ) − u(x,T ) ≥ 0, in Ω.

Thus, u ≤ v1. Similarly, v2 ≤ ū.

Step 2. In this step, we construct a convergent monotone sequence.

The iterative sequences {un} and {vn} are constructed as follows:

u1 = F ū, u2 = F u1, · · · , un = F un−1 · · · ,

v1 = F u, v2 = F v1, · · · , vn = F vn−1 · · · .

Since u ≤ ū and F is monotonically non-decreasing, then

u ≤ v1 ≤ u1 ≤ ū.

Similarly, we obtain
u ≤ vn ≤ un ≤ ū.

Networks and Heterogeneous Media Volume 19, Issue 3, 1116–1132.
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And since u ≤ u1 ≤ ū,
u ≤ u2 ≤ u1 ≤ ū.

By induction, we have un+1 ≤ un. In the same way, we obtain vn ≤ vn+1. Thus, we have

u ≤ v1 ≤ v2 ≤ · · · ≤ u2 ≤ u1 ≤ ū.

This also implies that {un} and {vn} are monotonically bounded sequences, so there are u0(x, t) and
v0(x, t) such that

lim
n→∞

un(x, t) = u0(x, t), lim
n→∞

vn(x, t) = v0(x, t).

Thus
u(x, t) ≤ v0(x, t) ≤ u0(x, t) ≤ ū(x, t) in Q̄T .

Step 3. In this step, we prove that u0(x, t) and v0(x, t) are solutions of Eq (1.1).

Take E = W2,1
p (QT )(p > n + 2). First, we prove that F : D→ C(Q̄T ) is a compact operator, where

D = {u(x, t) ∈ E : u(x, t) ≤ u(x, t) ≤ ū(x, t) in Q̄T }.

For u1, u2 ∈ E, let v1 = F u1 and v2 = F u2, then ω3 = v2 − v1 satisfies
[ω3]t − µk(x, t)∆ω3 + Kω3 = K(u2 − u1) + f (x, t, u2) − f (x, t, u1), in QT ,
∂ω3
∂ν
= 0, on Q1,

ω1(x, 0) = u2(x,T ) − u1(x,T ), in Ω.

By the Lp estimate and embedding theorem, it follows that

∥ω3∥C1+α, 1+α2 (Q̄T )
≤ C∥ω3∥W2,1

p (QT ) ≤ C1(∥u2 − u1∥Lp(QT ) + ∥u2(x,T ) − u1(x,T )∥Lp(Ω)),

here C and C1 are positive constants. Thus F : D → C(Q̄T ) is continuous. It is known from the
embedding theorem that if u is bounded in W2,1

p (QT ), then F u is bounded in C1+α,(1+α)/2(Q̄T ). This
means that F : D→ C(Q̄T ) is a compact operator.

Since un is bounded, un = F un−1 has a convergent subsequence in C(Q̄T ). By the monotonicity of un,

lim
n→∞

un(x, t) = u0(x, t) in C(Q̄T ).

Thus u0(x, t) is the solution of Eq (1.1) in W2,1
p (QT ). The embedding theorem is used again to get

u0(x, t) ∈ C1+α,(1+α)/2(Q̄T ). In the same way, we get that v0(x, t) is the classical solution of Eq (1.1).

Step 4. In this step, we prove the uniqueness and periodicity of the solution of Eq (1.1).

Since k(x, t), m(x, t) and c(x, t) are periodic about t, then τ(x, t) = u0(x, t + T ) − u0(x, t) satisfies
τt(x, t) − µk(x, t)∆τ(x, t) = m(x, t)τ(x, t) − pc(x, t)ũp−1(x, t)τ(x, t), in QT ,
∂τ
∂ν
= 0, on Q1,

τ(x, 0) = 0, in Ω,

(3.1)
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here ũ(x, t) is between u0(x, t + T ) and u0(x, t). It is well known that the solution of Eq (3.1) is unique,
thus u0(x, t + T ) ≡ u0(x, t) in Q̄T .

