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Abstract. The Dirichlet problem and Dirichlet to Neumann map are analyzed
for elliptic equations on a large collection of infinite quantum graphs. For

a dense set of continuous functions on the graph boundary, the Dirichlet to

Neumann map has values in the Radon measures on the graph boundary.

1. Introduction. The recent surge of activity in analysis on graphs is wide rang-
ing, encompassing the spectral theory of finite graphs [11, 13], physics inspired
problems on finite or infinite quantum graphs [16], and resistance network models
[14, 20, 22], often related to probability [15, 24, 29], to mention a few highlights.
The study of harmonic functions is a common theme, particularly when the work
is related to probability. The demands of harmonic function theory and proba-
bility have inspired studies of infinite tree boundaries [10, 12] and some work on
boundaries for more general graphs [18, 20, 30].

Extending the previous work beyond harmonic functions and trees, this paper
treats elliptic boundary problems, in particular the Dirichlet to Neumann map, for
a large class of infinite quantum graphs. Broadly speaking, Dirichlet to Neumann
maps describe the relationship between the value of a function f : ∂B → R on the
boundary ∂B of some spatial domain B and the normal derivative at the boundary
of an extension u : B → R of f . Typically, the function u satisfies a differential
equation in B, with solutions being uniquely determined by the boundary values f .
Physically, this formulation is used to describe the current flowing out of a domain
in response to an applied boundary voltage, or the heat flux at the boundary in
response to a fixed boundary temperature distribution.

Calderon [5] inspired substantial work on the inverse problem of determining
(nonconstant) interior electrical conductivities in a domain in RN from the voltage
to current map at the boundary; see [28] for an overview. Related Steklov eigenvalue
and expansion problems are treated in [1]. The Dirichlet to Neumann map and
related problems have also been studied for a variety of network models. Classical
resistor networks are considered in [9]. A quantum graph Dirichlet to Neumann
map was used in [4] to develop a finite tree version of the Borg-Levinson inverse
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eigenvalue theorem. Boundary control methods as developed in [2, 3] provide an
alternative technology for Dirichlet to Neumann mapping problems.

The class of quantum graphs treated here is motivated by the challenge of mod-
eling enormously complex biological networks such as the circulatory system [6], the
nervous system [26], or the pulmonary network [25, 31]. The graphs G are typically
infinite, but have finite diameter and compact metric completions G. They also sat-
isfy a ’weakly connected’ condition introduced in [7]. Not only do these conditions
provide productive idealizations of biological networks, but they also appear in the
study of continuous time Markov chains with ’explosions’ [8].

This work resolves a number of distinct problems while extending the earlier work
on harmonic functions on infinite trees to encompass elliptic boundary problems for
a large class of infinite quantum graphs. The results include an existence theorem
for the Dirichlet problem for a class of elliptic equations. The subsequent study
of the Dirichlet to Neumann map is motivated by the problem of discussing flows
through the graph boundary. Classical work on the Dirichlet to Neumann map is
usually handled in the context of spatial domains with smooth boundaries. Part of
the challenge here is that the boundaries ∂G of infinite graph completions usually
lack any differentiable structure, so alternative formulations are required.

The second section begins with a review of developments from [7]. Properties of
weakly connected metric graph completions and their algebra A of test functions
are recalled. These graph completions have totally disconnected boundaries, so
there is a rich collection of clopen sets, that is sets which are both open and closed,
which play an important role in the analysis. The elliptic equations u′′ = qu with
q ≥ 0 and standard quantum graph vertex conditions are then introduced. A
maximum principle is established for these equations; it proves to be a key tool in
the analysis. A solution of the Dirichlet problem for harmonic functions developed
in [7] is extended to include the more general elliptic equations and a larger class
of graphs.

The third section introduces the Dirichlet to Neumann map, beginning with finite
graphs, where classical derivatives at the boundary are available. Computations for
the α−β tree illustrate the extraordinarily complex behavior of derivatives of simple
harmonic functions on infinite graphs. Using the voltage to current map physical
interpretation for guidance, it proves productive to think in terms of current flow
through a boundary set rather than current flow at a point. This idea is first
implemented using test functions from A to define a Dirichlet to Neumann function
Λq(F,Ω). Here F may be any continuous function on the boundary ∂G of the graph

completion, but Ω is restricted to be a clopen subset of ∂G.
To ensure more regularity of the Dirichlet to Neumann function with respect

to the set Ω, the fourth section considers the case when F is the characteristic
function 1Ω(1) of a clopen subset of ∂G. The restricted functions Λq(F,Ω) extend

in a standard way to signed Borel measures on ∂G with the expected positivity
when F = 1Ω(1) and Ω ⊂ Ω(1). In the final section, an extension by linearity in
the first argument yields a Dirichlet to Neumann map which is a densely defined
nonnegative symmetric operator from the continuous functions on ∂G to the dual
space of Radon measures.

2. Foundations. This section reviews some of the terminology and results from
[7], which should be consulted for proofs and additional information. After introduc-
ing the geodesic metric, weakly connected metric graph completions are described.
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These graph completions have totally disconnected boundaries, with a rich col-
lection of clopen sets, which are both open and closed. Weakly connected graph
completions have a closely associated algebra A of ’eventually flat’ functions. Fol-
lowing this review, the elliptic equations u′′ = qu with q ≥ 0 and standard quantum
graph vertex conditions are introduced, and a maximum principle established. A
solution of the Dirichlet problem for harmonic functions developed in [7] is extended
to include the more general elliptic equations and a larger class of graphs.

2.1. Metric graphs. G will denote a locally finite graph with a countable vertex
set. Interior vertices are those with more than one incident edge, while boundary
vertices have a single incident edge. G is assumed to be connected, but connectivity
is not assumed for subgraphs that appear in the course of proofs.

To study differential equations on G, edges en in the edge set E are identified with
real intervals of finite length ln. Loops and multiple edges with the same vertices
are not directly considered, but can be accomodated by adding vertices. In the
usual quantum graph style, the Lebesgue measure for intervals may be extended
to a measure for G. The Euclidean length on the intervals is extended to paths of
finitely many intervals by addition, and then to a ’geodesic’ distance between points
p1 and p2 by taking the infimum of the lengths of paths joining p1 and p2.

