In the current study, a novel multi-term mixed sub-diffusion and wave-diffusion model was considered. The new model has a unique time-space coupled derivative in addition to having the diffusion-wave and sub-diffusion terms concurrently. Typically, an elliptic equation in the space variable is obtained by applying a finite difference time-stepping procedure. The severe stability restrictions are the main disadvantage of the finite difference method in time. It has been demonstrated that the Laplace transform is an excellent choice for solving diffusion problems and offers a substitute to the finite difference approach. In this paper, a method based on Laplace transform coupled with the pseudospectral method was developed for the novel model. The proposed method has three main steps: First, the model was reduced to a time-independent model via Laplace transform; second, the pseudospectral method was employed for spatial discretization; and finally, the inverse Laplace transform was applied to transform the obtained solution in Laplace transform domain back into a real domain. We also presented the numerical scheme's stability and convergence analysis. To demonstrate our method's efficacy, four problems were examined.
Citation: Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi. Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order[J]. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003
In the current study, a novel multi-term mixed sub-diffusion and wave-diffusion model was considered. The new model has a unique time-space coupled derivative in addition to having the diffusion-wave and sub-diffusion terms concurrently. Typically, an elliptic equation in the space variable is obtained by applying a finite difference time-stepping procedure. The severe stability restrictions are the main disadvantage of the finite difference method in time. It has been demonstrated that the Laplace transform is an excellent choice for solving diffusion problems and offers a substitute to the finite difference approach. In this paper, a method based on Laplace transform coupled with the pseudospectral method was developed for the novel model. The proposed method has three main steps: First, the model was reduced to a time-independent model via Laplace transform; second, the pseudospectral method was employed for spatial discretization; and finally, the inverse Laplace transform was applied to transform the obtained solution in Laplace transform domain back into a real domain. We also presented the numerical scheme's stability and convergence analysis. To demonstrate our method's efficacy, four problems were examined.
[1] | R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3 |
[2] | Z. J. Fu, L. W. Yang, Q. Xi, C. S. Liu, A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91–109. https://doi.org/10.1016/j.camwa.2020.02.023 doi: 10.1016/j.camwa.2020.02.023 |
[3] | M. Bilal, T. Gul, A. Mouldi, S. Mukhtar, W. Alghamdi, S. M. Bouzgarrou, et al., Melting heat transition in a spinning flow of silver-magnesium oxide/engine oil hybrid nanofluid using parametric estimation, J. Nanomater., 2022 (2022), 1–13. https://doi.org/10.1155/2022/2891315 doi: 10.1155/2022/2891315 |
[4] | Q. Xi, Z. Fu, T. Rabczuk, D. Yin, A localized collocation scheme with fundamental solutions for long-time anomalous heat conduction analysis in functionally graded materials, Int. J. Heat Mass. Tran., 180 (2021), 121778. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121778 doi: 10.1016/j.ijheatmasstransfer.2021.121778 |
[5] | Z. J. Fu, S. Reutskiy, H. G. Sun, J. Ma, M. A. Khan, A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains, Appl. Math. Lett., 94 (2019), 105–111. https://doi.org/10.1016/j.aml.2019.02.025 doi: 10.1016/j.aml.2019.02.025 |