The uniqueness of the solution is based on the results of [2,4] and can also be found in recent research
results [11, 15]. Assume that v1 and v2 are two positive periodic solutions of Eq (1.1). We first prove
that there exists a large constant M > 1 such that

M−1v1 < v2 < Mv1 in QT .

Indeed, it is clear that there exists M1 > 1 such that

v2(x, 0) = v2(x,T ) < M1v1(x,T ) = M1v1(x, 0) in Ω.

This implies v2(x, 0) . M1v1(x, 0) on Ω̄. Let η(x, t) := M1v1(x, t) − v2(x, t), then η(x, t) satisfies

ηt − µk(x, t)∆η =m(x, t)η − c(x, t)[M1vp
1 − vp

2]
>m(x, t)η − c(x, t)[(M1v1)p − vp

2]
=m(x, t)η − pc(x, t)ςp−1(x, t)η,

where ς(x, t) is lying between M1v1(x, t) and v2(x, t). Notice that ∂η
∂ν
= 0 on Q1. By the maximum

principle, we have η > 0 in Q̄T . Similarly, we can obtain that there exists M2 > 0 such that v1 < M2v2 in
Q̄T . Take M = max{M1,M2}, then we have

M−1v1 < v2 < Mv1 in QT .

We know that Mv1(x, t) and M−1v1(x, t) are a pair of upper-lower solutions of Eq (1.1). According
to the second step, Eq (1.1) has a minimum solution u∗ and a maximum solution u∗, which satisfies
u∗ ≤ v ≤ u∗ in Q̄T for all solution v satisfying M−1v1 ≤ v ≤ Mv1. Thus, we obtain u∗ ≤ vi ≤ u∗ for
i = 1, 2. Hence, u∗ ≡ u∗ implies the uniqueness of the solution to Eq (1.1). Set

α∗ = inf
{
α > 0 | u∗(x, t) ≤ αu∗(x, t) in Q̄T

}
.

It is clear that α∗ ≥ 1. Note that if α∗ = 1, then u∗(x, t) ≡ u∗(x, t) in Q̄T . Assume that α∗ > 1. Let
π(x, t) = α∗u∗ − u∗. It is known from the maximum principle that π(x, t) > 0 in Q̄T . On the other hand,
we know that

π(x, 0) = π(x,T ) ≥ α1u∗(x,T ) = α1u∗(x, 0) on Ω̄,

for some small α1 > 0. We can use the previous method to prove the existence of M to show that

π(x, t) ≥ α1u∗(x, t) on Q̄T .

Then we have u∗(x, t) ≤ (α∗ − α)u∗(x, t). This is in contradiction with the definition of α∗. Thus, we
obtain α∗ = 1. The uniqueness is proved.

Lemma 3.1. If λ(µ; m) < 0, then Eq (1.1) admits a unique positive periodic solution θµ(x, t) ∈
C1+α,(1+α)/2(Q̄T ). Moreover, θµ(x, t) is globally asymptotically stable.
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Proof. Let θ(x, t) be a principal eigenfunction of Eq (1.2) normalized by ∥θ(x, t)∥C(Q̄T ) = 1. Then
u = εθ(x, t) is a lower-solution of Eq (1.1) for any

0 < ε ≤
[
−λ(µ; m)

maxQ̄T c(x, t)

]1−p

.

Take

M > max

1,
[
−λ(µ; m)

minQ̄T c(x, t)

]1−p
 .

Then we have ū = Mθ(x, t) is an upper-solution of Eq (1.1). From Theorem 3.1, we get that Eq (1.1)
has a unique positive solution θµ(x, t).

Since θµ(x, t) is the solution of Eq (1.1), then λ(µ; m − cθp−1
µ ) = 0. Let λ1 be the eigenvalue of the

linear problem 
ut − µk(x, t)∆u −

[
m(x, t) − pc(x, t)θp−1

µ

]
u = λ1u, in Ω × (0,T ],

∂u
∂ν
= 0, on ∂Ω × (0,T ],

u(x, 0) = u(x,T ), in Ω.

Due to
m(x, t) − c(x, t)ûp−1 > m(x, t) − pc(x, t)ûp−1,

for u > 0. Then λ1 > 0. It follows from Theorem 2.1 that r < 1. Thus, θµ(x, t) is locally asymptotically
stable. In addition, we can choose ε small enough and M large enough such that εθ(x, t) and Mθ(x, t)
are a pair of ordered bounded upper-lower solutions of Eq (1.1). Then we know that θµ(x, t) is globally
asymptotically stable by the standard iteration argument as in [2].

Lemma 3.2. If (1.1) has a positive periodic solution, then λ(µ; m) < 0.

Proof. Let θµ(x, t) be a positive periodic solution of Eq (1.1). Thanks to [2], we can get that Eq (1.1) is
equivalent to

(I − Kµ)θµ(x, 0) = −
∫ T

0
Uµ(T, τ)c(x, τ)θp

µ(x, τ) dτ in X1.

Notice that θµ(x, t) > 0. We now apply [2, Theorem 7.3] to obtain

e−λ(µ;m)T > 1.

Thus, λ(µ; m) < 0.

Proposition 3.1. If
∫ T

0
m∗(t) dt > 0, then Eq (1.1) admits a unique positive periodic solution θµ(x, t) for

all µ > 0.

Proof. According to Lemma 2.4, we know that

λ(µ; m) ≤ −

∫ T

0
m∗(t) dt∫ T

0
k∗(t) dt

. (3.2)

Due to
∫ T

0
m∗(t) dt > 0, λ(µ; m) < 0. This together with Lemma 3.1 implies that Eq (1.1) admits a

unique positive periodic solution for all µ > 0.
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4. Positive solutions with large diffusion rate

In this section, we study the asymptotic behavior of the positive periodic solution of Eq (1.1) when
the diffusion rate is large. Here we use regularity estimates together with the perturbation technique to
prove our main result. To do this, we first consider the perturbation equation

ut = µk(x, t)∆u + m(x, t)(u + ε) − c(x, t)up, in QT ,
∂u
∂ν
= 0, on Q1,

u(x, 0) = u(x,T ), in Ω,

(4.1)

where the parameter ε > 0.

Lemma 4.1. Assume that Eq (1.3) holds. Then Eq (4.1) has a positive periodic solution θεµ(x, t) for
µ > 0, provided ε > 0 is small. Moreover, we can find µ1 > 0 such that

lim
ε→0+
θεµ(x, t) = θµ(x, t) in C1, 12 (Q̄T ), (4.2)

for µ ≥ µ1.

Proof. Through a similar argument as in Theorem 3.1, we know the existence of the positive solution
θεµ(x, t) to Eq (4.1). We only need to prove Eq (4.2). Let σ(x, t) = θεµ(x, t

µ
). Then σ(x, t) satisfies

σt = k(x, t
µ
)∆σ + 1

µ
[m(x, t

µ
)(σ + ε) − c(x, t

µ
)σp], in QT ,

∂σ
∂ν
= 0, on Q1,

σ(x, 0) = θεµ(x, 0), in Ω.

It is known from the Lp estimate that there exists µ1 > 0 such that σ(x, t) is bounded in W2,1
p (Ω ×

(0, µT ]) for any µ > µ1. It then follows that θεµ(x, t) is bounded in W2,1
p (QT ) for any µ > µ1. Then, taking

p large enough, we know from the embedding theorem that θεµ(x, t) is compact in C1, 12 (Q̄T ). Thus there
is a subsequence, still denoted by θεµ(x, t), such that

lim
ε→0+
θεµ(x, t) = ν(x, t) in C1, 12 (Q̄T ), (4.3)

for some nonnegative periodic function ν(x, t) ∈ C(Q̄T ). It follows from the argument of Lemma 3.1
that εθ(x, t) is a lower-solution of Eq (4.1). Thus we have ν(x, t) > 0 for (x, t) ∈ Ω̄× [0,T ]. Since θεµ(x, t)
is bounded and Eq (4.3), ν satisfies

ν(x, t) = ν(x, 0) + µ
∫ t

0
[k(x, s)∆ν(x, s) + m(x, s)ν − c(x, s)νp] ds.

It is easy to obtain 
νt = µk(x, t)∆ν + m(x, t)ν − c(x, t)νp, in QT ,
∂ν
∂ν
= 0, on Q1,

ν(x, 0) = ν(x,T ), in Ω.