As a metric space, G has a completion G which is assumed to be compact in this
work. Without much difficulty [7, Prop. 2.1] one sees that G is compact if and only
if for every ε > 0 there is a finite set of edges S = {e1, . . . , en} such that for every
y ∈ G there is a edge ek ∈ S and a point xk ∈ ek such that d(xk, y) < ε. Define
the boundary ∂G of G to be the set of boundary vertices of G. The interior of G
or G is G \ ∂G. The boundary ∂G of the completion G is defined to be the union
∂G = ∂G ∪ [G \ G]. Since ∂G is closed, it too is compact.

Graphs and their completions are more amenable to analysis when they satisfy
an additional condition. Say that G is weakly connected if for every pair of distinct
points x, y ∈ G, there is a finite set of points W = {w1, . . . , wK} ⊂ G separating x
from y. That is, there are disjoint open sets U, V with G \W = U ∪ V , and with
x ∈ U , y ∈ V . An alternative characterization is that there is a finite set of edges
WE from G such that every path from x to y contains an edge from WE .

Completions of trees are weakly connected. Less obviously, so are the completions
of graphs with finite volume [7]. The following result, similar to one in [8], shows that
trees can be modified substantially without losing a weakly connected completion.

Theorem 2.1. Suppose the graph G is obtained from a tree T by adding a sequence
of edges en whose lengths ln satisfy limn ln = 0. Assume there is a positive constant
C such that

dG(x, y) ≤ dT (x, y) ≤ CdG(x, y), x, y ∈ T .
Then G is weakly connected.

Proof. We haven’t changed the set of Cauchy sequences of vertices, so G\G = T \T .
Suppose x and y are distinct points in G \ G. Let E be an edge with length L on
the path from x to y in T . Let Ux be the connected component of T \E containing
x, and let Vy be T \ (Ux ∪E). Find N so that ln < L/C for n > N , and for n ≤ N
remove edges en, along with E, from G, leaving G1. Suppose there is a path in G1

connecting Ux to Vy. Then there must be vertices u and v separated by E in T but
joined by an edge en whose length, by assumption, is smaller than L/C. Then we
have dT (u, v) ≥ L, but dG(u, v) < L/C, a contradiction. Thus cutting E together
with e1, . . . , eN provides a separation of x and y.
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If G is weakly connected, then ∂G is totally disconnected, meaning that connected
components of ∂G are points. Totally disconnected compact metric spaces have a
rich collection of clopen sets, which are both closed and open. In fact [19, p. 97],
if Ω is a totally disconnected compact metric space, then for any x ∈ Ω and ε > 0,
there is a clopen set U which contains x and is contained in the ε ball centered at
x.

The connectivity properties of G are closely related to the algebraA of ’eventually
flat’ functions φ : G → R which are continuous, infinitely differentiable on the open
edges of G, and for which φ′(x) = 0 for all x in the complement of a finite set of
edges, and in a neighborhood of each vertex v ∈ G. With pointwise addition and
multiplication, A is an algebra. Since the constant functions are in A, the following
result [7, Lemma 3.5] may be combined with the Stone-Weierstrass Theorem to
show that if G is weakly connected and compact, then A is uniformly dense in the
real continuous functions on G.

Lemma 2.2. Suppose G is weakly connected. If Ω and Ω1 are disjoint compact
subsets of G, then there is a function φ ∈ A such that 0 ≤ φ ≤ 1,

φ(x) = 1, x ∈ Ω, φ(y) = 0, y ∈ Ω1.

2.2. Forms and operators. Suppose q : G → R is nonnegative and locally inte-
grable. The main focus of this work is the study of certain solutions of the equation

u′′ = qu, u : G → R.

The equation is to hold in the sense that u′ is absolutely continuous, and the
equation holds a.e. on the edges of G. In addition the function u is assumed to
satisfy the standard continuity and derivative junction conditions at vertices v with
degree at least 2 in G,

lim
x∈e(i)→v

ui(x) = lim
x∈e(j)→v

uj(x), e(i), e(j) ∼ v. (2.1)

∑
e(i)∼v

∂νui(v) = 0.

Here the derivative ∂νui(v) = u′ is computed in local coordinates identifying [a, b]
with the edge e(i) of length b − a, and a is the coordinate value for v. Functions
u : G → R satisfying the equation and vertex conditions will be called q-harmonic
functions.

Given an edge weight function ω : E → (0,∞) constant on each edge, define the
weighted inner product

〈f, g〉ω =
∑
e

∫
e

f(x)g(x)ω(e) dx,

and corresponding Hilbert space L2
ω. Let DA,ω = A ∩ L2

ω. Introduce the form

Q(f, g) =

∫
G
f ′(x)g′(x) + q(x)f(x)g(x), (2.2)

with domain DA,ω, and the differential expression

Lωf =
1

ω(e)
[−f ′′(x) + q(x)f(x)].
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For f, g ∈ DA,ω, integration by parts leads to the alternate form

Q(f, g) =
∑
e∈E

∫
e

1

ω(e)
[−f ′′(x) + q(x)f(x)]g(x)ω(e) =

∑
e∈E

∫
e

[Lωf(x)]g(x)ω(e).

These computations are summarized in the following proposition.

Proposition 2.3. The bilinear form

Q(f, g), f, g ∈ DA,ω,

is densely defined in L2
ω, has a nonnegative quadratic form Q(f, f), and satisfies

Q(f, g) = 〈Lωf, g〉ω = 〈f, Lωg〉ω.

The form Q has an associated inner product [21, pp. 308-318]

〈f, g〉ω,1 = 〈f, g〉ω +Q(f, g),

with the corresponding norm ‖f‖ω,1. Completing the domain DA,ω with respect to
this inner product, construct the Hilbert space H1(ω).

