Dirichlet to Neumann maps for infinite quantum graphs

  • Received: 01 September 2011 Revised: 01 June 2012
  • Primary: 34B45.

  • The Dirichlet problem and Dirichlet to Neumann map are analyzed for elliptic equations on a large collection of infinite quantum graphs. For a dense set of continuous functions on the graph boundary, the Dirichlet to Neumann map has values in the Radon measures on the graph boundary.

    Citation: Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs[J]. Networks and Heterogeneous Media, 2012, 7(3): 483-501. doi: 10.3934/nhm.2012.7.483

    Related Papers:

  • The Dirichlet problem and Dirichlet to Neumann map are analyzed for elliptic equations on a large collection of infinite quantum graphs. For a dense set of continuous functions on the graph boundary, the Dirichlet to Neumann map has values in the Radon measures on the graph boundary.


    加载中
    [1] G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numerical Functional Analysis and Optimization, 25 (2004), 321-348. doi: 10.1081/NFA-120039655
    [2] S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21. doi: 10.3934/ipi.2008.2.1
    [3] M. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672. doi: 10.1088/0266-5611/20/3/002
    [4] M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. London Ser. A, 461 (2005), 3231-3243. doi: 10.1098/rspa.2005.1513
    [5] A. Calderon, On an inverse boundary value problem, Computational and Applied Mathematics, 25 (2006), 133-138. doi: 10.1590/S0101-82052006000200002
    [6] R. Carlson, Linear network models related to blood flow, in "Quantum Graphs and their Applications," Contemp. Math, 415 (2006), 65-80. doi: 10.1090/conm/415/07860
    [7] R. Carlson, Boundary value problems for infinite metric graphs, in Analysis on Graphs and Its Applications, PSPM, 77 (2008), 355-368.
    [8] preprint, arXiv:1109.3137.
    [9] E. Curtis, D. Ingerman and J. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), 115-150. doi: 10.1016/S0024-3795(98)10087-3
    [10] P. Cartier, Fonctions harmoniques sur un arbre, Sympos. Math, 9 (1972), 203-270.
    [11] F. Chung, "Spectral Graph Theory,'' American Mathematical Society, Providence, 1997.
    [12] J. Cohen, F. Colonna and D. Singman, Distributions and measures on the boundary of a tree, Journal of Mathematical Analysis and Applications, 293 (2004), 89-107. doi: 10.1016/j.jmaa.2003.12.015
    [13] Y. Colin de Verdiere, "Spectres de Graphes,'' Societe Mathematique de France, 1998.
    [14] Y. Colin de Verdiere, N. Torki-Hamza and F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II-metrically noncomplete graphs, Mathematical Physics, Analysis, and Geometry, 14 (2011), 21-38.
    [15] P. Doyle and J. L. Snell, "Random Walks and Electric Networks,'' MAA, Washington, D. C., 1984.
    [16] P. Exner, J. Keating, P. Kuchment, T. Sunada and A. Teplaev, "Analysis on Graphs and Its Applications,'' American Mathematical Society, 2008.
    [17] G. Folland, "Real Analysis,'' John Wiley and Sons, New York, 1984.
    [18] A. Georgakopoulos, Graph topologies induced by edge lengths, Discrete Mathematics, 311 (2011), 1523-1542. doi: 10.1016/j.disc.2011.02.012
    [19] J. Hocking and G. Young, "Topology,'' Addison-Wesley, 1961.
    [20] preprint, arXiv:0806.3881.
    [21] T. Kato, "Perturbation Theory for Linear Operators,'' Springer-Verlag, New York, 1995.
    [22] M. Keller and D. Lenz, Unbounded laplacians on graphs: Basic spectral properties and the heat equation, Math. Model. Nat. Phenom., 5 (2010), 198-224. doi: 10.1051/mmnp/20105409
    [23] P. Lax, "Functional Analysis,'' Wiley, 2002.
    [24] Cambridge University Press. In preparation. http://mypage.iu.edu/~rdlyons
    [25] B. Maury, D. Salort and C. Vannier, Trace theorem for trees and application to the human lungs, Networks and Heterogeneous Media, 4 (2009), 469-500.
    [26] S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, Springer Lecture Notes in Mathematics, 1171 (1985), 532-541. doi: 10.1007/BFb0076584
    [27] H. Royden, "Real Analysis,'' Macmillan, New York, 1988.
    [28] J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989). SIAM, Philadelphia, 1990.
    [29] W. Woess, "Denumerable Markov Chains,'' European Mathematical Society, 2009. doi: 10.4171/071
    [30] M. Picardello and W. Woess, Martin boundaries of random walks: ends of trees and groups, Trans. American Math. Soc., 302 (1987), 185-205. doi: 10.1090/S0002-9947-1987-0887505-2
    [31] D. Zelig, "Properties of Solutions of Partial Differential Equations Defined on Human Lung Shaped Domains,'' Ph.D. Thesis, Department of Applied Mathematics, Technion - Israel Institute of Technology, 2005.
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3332) PDF downloads(143) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog