In this study, we introduce and investigate a new class of split inverse problems, comprising a multidimensional parameter of evolution, which we call the multidimensional split variational inequality problem with multiple output sets. To demonstrate its applicability, we formulate the equilibrium flow of multidimensional traffic network models for an arbitrary number of locations. We define a multidimensional split Wardrop condition with multiple output sets and establish its equivalence with the formulated equilibrium flow of multidimensional traffic network models. We then establish the existence and uniqueness of equilibria for our proposed model. In addition, we propose a method for solving the introduced problem. We then validate our results using some numerical experiments.
Citation: Timilehin O. Alakoya, Bidisha Ghosh, Salissou Moutari, Vikram Pakrashi, Ranganatha B. Ramachandra. Traffic network analysis via multidimensional split variational inequality problem with multiple output sets[J]. Networks and Heterogeneous Media, 2024, 19(1): 169-195. doi: 10.3934/nhm.2024008
In this study, we introduce and investigate a new class of split inverse problems, comprising a multidimensional parameter of evolution, which we call the multidimensional split variational inequality problem with multiple output sets. To demonstrate its applicability, we formulate the equilibrium flow of multidimensional traffic network models for an arbitrary number of locations. We define a multidimensional split Wardrop condition with multiple output sets and establish its equivalence with the formulated equilibrium flow of multidimensional traffic network models. We then establish the existence and uniqueness of equilibria for our proposed model. In addition, we propose a method for solving the introduced problem. We then validate our results using some numerical experiments.
[1] | G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat., 34 (1963), 138–142. |
[2] | G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413–4416. |
[3] | S. Singh, S. Reich, A multidimensional approach to traffic analysis, Pure Appl. Funct. Anal., 6 (2021), 383–397. |
[4] | S. Treanţă, S. Singh, Weak sharp solutions associated with a multidimensional variational-type inequality, Positivity, 25 (2020), 329–351. https://doi.org/10.1007/s11117-020-00765-7 doi: 10.1007/s11117-020-00765-7 |
[5] | C. Udrişte, I. Ţevy, Multi-time Euler-Lagrange-Hamilton theory, WSEAS Trans. Math., 6 (2007), 701–709. |
[6] | M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transp. Res. Part B Methodol., 13 (1979), 295–304. https://doi.org/10.1016/0191-2615(79)90022-5 doi: 10.1016/0191-2615(79)90022-5 |
[7] | S. Dafermos, Traffic equilibrium and variational inequalities, Transp. Sci., 14 (1980), 42–54. https://doi.org/10.1287/trsc.14.1.42 doi: 10.1287/trsc.14.1.42 |
[8] | S. Lawphongpanich, D. W. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transp. Res. Part B Methodol., 18 (1984), 123–133. https://doi.org/10.1016/0191-2615(84)90026-2 doi: 10.1016/0191-2615(84)90026-2 |
[9] | B. Panicucci, M. Pappalardo, M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171–185. https://doi.org/10.1007/s11590-006-0002-9 doi: 10.1007/s11590-006-0002-9 |
[10] | J. L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302 |
[11] | H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732–A735. |
[12] | P. Daniele, A. Maugeri, W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543–555. https://doi.org/10.1023/A:1021779823196 doi: 10.1023/A:1021779823196 |
[13] | D. Aussel, R. Gupta, A. Mehra, Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74–90. https://doi.org/10.1007/s10957-015-0859-9 doi: 10.1007/s10957-015-0859-9 |
[14] | C. Ciarciá, P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288–299. https://doi.org/10.1016/j.ejor.2015.11.013 doi: 10.1016/j.ejor.2015.11.013 |
[15] | A. Nagurney, D. Parkes, P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355–375. https://doi.org/10.1007/s10287-006-0027-7 doi: 10.1007/s10287-006-0027-7 |
[16] | L. Scrimali, C. Mirabella, Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455–476. https://doi.org/10.1007/s10898-017-0580-3 doi: 10.1007/s10898-017-0580-3 |
[17] | Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algor., 59 (2012), 301–323. https://doi.org/10.1007/s11075-011-9490-5 doi: 10.1007/s11075-011-9490-5 |
[18] | S. Singh, A. Gibali, X. Qin, Cooperation in traffic network problems via evolutionary split variational inequalities, J. Ind. Manag. Optim., 18 (2022), 593–611. https://doi.org/10.3934/jimo.2020170 doi: 10.3934/jimo.2020170 |
[19] | S. Singh, Multidimensional split variational inequality in traffic analysis, in Continuous Optimization and Variational Inequalities (eds. A. Jayswal and T. Antczak), London: Chapman and Halla/CRC, (2022), 289–306. |
[20] | T. O. Alakoya, O. T. Mewomo, A relaxed inertial Tseng's extragradient method for solving split variational inequalities with multiple output sets, Mathematics, 11 (2023), 386. https://doi.org/10.3390/math11020386 doi: 10.3390/math11020386 |
[21] | F. Raciti, Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353–360. https://doi.org/10.1007/s10898-007-9202-9 doi: 10.1007/s10898-007-9202-9 |
[22] | K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519–537. https://doi.org/10.1007/BF01458545 doi: 10.1007/BF01458545 |
[23] | M. G. Cojocaru, P. Daniele, A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549–563. https://doi.org/10.1007/s10957-005-7502-0 doi: 10.1007/s10957-005-7502-0 |
[24] | P. Dupuis, A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 7–42. https://doi.org/10.1007/BF02073589 doi: 10.1007/BF02073589 |
[25] | S. Giuffré, G. Idone, S. Pia, Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119–128. https://doi.org/10.1007/s10898-007-9173-x doi: 10.1007/s10898-007-9173-x |
[26] | M. G. Cojocaru, L. B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183–193. https://doi.org/10.1090/S0002-9939-03-07015-1 doi: 10.1090/S0002-9939-03-07015-1 |
[27] | S. Matsushita, L. Xu, On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701–715. https://doi.org/10.1007/s10957-013-0460-z doi: 10.1007/s10957-013-0460-z |