Integration from x to y over a path γ of length at most 4d(x, y) yields the estimate

|f(y)− f(x)|2 = |
∫
γ

f ′(t) dt|2 ≤
∫
γ

1 dt

∫
γ

|f ′(t)|2 dt ≤ 4d(x, y)Q(f, f). (2.3)

Since G is connected with finite diameter, the arguments of [7] show that functions
f in H1(ω) are continuous on G. There is a constant C such that

sup
x∈G
|f(x)| ≤ C‖f‖ω,1,

and f satisfies a Lipshitz estimate

|f(y)− f(x)| ≤ 2d(x, y)1/2‖f‖ω,1. (2.4)

Consequently, f has a unique continuous extension to G.
Let D0 denote the set of functions f ∈ A whose support is contained in the union

of a finite collection of edges, and such that f(x) = 0 for all x in a neighborhood of
any boundary vertex. Let S0 denote the symmetric nonnegative operator acting by
Lω on the domain D0 in L2

ω. S0 has a self adjoint Friedrich’s extension L0 acting on
L2
ω. If q is not bounded, the description of the domain of S0 is more delicate than

described. The reader should either consult [21, pp. 343–346] for the necessary
modifications, or simply assume that q is bounded.

Suppose ω(G) =
∑
e ω(e) < ∞. If f ∈ D0 with ‖f‖ω = 1, then there is some

point y ∈ G with |f(y)|2 ≥ ω−1(G). If the connected graph G has a boundary vertex
or has infinitely many edges, then there will be some x ∈ G with f(x) = 0. Then
2.3 gives

ω−1(G) ≤ |f(y)|2 = |f(y)− f(x)|2 ≤ 4RQ(f, f),

leading to the next result.

Proposition 2.4. Suppose ω(G) =
∑
e ω(e) <∞ and ∂G 6= ∅. Then the self adjoint

operator L0 on L2
ω has a strictly positive lower bound. That is, there is a C > 0

such that for all f in the domain of L0 with ‖f‖ω = 1, 〈L0f, f〉ω ≥ C.
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2.3. q-harmonic functions. There is a maximum principle for q-harmonic func-
tions.

Lemma 2.5. Suppose q is a nonnegative locally integrable function, and u : G → R
is q - harmonic. If u has a positive global maximum at an interior point of G, then
u is constant.

Proof. Arguing by contradiction, suppose u is nonconstant with a positive global
maximum at the interior point x2 ∈ G. Find another interior point x0 with u(x0) <
u(x2). The first step is to find an interior point x1 with u(x1) = u(x2) such that
every neighborhood of x1 contains points x with u(x) < u(x1). Recalling that G
is connected, let γ : [0, 1] → G be a path in the interior of G with γ(0) = x0 and
γ(1) = x2. If

t0 = sup {t ∈ [0, 1] | u(γ(s)) < u(x2) for all s < t}.

then x1 = γ(t0) has the desired properties.
If x1 is not a vertex, then u′(x1) = 0 by Calculus. If x1 is an interior vertex,

then u′n(x1) = 0 for each edge en incident on x1 by the vertex conditions 2.1.
The function u′′ is locally integrable, so [27, p. 110] for x near x1,

u′(x) =

∫ x

x1

u′′(t) dt =

∫ x

x1

q(t)u(t) dt ≥ 0.

Since u is not constant in any neighborhood of x1, u′(x) > 0 for some x arbitrarily
close to x1. Since u′ is continuous on each edge of G,

u(x)− u(x1) =

∫ x

x1

u′(t) dt > 0,

so x1 is not a local maximum.

Lemma 2.6. With the hypotheses of Lemma 2.5, suppose u : G → R is continuous,
nonconstant, q-harmonic on G, and 0 ≤ u(x) ≤ 1 for all x ∈ ∂G. Then 0 < u(x) < 1
for all x ∈ G \ ∂G.

Proof. By Lemma 2.5 u(x) < 1 in G \ ∂G. Similarly, if u(x0) < 0 for some x0 ∈ G,
then −u, has a positive interior maximum, which is not possible.

This leaves the case when u(x0) = 0 for some x0 ∈ G \ ∂G. Interior points of
edges may be treated as vertices of degree two, so our focus is on a vertex v with
degree at least two, with u(v) = 0. Let ui denote the restriction of u to an edge ei
incident on v. Since ui(x) ≥ 0, the derivatives, computed in outward pointing local
coordinates, satisfy ∂νui(v) ≥ 0. The vertex conditions 2.1 then force u′i(v) = 0
for each incident edge ei. On ei the function ui satisfies the ordinary differential
equation u′′i = qui, with initial condition u(v) = u′(v) = 0, so u(x) = 0 for all
x ∈ ei. These observations also imply that u is identically 0 along any path once it
vanishes at any point in G \ ∂G.

Extending Theorem 4.2 of [7] with a similar proof, the next result shows that if
ω−1q ∈ L2(ω), then the Dirichlet problem is solvable for q-harmonic functions. In
particular the Dirichlet problem for the usual harmonic functions (q = 0) is solvable
whenever G is weakly connected and compact.

Theorem 2.7. Suppose G is connected, while G is weakly connected and compact.
Assume there is a weight ω such that ω(G) =

∑
e ω(e) < ∞, and the nonnegative
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locally integrable function q satisfies∫
G

(ω−1q)2ω <∞. (2.5)

If ∂G 6= ∅, then every continuous function U : ∂G → R has a unique extension to a
continuous function u : G → R that is q-harmonic on G.

Proof. As noted in the remarks preceeding Lemma 2.2, A is uniformly dense in the
real continuous functions on G. After extending U to a continuous function on G,
find a function gn ∈ A with

max
x∈G
|U(x)− gn(x)| ≤ 1/n.

Since gn ∈ A, the function D2gn is bounded with support contained in the union
of a finite collection of edges. Since gn is bounded, 2.5 implies that

ω−1[D2 − q]gn ∈ L2(ω).

The operator L0 is invertible, so the function

hn = L−1
0 ω−1[D2 − q]gn (2.6)

satisfies

ω−1[−D2 + q]hn = ω−1[D2 − q]gn.
Since gn ∈ A and hn is in the domain of L0, un = hn + gn satisfies the vertex
conditions 2.1. In addition hn(x) = 0 for x ∈ ∂G. That is, un is q-harmonic on G
with un(x) = gn(x) for x ∈ ∂G.

Suppose m < n. Then

max
x∈∂G

|um − un| ≤
2

m
.

Since both ±(um − un) are q-harmonic on G, the maximum principle implies

max
x∈G
|um − un| ≤

2

m
,

so {un} is a uniformly Cauchy sequence on G, with a continuous limit u.
On each edge e the solutions of u′′ = qu form a two dimensional vector space.

Recall [21, pp. 4-6] that any two norms on a finite dimensional vector space induce
the same topology, so the uniform convergence to 0 of |um(x) − un(x)| for x ∈ e
implies the uniform convergence to 0 of |um(x)−un(x)|+|u′m(x)−u′n(x)|. Recasting
solutions of u′′ = qu as solutions of an integral equation and taking limits shows
that u(x) = limn un(x) is the desired q-harmonic function.

3. Introducing the Dirchlet-Neumann map. Beginning with finite quantum
graphs, where classical derivatives at the boundary are available, this section intro-
duces the Dirichlet to Neumann map. Sample computations for a family of infinite
α− β trees demonstrate the complex behavior possible for derivatives of harmonic
functions on infinite graphs. For continuous boundary functions U and clopen sets
Ω ⊂ ∂G, a preliminary Dirichlet to Neumann function Λq(U,Ω) is defined using test
functions from A. Since the existence of q-harmonic extensions is fundamental, the
hypotheses of Theorem 2.7 are assumed. Moreover, q is subsequently assumed to
be integrable over G.
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3.1. Finite Graphs. In case G is a finite connected metric graph, ∂G is just the set
of vertices of degree one. The hypotheses of Theorem 2.7 are satisfied if ω(e) = 1
for each edge e, so for any function U : ∂G → R there is a unique q - harmonic
extension u : G → R. The function u will have an absolutely continuous derivative.
For each boundary vertex v, let ∂ν denote the derivative computed with respect to
local coordinates pointing outward at v.

For a finite graph, introduce the Hilbert space l2(∂G) of functions F : ∂G → R,
with the usual inner product

〈F,G〉∂G =
∑
v∈∂G

F (v)G(v).

The Dirichlet to Neumann map Λq : l2(∂G)→ l2(∂G) acting on functions on ∂G is
defined by

ΛqU(v) = ∂νu(v), v ∈ ∂G.
Extending functions F : ∂G → R to smooth functions f : G → R satisfying the

standard interior vertex conditions 2.1, integration by parts gives∫
G

(−f ′′ + qf)g = −
∑
v∈∂G

(∂νf(v))g(v) +

∫
G
f ′g′ + qfg. (3.1)

With Lf = −f ′′ + qf , a second integration gives∫
G

(Lf)g =
∑
v∈∂G

[f(v)∂νg(v)− g(v)∂νf(v)] +

∫
G
f(Lg). (3.2)

If Lf = 0 and g = 1, 3.2 reduces to∑
v∈∂G

∂νf(v) =

∫
G
f(Lg) =

∫
G
fq. (3.3)

When q = 0 this equation corresponds to ’conservation of current’. In case Lf =
Lg = 0, 3.2 reduces to

〈ΛqF,G〉∂G =
∑
v∈∂G

g(v)∂νf(v) =
∑
v∈∂G

f(v)∂νg(v) = 〈F,ΛqG〉∂G .

If, in addition, G = F , then 3.1 gives

〈ΛqF, F 〉∂G =

∫
G

(f ′)2 + qf2. (3.4)

Finally, if ΛqF = 0, then 3.4 with q ≥ 0 shows that f ′ = 0 everywhere, which
implies f is constant on G, and q = 0 almost everywhere. These basic computations
are summarized in the following proposition.

Proposition 3.1. For a finite graph G with nonempty boundary ∂G, the Dirichlet
to Neumann map Λq is self adjoint and nonnegative on l2(∂G). The null space of
Λq is {0} unless q = 0 almost everywhere, in which case the null space consists of
the constants.

Using the q-harmonic extensions f of F and g of G, 3.1 expresses the bilinear
form 〈ΛqF,G〉∂G as an integral over G,

〈ΛqF,G〉∂G =

∫
G
f ′g′ + qfg.
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It is also possible to express ΛqF using test functions in 3.2. Let φ(x) be a smooth
function with φ′e(w) = 0 for all edges e and vertices w ∈ G. If φ(v) = 1 at the
boundary vertex v, while φ(w) = 0 at all other boundary vertices, then 3.2 gives

ΛqF (v) = ∂νf(v) =

∫
G
fLφ. (3.5)

3.2. Infinite network example: the α − β tree. Since the derivatives of har-
monic functions on infinite graphs can exhibit complex behavior, extending the
Dirichlet to Neumann map from finite to infinite networks will require new ideas.
To illustrate this complexity, consider an infinite tree Tα, as illustrated in Figure
1. Tα has a root vertex v0 of degree 1 with adjacent vertex v1. All vertices except
v0 have degree 3. Organize the vertices into combinatorial depth levels, so v0 is at
level 0, v1 is at level 1, and if vn is at level n, its children are at level n+ 1.

v0

v1

v2

v3

Figure 1. An α− β tree

The edge weights are described by a scaling parameter α, where α and β = 1−α
satisfy 0 < α, β < 1. For any vertex v ∈ T other than v0, label the single incident
parent edge ep(v), and the two child edges eα(v) and eβ(v), with lengths lp, lα and
lβ respectively. The lengths satisfy lα = αlp, lβ = βlp.

Given a linear function u(x) = cx + d on the edge [v0, v1], extend u to Tα by
requiring u to be continuous on Tα and linear on each edge, with

u′(x) =
−β
α+ β

u′(t), t ∈ ep(v), x ∈ eα(v),

u′(x) =
−α
α+ β

u′(t), t ∈ ep(v), x ∈ eβ(v).

The derivatives are computed in local coordinates pointing outward from v. One
checks easily that u is harmonic on Tα, has the same value at all vertices on the
same level of T , and has a finite limit as the level index n→∞.
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Paths descending through the levels are determined by sequences {σn} with
σn ∈ {α, β}. The derivative below the vertex vN at level N will be

u′(v+
N ) = u′(v−1 )

N∏
n=1

αβ

σn
, u′(v−1 ) = c.

Note that limN→∞ u′(v+
N ) = 0 independent of the path, but the decay behaviors

are path dependent and diverse.