By standard parabolic regularity, we know that ν(x, t) ∈ C1+α,(1+α)/2(Q̄T ). The uniqueness of the
solution means that Eq (4.2) holds.
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At the end of this section, we prove Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into the following three steps.

Step 1. In this step, we prove that θµ(x, t) has a convergent subsequence as µ→ ∞.

It follows from a similar argument to Lemma 4.1 that there exists µ1 > 0 such that θµ(x, t) is compact
in C1, 12 (Q̄T ) for any µ > µ1. Thus, by passing to a subsequence, there is a nonnegative periodic function
θ ∈ C(Q̄T ) such that

lim
µ→∞
θµ(x, t) = θ(x, t) in C1, 12 (Q̄T ).

Step 2. In this step, we show that θ(x, t) is independent of t.

Let f (t) be a smooth T -periodic function, then we have

−

∫ T

0
θµ(x, t) ft(t) dt =µ

∫ T

0
k(x, t) f (t)∆θµ(x, t) dt

+

∫ T

0
m(x, t)θµ(x, t) f (t) dt −

∫ T

0
c(x, t)θp

µ(x, t) f (t) dt.

By dividing µ and making µ→ ∞, we have∫ T

0
k(x, t) f (t)∆θ(x, t) dt = 0.

Since f (t) is arbitrary, we obtain
∆θ(x, t) = 0.

Then we derive ∫
Ω

|∇θ(x, t)|2 dx = 0.

Thus we have θ(x, t) ≡ θ(t) for x ∈ Ω̄.

Step 3. In this step, we show that θ(t) = ω(t) in [0,T ].

First, we assert that θ(t) ∈ C1((0,∞)). Indeed, it is easy to obtain from Eq (1.1) that∫ t+ε

t

∫
Ω

us(x, s)
k(x, s)

dxds =
∫ t+ε

t

∫
Ω

m(x, s)
k(x, s)

u(x, s) dxds −
∫ t+ε

t

∫
Ω

c(x, s)
k(x, s)

up(x, s) dxds.

Then we have ∫
Ω

u(x, t + ε)
k(x, t + ε)

dx −
∫
Ω

u(x, t)
k(x, t)

dx +
∫ t+ε

t

∫
Ω

kt(x, s)
k2(x, s)

u(x, s) dxds

=

∫ t+ε

t

∫
Ω

m(x, s)
k(x, s)

u(x, s) dxds −
∫ t+ε

t

∫
Ω

c(x, s)
k(x, s)

up(x, s) dxds.

Taking µ→ ∞, we obtain∫
Ω

θ(t + ε)
k(x, t + ε)

dx −
∫
Ω

θ(t)
k(x, t)

dx +
∫ t+ε

t

∫
Ω

kt(x, s)
k2(x, s)

θ(s) dxds

=

∫ t+ε

t

∫
Ω

m(x, s)
k(x, s)

θ(s) dxds −
∫ t+ε

t

∫
Ω

c(x, s)
k(x, s)

θp(s) dxds.
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Thus, we derive[
θ(t)
∫
Ω

1
k(x, t)

dx
]

t
=

∫
Ω

m(x, t)
k(x, t)

dxθ(t) −
∫
Ω

c(x, t)
k(x, t)

dxθp(t) −
∫
Ω

kt(x, t)
k2(x, t)

dxθ(t).

Hence,

θt(t) =
1

k∗(t)

∫
Ω

m(x, t)
k(x, t)

dxθ(t) −
1

k∗(t)

∫
Ω

c(x, t)
k(x, t)

dxθp(t)

−
1

k∗(t)

∫
Ω

kt(x, t)
k2(x, t)

dxθ(t) −
[k∗(t)]t

k∗(t)
θ(t),

for t > 0. Thus θ(t) ∈ C1((0,∞)) holds.
We then prove that θ(t) satisfies Eq (1.5). It is obvious from Eq (1.1) that∫

Ω

ut(x, t)
k(x, t)

dx =
∫
Ω

m(x, t)
k(x, t)

u(x, t) dx −
∫
Ω

c(x, t)
k(x, t)

up(x, t) dx. (4.4)

Similarly, suppose that f (t) is a smooth T -periodic function. Multiplying f (t) on both sides of
Eq (4.4) and integrating over [0,T ] gives

−

∫ T

0

∫
Ω

u(x, t)
[

f (t)
k(x, t)

]
t

dxdt

=

∫ T

0

∫
Ω

m(x, t)
k(x, t)

u(x, t) f (t) dxdt −
∫ T

0

∫
Ω

c(x, t)
k(x, t)

up(x, t) f (t) dxdt.