[6] | J. A. T. Machado, A. M. Lopes, Analysis of natural and artificial phenomena using signal processing and fractional calculus, Fract. Calc. Appl. Anal., 18 (2015), 459–478. https://doi.org/10.1515/fca-2015-0029 doi: 10.1515/fca-2015-0029 |
[7] | Hahim, S. Bouzgarrou, S. Rehman, E. Sabi, Thermodynamic analysis of Powell-Eyring-blood hybrid nanofluid through vertical stretching sheet with interface slip and melting heat, Results Eng., 20 (2023), 101644. https://doi.org/10.1016/j.rineng.2023.101644 doi: 10.1016/j.rineng.2023.101644 |
[8] | S. Bouzgarrou, M. Akermi, S. Nasr, F. Aouaini, A. H. Khan, K. Slimi, et al., $CO_2$ storage in porous media unsteady thermosolutal natural convection—Application in deep saline aquifer reservoirs, Int. J. Greenh. Gas. Con., 125 (2023), 103890. https://doi.org/10.1016/j.ijggc.2023.103890 doi: 10.1016/j.ijggc.2023.103890 |
[9] | S. Bouzgarrou, H. S. Harzallah, K. Slimi, Unsteady double diffusive natural convection in porous media-application to $CO_2$ storage in deep saline aquifer reservoirs, Energy Procedia, 36 (2013), 756–765. https://doi.org/10.1016/j.egypro.2013.07.088 doi: 10.1016/j.egypro.2013.07.088 |
[10] | M. F. H. Lima, J. A. T. Machado, M. Crisóstomo, Experimental signal analysis of robot impacts in a fractional calculus perspective, J. Adv. Comput. Intell., 11 (2007), 1079–1085. https://doi.org/10.20965/jaciii.2007.p1079 doi: 10.20965/jaciii.2007.p1079 |
[11] | S. Qin, F. Liu, I. Turner, V. Vegh, Q. Yu, Q. Yang, Multi-term time-fractional Bloch equations and application in magnetic resonance imaging, J. Comput. Appl. Math., 319 (2017), 308–319. https://doi.org/10.1016/j.cam.2017.01.018 doi: 10.1016/j.cam.2017.01.018 |
[12] | C. Liu, N. Farouk, H. Ayed, F. Aouaini, S. M. Bouzgarrou, A. Mouldi, et al., Simulation of MHD free convection inside a square enclosure filled porous foam, Case Stud. Therm. Eng., 32 (2022), 101901. https://doi.org/10.1016/j.csite.2022.101901 doi: 10.1016/j.csite.2022.101901 |
[13] | V. Srivastava, K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 51 (2010), 616–624. https://doi.org/10.1016/j.mcm.2009.11.002 doi: 10.1016/j.mcm.2009.11.002 |
[14] | V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multi-term fractional differential equations, J. Math. Anal. Appl., 345 (2008), 754–765. https://doi.org/10.1016/j.jmaa.2008.04.065 doi: 10.1016/j.jmaa.2008.04.065 |
[15] | M. Stojanović, Numerical method for solving diffusion-wave phenomena, J. Comput. Appl. Math., 235 (2011), 3121–3137. https://doi.org/10.1016/j.cam.2010.12.010 doi: 10.1016/j.cam.2010.12.010 |
[16] | H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 389 (2012), 1117–1127. https://doi.org/10.1016/j.jmaa.2011.12.055 doi: 10.1016/j.jmaa.2011.12.055 |
[17] | Y. Liu, L. Zheng, X. Zhang, Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative, Comput. Math. Appl., 61 (2011), 443–450. https://doi.org/10.1016/j.camwa.2010.11.021 doi: 10.1016/j.camwa.2010.11.021 |
[18] | J. Lin, S. Reutskiy, Y. Zhang, Y. Sun, J. Lu, The novel analytical-numerical method for multi-dimensional multi-term time-fractional equations with general boundary conditions, Mathematics-Basel, 11 (2023), 929. https://doi.org/10.3390/math11040929 doi: 10.3390/math11040929 |
[19] | F. Liu, S. Shen, V. Anh, I. Turner, Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, Anziam J., 46 (2004), C488–C504. https://doi.org/10.21914/anziamj.v46i0.973 doi: 10.21914/anziamj.v46i0.973 |
[20] | Y. Zhao, F. Wang, X. Hu, Z. Shi, Y. Tang, Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain, Comput. Math. Appl., 78 (2019), 1705–1719. https://doi.org/10.1016/j.camwa.2018.11.028 doi: 10.1016/j.camwa.2018.11.028 |
[21] | Z. Liu, F. Liu, F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136 (2019), 139–151. https://doi.org/10.1016/j.apnum.2018.10.005 doi: 10.1016/j.apnum.2018.10.005 |
[22] | J. Shen, X. M. Gu, Two finite difference methods based on an $H_2N_2$ interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete Cont. Dyn-B., 27 (2022), 1179–1207. https://doi.org/10.3934/dcdsb.2021086 doi: 10.3934/dcdsb.2021086 |
[23] | O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29 (2002), 145–155. https://doi.org/10.1023/A:1016539022492 doi: 10.1023/A:1016539022492 |
[24] | C. Tadjeran, M. M. Meerschaert, H. P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), 205–213. https://doi.org/10.1016/j.jcp.2005.08.008 doi: 10.1016/j.jcp.2005.08.008 |
[25] | Y. Liu, H. Sun, X. Yin, L. Feng, Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation, Z. Angew. Math. Phys., 71 (2020), 1–19. https://doi.org/10.1007/s00033-019-1244-6 doi: 10.1007/s00033-019-1244-6 |
[26] | A. Bhardwaj, A. Kumar, A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method, Eng. Comput.-Germany, 38 (2022), 1883–1903. https://doi.org/10.1007/s00366-020-01134-4 doi: 10.1007/s00366-020-01134-4 |
[27] | F. Safari, W. Chen, Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations, Comput. Math. Appl., 78 (2019), 1594–1607. https://doi.org/10.1016/j.camwa.2019.02.001 doi: 10.1016/j.camwa.2019.02.001 |
[28] | H. Ye, F. Liu, I. Turner, V. Anh, K. Burrage, Series expansion solutions for the multi-term time and space fractional partial differential equations in two-and three-dimensions, Eur. Phys. J.-Spec. Top., 222 (2013), 1901–1914. https://doi.org/10.1140/epjst/e2013-01972-2 doi: 10.1140/epjst/e2013-01972-2 |
[29] | Z. Li, O. Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations, Inverse Probl., 32 (2015), 015004. https://doi.org/10.1088/0266-5611/32/1/015004 doi: 10.1088/0266-5611/32/1/015004 |
[30] | S. S. Ezz-Eldien, E. H. Doha, Y. Wang, W. Cai, A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation, Commun. Nonlinear Sci., 91 (2020), 105445. https://doi.org/10.1016/j.cnsns.2020.105445 doi: 10.1016/j.cnsns.2020.105445 |
[31] | L. L. Sun, Y. S. Li, Y. Zhang, Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation, Inverse Probl., 37 (2021), 055007. https://doi.org/10.1088/1361-6420/abf162 doi: 10.1088/1361-6420/abf162 |
[32] | B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge: Cambridge University Press, 1998. |
[33] | L. N. Trefethen, Spectral Methods in MATLAB, Philadelphia: Society for Industrial and Applied Mathematics, 2000. https://doi.org/10.1137/1.9780898719598 |
[34] | P. Maraner, E. Onofri, G. P. Tecchioli, Spectral methods in computational quantum mechanics, J. Comput. Appl. Math., 37 (1991), 209–219. https://doi.org/10.1016/0377-0427(91)90119-5 doi: 10.1016/0377-0427(91)90119-5 |
[35] | C. Canuto, A. Quarteroni, M. Y. Hussaini, T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-30728-0 |
[36] | W. Bourke, Spectral methods in global climate and weather prediction models. In: M. E. Schlesinger, Physically-Based Modelling and Simulation of Climate and Climatic Change, Dordrecht: Springer, 243 (1988), 169–220. https://doi.org/10.1007/978-94-009-3041-4_4 |
[37] | R. L. McCrory, S. A. Orszag, Spectral methods for multi-dimensional diffusion problems, J. Comput. Phys., 37 (1980), 93–112. https://doi.org/10.1016/0021-9991(80)90006-6 doi: 10.1016/0021-9991(80)90006-6 |
[38] | K. Z. Korczak, A. T. Patera, An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry, J. Comput. Phys., 62 (1986), 361–382. https://doi.org/10.1016/0021-9991(86)90134-8 doi: 10.1016/0021-9991(86)90134-8 |
[39] | A. Bueno-Orovio, V. M. Perez-Garcia, F. H. Fenton, Spectral methods for partial differential equations in irregular domains: The spectral smoothed boundary method, SIAM J. Sci. Comput., 28 (2006), 886–900. https://doi.org/10.1137/040607575 doi: 10.1137/040607575 |
[40] | Z. J. Fu, W. Chen, H. T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235 (2013), 52–66. https://doi.org/10.1016/j.jcp.2012.10.018 doi: 10.1016/j.jcp.2012.10.018 |