3.3. Test function formulation. As noted in 3.5, there is a test function formula-
tion of the Dirichlet-Neumann map for finite graphs. For infinite graphs the points
in ∂G are generally not isolated, so the previous formulation is not applicable. An
alternative is available when G is compact and weakly connected, with functions in
A serving as test functions and clopen subsets of ∂G generalizing boundary vertices.

The set ∂G is a closed subset of G, and ∂G is totally disconnected if G is weakly
connected. Since ∂G is a totally disconnected compact metric space, every open ball
Bε(x) contains a clopen neighborhood of x. Applying Lemma 2.2, the next lemma
guarantees a plentiful supply of suitable test functions. The succeeding lemma
describes their features.

Lemma 3.2. Suppose G is compact and weakly connected. If Ω is a clopen subset
of ∂G, then there is a function φ ∈ A such that 0 ≤ φ ≤ 1 and

φ(x) = 1, x ∈ Ω, φ(y) = 0, y ∈ ∂G \ Ω.

Lemma 3.3. If φ ∈ A, then the restriction φ : ∂G → R has finite range R. The
set {x|φ(x) /∈ R} is contained in the union of finitely many edges.

Proof. Let E be a nonempty finite set of closed edges containing all points x with
φ′(x) 6= 0. For any point z ∈ ∂G \ E there is a path γ : [0, 1] → G with γ(0) ∈ E,
γ(1) = z, and γ(t) ∈ G for 0 < t < 1 by [7, Prop 2.3]. Since d(z, E) > 0 there is a
smallest number t0 with 0 ≤ t0 < 1, and such that γ(t) /∈ E for all t > t0. Since
E is the union of a finite set of closed edges, γ(t0) is an endpoint of one of these
edges, and φ(z) = φ(γ(t0)), since φ′(γ(t)) = 0 for all t > t0. This shows that the
restriction φ : ∂G → R has finite range R, and that {x|φ(x) /∈ R} ⊂ E.

Assume the hypotheses of Theorem 2.7 are satisfied. Before treating the Dirich-
let to Neumann map, a preliminary step is to consider the real valued Dirichlet-
Neumann function Λq(U,Ω), defined for continuous functions U : ∂G → R and

clopen sets Ω ⊂ ∂G. The value of Λq(U,Ω) plays the role of the integral of the

normal derivative of the q-harmonic extension u over the set Ω ⊂ ∂G. Using 3.5 as
a guide, suppose φ ∈ A satisfies

φ(x) = 1, x ∈ Ω, φ(x) = 0, x ∈ ∂G \ Ω.

The Dirichlet-Neumann function Λq(U,Ω) is defined by the formula

Λq(U,Ω) =

∫
G
uLφ, (3.6)

The next lemma shows that the dependence on φ is illusory.

Lemma 3.4. Suppose Ω ⊂ ∂G is clopen, and that φ, ψ ∈ A with

φ(x) = ψ(x) = 1, x ∈ Ω, φ(x) = ψ(x) = 0, x ∈ ∂G \ Ω.
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Then ∫
G
uLφ =

∫
G
uLψ.

Proof. The integration by parts formula 3.2 will be used for certain finite subgraphs
G1 of G. The validity of this formula is based on the assumption that the interior
vertex conditions 2.1 hold at vertices of degree greater than one. A subgraph G1

may include vertices v with degree d1(v) in G1, but with strictly larger degree d(v)
in G. To resolve this problem, the boundary ∂G1 is understood in a relative sense,
comprising the set of vertices v ∈ G1 with d1(v) = 1 or with d1(v) < d(v). In the
formula 3.2, such a vertex v is treated as d1(v) boundary vertices of degree one.

Using Lemma 3.3 and the fact that φ, ψ ∈ A, there is a finite connected subgraph
G0 ⊂ G such that for all connected finite subgraphs G1 with G0 ⊂ G1 ⊂ G we have

0 = φ′(x) = ψ′(x) = φ(x)− ψ(x), x ∈ G \ G1,

and
0 = φ′(x) = ψ′(x) = φ(x)− ψ(x), x ∈ ∂G1.

Since Lu = 0,the formula 3.2 gives∫
G1
uLφ =

∑
v∈∂G1

φ(v)∂νu(v) =
∑
v∈∂G1

ψ(v)∂νu(v) =

∫
G1
uLψ.

This equality gives

|
∫
G
uLφ− uLψ| = |

∫
G\G1

uLφ− uLψ| = |
∫
G\G1

uq(φ− ψ)|.

Since u(φ − ψ) is bounded and q is integrable, the right hand side can be made
arbitrarily small by enlarging G1.

Having established a Dirichlet-Neumann function Λq(U,Ω), a couple of prelimi-
nary observations are in order. The first concerns nontriviality.

Proposition 3.5. If U : ∂G → R is nonnegative, continuous, and somewhere
positive, and if q(x) is integrable and strictly positive, then Λq(U, ∂G) > 0.

Proof. By Lemma 2.6 the q harmonic extension u of U is everywhere nonnegative.
For the clopen set Ω = ∂G simply take φ to be the constant function 1. Then

Λq(U, ∂G) =

∫
G
uq > 0.

For the second observation, suppose the hypotheses of Lemma 3.4 hold. Assume
that {Gn} is an exhaustion of G by a sequence of finite subgraphs, so that

Gn ⊂ Gn+1, G =
⋃
n

Gn.

For all n sufficiently large

φ′(x) = 0, φ(x) ∈ {0, 1}, x ∈ ∂Gn.
Using the relative notion of graph boundary, let Bn = φ−1(1) ∩ ∂Gn. Applying 3.2
as in the proof of Lemma 3.4 leads to an approximation of Λq(U,Ω) using finite
graph Dirichlet to Neumann maps,

Λq(U,Ω) =

∫
G
uLφ = lim

n→∞

∑
v∈Bn

∂νu(v). (3.7)
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4. Characteristic functions. This section focuses on the Dirichlet to Neumann
function Λq(U,Ω1) when U = 1Ω : ∂G → R is the characteristic function of a
nonempty clopen set,

1Ω(x) =
{1, x ∈ Ω,

0, x ∈ ∂G \ Ω.

}
Let uΩ denote the q-harmonic extension of 1Ω to G. By Lemma 2.6, if Ω 6= ∂G,
then the inequality 0 < uΩ(t) < 1 holds for all t ∈ (G \ ∂G).