Letting µ→ ∞, we know

−

∫ T

0

∫
Ω

θ(t)
[

f (t)
k(x, t)

]
t

dxdt =
∫ T

0

∫
Ω

m(x, t)
k(x, t)

θ(t) f (t) dxdt −
∫ T

0

∫
Ω

c(x, t)
k(x, t)

θp(t) f (t) dxdt.

This implies∫ T

0

∫
Ω

f (t)
k(x, t)

θt(t) dxdt =
∫ T

0

∫
Ω

m(x, t)
k(x, t)

θ(t) f (t) dxdt −
∫ T

0

∫
Ω

c(x, t)
k(x, t)

θp(t) f (t) dxdt.

By the arbitrary of f (t), it follows that∫
Ω

1
k(x, t)

dxθt(t) =
∫
Ω

m(x, t)
k(x, t)

dxθ(t) −
∫
Ω

c(x, t)
k(x, t)

dxθp(t).

Thus, we have θt = M̃(t)
k̃(t) θ −

C̃(t)
k̃(t) θ

p, t ∈ R,

θ(0) = θ(T ).

Finally, we prove that θ(t) > 0 in t ∈ [0,T ]. We define θεµ(x, t) as the unique positive periodic solution
of Eq (4.1) for small ε > 0 and large µ. Similarly to the previous argument, it can be shown that

lim
µ→∞
θεµ(x, t) = ωε(t) in C1, 12 (Q̄T ), (4.5)
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where ωε(t) satisfies ωεt = M∗(t)
k∗(t)

(ωε + ε) − c∗(t)
k∗(t)

(ωε)p, t ∈ R,

ωε(0) = ωε(T ).
(4.6)

Since ∫
Ω

m(x, t)
k(x, t)

dx > 0 in [0,T ],

we can obtain that Eq (1.5) admits a unique periodic positive solution ω(t). Note that ω(t) is a lower
solution of Eq (4.6). Then there exists a unique positive periodic solution ωε(t) to Eq (4.6). In addition,
ωε(t) is monotonically increasing about ε, and ωε(t) ≥ ω(t) > 0. We obtain that there exists a positive
continuous function ω0(t) such that

lim
ε→0+
ωε(t) = ω0(t) in [0,T ].

The uniqueness of the positive solution of Eq (4.6) implies that

lim
ε→0+
ωε(t) = ω(t) in [0,T ].

It follows from Lemma 4.1 that

lim
ε→0+
θεµ(x, t) = θµ(x, t) in C1, 12 (Q̄T ).

This means that θ(t) is positive, together with (4.4)–(4.6). Thus, we must have

θ(t) ≡ ω(t) in [0,T ].

This also implies that
lim
µ→∞
θµ(x, t) = ω(t) in C1, 12 (Q̄T ),

holds for the entire sequence.

5. Conclusions

We consider the positive solutions of the periodic-parabolic logistic equation with indefinite weight
function and nonhomogeneous diffusion coefficient. When the dispersal rate is small, we can obtain a
similar result as in the homogeneous diffusion coefficient. Here we are interested in the case of large
diffusion coefficient with nonhomogeneous diffusion coefficient.

In Theorem 1.1, we obtain the condition of m(x, t) to guarantee a positive periodic solution for all
µ > 0. Then we investigate the effect of large µ on the positive solution and establish that the limiting
profile is determined by the positive solution of Eq (1.5). More precisely, we prove that the positive
periodic solution tends to the unique positive solution of the corresponding non-autonomous logistic
equation when the diffusion rate is large.
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