[41] | Kamran, R. Kamal, G. Rahmat, K. Shah, On the numerical approximation of three-dimensional time fractional convection-diffusion equations, Mathe. Probl. Eng., 2021 (2021), 4640476. https://doi.org/10.1155/2021/4640467 doi: 10.1155/2021/4640467 |
[42] | Kamran, M. Irfan, F. M. Alotaibi, S. Haque, N. Mlaiki, K. Shah, RBF-based local meshless method for fractional diffusion equations, Fractal Fract., 7 (2023), 143. https://doi.org/10.3390/fractalfract7020143 doi: 10.3390/fractalfract7020143 |
[43] | L. Feng, F. Liu, I. Turner, Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun. Nonlinear Sci., 70 (2019), 354–371. https://doi.org/10.1016/j.cnsns.2018.10.016 doi: 10.1016/j.cnsns.2018.10.016 |
[44] | I. Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. |
[45] | R. Razzaq, U. Farooq, J. Cui, T. Muhammad, Non-similar solution for magnetized flow of Maxwell nanofluid over an exponentially stretching surface, Math. Probl. Eng., 2021 (2021), 5539542. https://doi.org/10.1155/2021/5539542 doi: 10.1155/2021/5539542 |
[46] | X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576 |
[47] | B. D. Welfert, Generation of pseudospectral differentiation matrices I, SIAM J. Numer. Anal., 34 (1997), 1640–1657. https://doi.org/10.1137/S0036142993295545 doi: 10.1137/S0036142993295545 |
[48] | A. Shokri, S. Mirzaei, A pseudo-spectral based method for time-fractional advection-diffusion equation, Comput. Methods Diffe., 8 (2020), 454–467. https://doi.org/10.22034/CMDE.2020.29307.1414 doi: 10.22034/CMDE.2020.29307.1414 |
[49] | R. Baltensperger, M. R. Trummer, Spectral differencing with a twist, SIAM J. Sci. Comput., 24 (2003), 1465–1487. https://doi.org/10.1137/S1064827501388182 doi: 10.1137/S1064827501388182 |
[50] | S. Börm, L. Grasedyck, W. Hackbusch, Introduction to hierarchical matrices with applications, Eng. Anal. Bound. Elem., 27 (2003), 405–422. https://doi.org/10.1016/S0955-7997(02)00152-2 doi: 10.1016/S0955-7997(02)00152-2 |
[51] | B. Dingfelder, J. A. C. Weideman, An improved Talbot method for numerical Laplace transform inversion, Numer. Algorithms, 68 (2015), 167–183. https://doi.org/10.1007/s11075-014-9895-z doi: 10.1007/s11075-014-9895-z |
[52] | H. Stehfest, Algorithm 368: Numerical inversion of Laplace transforms [D5], Commun. ACM, 13 (1970), 47–49. Available from: https://dl.acm.org/doi/pdf/10.1145/361953.361969. |
[53] | A. Talbot, The accurate numerical inversion of Laplace transforms, IMA J. Appl. Math., 23 (1979), 97–120. https://doi.org/10.1093/imamat/23.1.97 doi: 10.1093/imamat/23.1.97 |
[54] | Kamran, U. Gul, F. M. Alotaibi, K. Shah, T. Abdeljawad, Computational approach for differential equations with local and nonlocal fractional-order differential operators, J. Math.-UK, 2023 (2023), 6542787. https://doi.org/10.1155/2023/6542787 doi: 10.1155/2023/6542787 |
[55] | Kamran, S. Ahmad, K. Shah, T. Abdeljawad, B. Abdalla, On the approximation of fractal-fractional differential equations using numerical inverse laplace transform methods, CMES-Comp. Model. Eng., 135 (2023), 2743–2765. https://doi.org/10.32604/cmes.2023.023705 doi: 10.32604/cmes.2023.023705 |
[56] | D. P. Gaver Jr, Observing stochastic processes, and approximate transform inversion, Oper. Res., 14 (1966), 444–459. https://doi.org/10.1287/opre.14.3.444 doi: 10.1287/opre.14.3.444 |
[57] | A. Kuznetsov, On the convergence of the Gaver–Stehfest algorithm, SIAM J. Numer. Anal., 51 (2013), 2984–2998. https://doi.org/10.1137/13091974X doi: 10.1137/13091974X |
[58] | B. Davies, B. Martin, Numerical inversion of the Laplace transform: A survey and comparison of methods, J. Comput. Phys., 33 (1979), 1–32. https://doi.org/10.1016/0021-9991(79)90025-1 doi: 10.1016/0021-9991(79)90025-1 |
[59] | J. Abate, W. Whitt, A unified framework for numerically inverting Laplace transforms, Informs J. Comput., 18 (2006), 408–421. https://doi.org/10.1287/ijoc.1050.0137 doi: 10.1287/ijoc.1050.0137 |