For guidance, consider a finite graph G and point x ∈ Ω with u(x) = 1. The Mean
Value Theorem together with the equation u′′Ω = quΩ ≥ 0 imply that u′Ω(x) > 0.
For y ∈ (∂G \ Ω) a similar argument gives u′(y) < 0. This section will establish
analogous results for infinite graph completions.

4.1. Regular values. To provide technical support for an upcoming argument, the
notion of regular values of a function is adapted to functions defined on networks.
Assume that h : G → R is continuous, with a continuous derivative on the open
edges of G. A point x ∈ G is a critical point for h if x is a vertex or if h′(x) = 0. A
number y ∈ R is a critical value for h if h−1(y) contains a critical point. Points in
the range of h that are not critical values are regular values. The next result is a
simple form of Sard’s Theorem.

Lemma 4.1. The set of critical values of h has Lebesgue measure 0.

Proof. The set of vertices is countable, so the set of values h(v) for vertices v has
measure 0. There are countably many edges, so it suffices to prove the result for a
single edge e. Suppose the length of e is le, and e is identified with the real interval
[0, le].

Since h′ is continuous, for ε > 0 the set Uε = {x| − ε < h′(x) < ε} is open.
Uε may be written as the union of countably many pairwise disjoint open intervals
(αn, βn) ⊂ (0, le). With zn = (αn + β)/2 and αn < x < βn,

h(x)− h(zn) =

∫ x

zn

h′(t) dt.

Thus the image of the n-th interval has length at most (βn − αn)ε, implying h(Uε)
is contained in a set of measure at most εle.

Lemma 4.2. Suppose G is compact, and that c is a regular value of h. Assume
there is no x ∈ ∂G with h(x) = c. Then h−1(c) is a finite set containing no vertices.

Proof. If h−1(c) were an infinite set, then by compactness there would be an infinite
sequence {xn} ⊂ h−1(c) converging to a point z, with h(z) = h(xn) = c. Moreover z
is an interior point of some edge e. By the Mean Value Theorem and the continuity
of h′, h′(z) = 0, contradicting the assumption that c is a regular value for h.

Level sets of h can be used to construct subgraphs of the metric space G with
added vertices and subdivided edges. Let c1, c2 be regular values of h with c1 < c2,
and assume that h(x) /∈ [c1, c2] for all x ∈ ∂G. Let C = h−1(c1) ∪ h−1(c2), which is
finite by Lemma 4.2. Add vertices of degree two at the points of C, and subdivide the
corresponding edges to obtain a modified graphical description of G. Let G(c1, c2),
the level set graph, be the set of points x ∈ G such that every path from x to ∂G
contains a point in C.
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Lemma 4.3. If G is compact, then G(c1, c2) is a finite graph whose boundary con-
sists of points in C. If v is a boundary vertex of G(c1, c2) with h(v) = c2, then
∂νh(v) > 0, while if h(v) = c1, then ∂νh(v) < 0.

Proof. Since ∂G is compact, there is an ε > 0 such that h(x) /∈ [c1, c2] if d(x, ∂G) < ε.
This implies [7, Prop 2.1] that G(c1, c2) is contained in the union of a finite collection
E of edges of the (original) graph G. Assume that E is chosen so that every edge
e ∈ E contains some point of G(c1, c2).

Consider the following observations about an edge e ∈ E, identified with an
interval [a, b]. First, if x0, x1, x2 ∈ e with x0 ≤ x1 ≤ x2, and x0, x2 ∈ C, then
x1 ∈ G(c1, c2). Second, if x0, x2 ∈ e with x0 < x2, and there is no point x1 ∈ C
with x0 ≤ x1 ≤ x2, then by the Intermediate Value Theorem either x0 and x2 are
both in G(c1, c2), or neither is. Third, if x1 ∈ C, then h′(x1) 6= 0 implies that an
interval containing x1 is a subset of G(c1, c2).

Let N be the number of points of C in e. By considering the three cases N = 0,
N = 1, and N ≥ 2, one finds that the set e ∩ G(c1, c2) is a finite union of closed
edges from the modified graph G (including points of C as vertices). Consequently,
G(c1, c2) is a finite graph whose boundary vertices are in C. The conclusions about
the derivatives at boundary vertices v follow from h′(v) 6= 0.

4.2. Boundary measures.

Theorem 4.4. Assume that G is connected, and that G is weakly connected and
compact. Suppose Ω, E1, E2 are nonempty clopen subsets of ∂G with Ω 6= ∂G, E1 ⊂
Ω, and E2 ⊂ ∂G \ Ω. Then

Λq(1Ω, E1) > 0, Λq(1Ω, E2) ≤ 0. (4.1)

If q(x) = 0 for all x in some neighborhood of ∂G, then Λq(1Ω, E2) < 0.

Proof. The two cases in 4.1 are similar; the E1 case will be emphasized.
By Lemma 2.6, if uΩ is the nonconstant q-harmonic extension of 1Ω to G, then

0 < uΩ(x) < 1, x ∈ G \ ∂G.
Since G is connected the range of uΩ is [0, 1]. Suppose φ ∈ A with

φ(x) = 1, x ∈ E1, φ(x) = 0, x ∈ ∂G \ E1.

The idea of the proof is to use a finite graph G0, constructed as in Lemma 4.3, to
approximate G. The approximating graph should include all points where φ′(x) 6= 0
so that

Λq(1Ω, E1) =

∫
G
uΩLφ =

∫
G0
uΩLφ+

∫
G\G0

uΩqφ. (4.2)

The integral over G0 is expressed more transparently using 3.2. The possible posi-
tivity of the last integral term accounts for the slight difference in inequalitites for
E1 and E2 unless q vanishes near ∂G.

By Lemma 3.3 there is an δ1 > 0 such that if d(x, ∂G \ E1) < δ1 then φ(x) = 0,
while if d(x,E1) < δ1 then φ(x) = 1. The integrability of q implies that for any
ε > 0 there is a δ > 0 such that∫

N(δ)

uΩqφ < ε, N(δ) = {x ∈ G | d(x, ∂G) < δ}.

Choose δ < δ1.
Pick a finite subgraph Gδ of G such that G \Gδ is a subset of N(δ). The subgraph

Gδ may contain boundary vertices of G, but by adding a finite set of new vertices
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to G, and subdividing the associated edges, Gδ can be chosen so that it contains no
points of ∂G. By Lemma 2.6 the function uΩ restricted to Gδ has a minimum α1

and a maximum β1 satisfying 0 < α1 < β1 < 1. Now pick regular values α and
β for uΩ so that 0 < α1 < α and β1 < β < 1. Using the previous level set graph
selection, define G0 = G(α, β). Every boundary vertex of G0 is in the set N(δ).

There will be a nonempty set of boundary vertices v of G0 with uΩ(v) = β and
φ(v) = 1. By Lemma 4.3 we then have ∂νuΩ(v) > 0. Using 3.2 as in 3.7,∫

G0
uΩLφ =

∑
v∈∂G0∩φ−1(1)

∂νuΩ(v) > 0.

Together with

0 ≤
∫
G\G0

uΩqφ < ε,

the result is established.

Fix a reference clopen set Ω as in Theorem 4.4, with the corresponding q-
harmonic extension uΩ : G → R of 1Ω : ∂G → R. By Theorem 4.4 the function
Λq(1Ω, E) is positive on nonempty clopen subsets E of Ω. Consider extending the

set function Λq(1Ω, E) to a positive measure on Ω, and a signed measure on ∂G.
The construction of a measure from a premeasure [17, p. 30] is used here. Recall
that an algebra of subsets of G is a nonempty collection closed under finite unions
and complements. The collection of clopen subsets of ∂G is an algebra.

Lemma 4.5. Assume that E ⊂ Ω is clopen, and {En} is a countable partition of
E by clopen sets. Then

Λq(1Ω, E) =
∑
n

Λq(1Ω, En)

Proof. Since G is compact and E is closed, E is compact. The given partition is an
open cover of E, so is finite.

Finite additivity will now follow from 3.6. For each set En there is a function
φn ∈ A such that, for x ∈ ∂G, φn(x) = 1 if x ∈ En and φn(x) = 0 if x /∈ En. The
function φ =

∑
n φn is in A, restricts to the characteristic function of E on ∂G, and

Λq(1Ω, E) =

∫
G
uΩLφ =

∫
G
uΩL

∑
n

φn =
∑
n

Λq(1Ω, En).

Theorem 4.6. Λq(1Ω, E) extends to a finite positive Borel measure on Ω and to a

signed Borel measure on ∂G.

Proof. Suppose K ⊂ Ω is a closed set. Cover K with open sets Ux(N) contained
in balls of radius less than 1/N centered at points x ∈ K. Since ∂G is totally
disconnected we may assume this is a cover by clopen sets. Since K is compact, a
finite subcover K ⊂ {Um(N)} exists, and

K = ∩∞N=1[∪mUm(N)].

It follows that the sigma algebra generated by the clopen sets is the Borel sets.
Lemma 4.5 shows that Λq(1Ω, E) is a premeasure on the algebra of clopen sets.

This premeasure has [17, p. 30] a unique extension to a Borel measure on Ω.
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For E ⊂ Ωc this argument shows that −Λq(1Ω, E) provides a positive Borel
measure on Ωc. Pasting these two positive measures together yields two Borel
measures on ∂G, the positive Borel measure

|Λq(1Ω, E)| = Λq(1Ω, E ∩ Ω)− Λq(1Ω, E ∩ Ωc),

and the signed Borel measure

Λq(1Ω, E) = Λq(1Ω, E ∩ Ω) + Λq(1Ω, E ∩ Ωc). (4.3)

The measures µ(E) = Λq(1Ω, E) constructed above are finite Radon measures

[17, Thm 7.8 and p. 216]. In particular for every Borel set E ⊂ ∂G,

µ(E) = inf{µ(O), E ⊂ O, O open},

and

µ(E) = sup{µ(K), K ⊂ E, K compact}.
With the additional assumption that q(x) = 0 for all x in some neighborhood of ∂G,
Theorem 4.4 shows that the positive measure σ(E) = |Λq(1Ω, E)| is strictly positive
on all nonempty clopen subsets E of Ω.

The following argument shows that the measures µ will be absolutely continuous
with respect to the measures σ. The first step is the next lemma, whose proof is
straightforward.

Lemma 4.7. Suppose K ⊂ ∂G is compact, O ⊂ ∂G is open, and K ⊂ O. Then
there is a finite collection of clopen sets E1, . . . , EK such that K ⊂ ∪Ek ⊂ O.

Proposition 4.8. The measures µ = Λq(1Ω) are absolutely continuous with respect
to any Radon measure σ which assigns positive measure to each clopen set.

Proof. Using the regularity of our measures, for any Borel set E with µ(E) > 0 there
is a compact set Kµ and an open set Oµ such that Kµ ⊂ E ⊂ Oµ and µ(E)/2 ≤
µ(Kµ) ≤ µ(Oµ) ≤ 2µ(E), and similarly for σ(E). By taking the intersection Oµ∩Oσ
and the union Kµ ∪ Kσ, the same compact and open sets may be used for both
measures. By Lemma 4.7 there is a finite covering ofK by clopen subsets E1, . . . , EK
of O. Since σ assigns positive measure to all nonempty clopen sets, it follows that
σ(Oσ) > 0, and so σ(E) > 0.

5. Operator Theory. Let C(∂G) denote the Banach space of continuous functions
F : ∂G → R with ‖F‖ = maxx∈∂G |F (x)|. Let M(∂G) denote the Banach space of

signed finite Radon measures µ on ∂G, with

‖µ‖ = |µ|(∂G) = sup
‖F‖=1

|
∫
∂G
F dµ|.

As noted above, the measures µ(E) = Λq(1Ω, E) are finite Radon measures. By the

Riesz Representation Theorem [17, pp. 216-217] or [23, p. 82], M(∂G) is the dual
of C(∂G).

The Dirichlet to Neumann function Λq(F,E) may be extended to the Dirichlet

to Neumann map Λq : C(∂G) → M(∂G). Suppose F : ∂G → R is a continuous
function with finite range, or equivalently is a linear combination of characteristic
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functions of clopen sets, F =
∑n
k=1 αk1Ω(k). With this domain, define the Dirichlet

to Neumann map to be the operator

ΛqF (E) = Λq(F,E) =

n∑
k=1

αkΛq(1Ω(k), E) (5.1)

Since the definition 3.6 is linear in F : ∂G → R, the measure valued map is consis-
tently defined for clopen sets Ω(k) and E in ∂G. The following theorem establishes
symmetry of the Dirichlet to Neumann function.

Theorem 5.1. Suppose Ω(1) and Ω(2) are nonempty clopen subsets of ∂G. Then

Λq(1Ω(1),Ω(2)) = Λq(1Ω(2),Ω(1)). (5.2)

Proof. Beginning with some notation, let φ, ψ ∈ A, with 0 ≤ φ ≤ 1, 0 ≤ ψ ≤ 1,

φ(x) =
{1, x ∈ Ω(1),

0, x ∈ ∂G \ Ω(1)

}
, ψ(x) =

{1, x ∈ Ω(2),
0, x ∈ ∂G \ Ω(2)

}
.

For δ > 0 let

N(δ) = {x ∈ G | d(x, ∂G) < δ}.
For δ sufficiently small x ∈ N(δ) implies

φ(x) =
{1, d(x,Ω(1)) < δ,

0, d(x, ∂G \ Ω(1)) < δ,

}
, ψ(x) =

{1, d(x,Ω(2)) < δ,
0, d(x, ∂G \ Ω(2)) < δ,

}
.

The claimed symmetry of the Dirichlet to Neumann function is elementary if G
is finite. For j = 1, 2, let uΩ(j) be the q-harmonic extension of 1Ω(j). By 3.5 and
the symmetry of the finite graph Dirichlet to Neumann map,

Λq(1Ω(1),Ω(2)) =

∫
G
uΩ(1)Lψ =

∑
v∈Ω(2)

∂νuΩ(1)(v) =
∑
∂G

uΩ(2)∂νuΩ(1) (5.3)

=
∑
∂G

uΩ(1)∂νuΩ(2) =
∑
Ω(1)

∂νuΩ(2) = Λq(1Ω(2),Ω(1)).

The argument proceeds by reduction of the general case to the finite graph case.
Let Gn be an increasing sequence of finite subgraphs exhausting G. Assume each
Gn includes all edges with a point x where φ′(x) 6= 0 or ψ′(x) 6= 0. Also assume
that points in the (relative) boundary of Gn are contained in N(1/n), with 1/n < δ.
Define

Ω1(n) = ∂Gn ∩ {x | φ(x) = 1}, Ω2(n) = ∂Gn ∩ {x | ψ(x) = 1}.

Let fn be the q-harmonic function on Gn with boundary values Fn(x) = φ(x)
for x ∈ ∂Gn, and let gn be the q-harmonic function on Gn with boundary values
Gn(x) = ψ(x). The summands in∑

w∈Ω1(n)

∂νfn(w) =

∫
Gn
fnLφ,

are positive terms, and letting φ1 = 1− φ there is a sum of negative terms∑
w∈∂Gn\Ω1(n)

∂νfn(w) =

∫
Gn
fnLφ1.
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Since 0 ≤ fn ≤ 1, these expressions combine to give∑
w∈∂Gn

|∂νfn(w)| ≤
∫
G
|Lφ|+ |Lφ1| = Cφ,

with Cφ independent of n.
Integration by parts gives

0 =

∫
Gn

(−f ′′n + qfn)fn = −
∑

w∈∂Gn

fn∂νfn(w) +

∫
Gn

(f ′n)2 +

∫
Gn
qf2
n,

so ∫
Gn

(f ′n)2 ≤ Cφ.

The Cauchy-Schwarz inequality then gives the Lipschitz estimate

|fn(y)− fn(x)| ≤
√
Cφdist(x, y),

the distance computed in Gn. Similar estimates hold for gn.
Using the Ascoli-Arzela Theorem [27, p. 167], since the sequence {fn} is bounded

and equicontinuous, it has a subsequence, still denoted {fn}, converging uniformly
to f on finite subgraphs of G. The argument in the last paragraph of the proof
of Theorem 2.7 shows f is q-harmonic. The function f satisfies the same type of
Lipschitz estimate, the distance now computed in G. Since f is uniformly continuous
on G, it extends continuously to G. In particular, f(x) = 1 for x ∈ Ω(1), and
f(x) = 0 for x ∈ ∂G \ Ω(1), so f = fΩ(1). Similar comments apply to {gn}, which
has a limit function gΩ(2).

Making use of 5.3,

Λq(1Ω(1),Ω(2)) =

∫
G
fΩ(1)Lψ = lim

n

∫
Gn
fnLψ = lim

n
Λq(1Ω1(n),Ω2(n)) (5.4)

= lim
n

Λq(1Ω2(n),Ω1(n)) = lim
n

∫
Gn
gnLφ = Λq(1Ω(2),Ω(1)).

Theorem 5.2. The Dirichlet to Neumann map Λq : C(∂G) → M(∂G) is densely
defined, symmetric, and nonnegative.

Proof. As noted in the discussion preceding Lemma 3.2, distinct points x, y ∈ ∂G
are contained in disjoint clopen sets. The Stone-Weierstrass Theorem then shows
that the linear combinations of characteristic functions of clopen sets are dense in
C(∂G).

Let 〈µ, F 〉 =
∫
∂G F dµ denote the dual pairing of measures and continuous func-

tions. Suppose F and G are in the domain of Λq,

F =

m∑
j=1

αj1ΩF (j), G =

n∑
k=1

βk1ΩG(k).

Then by Theorem 5.1

〈ΛqF,G〉 =
∑
j

αj

∫
G d Λq1ΩF (j) =

∑
j,k

αjβkΛq(1ΩF (j),ΩG(k))

=
∑
j,k

αjβkΛq(1ΩG(k),ΩF (j)) = 〈ΛqG,F 〉,
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establishing the symmetry of Λq.
A limiting argument as used in Theorem 5.1 will establish the positivity. Work

in the finite dimensional subspace of functions F which are linear combinations of
the characteristic functions of a fixed finite collection of clopen sets. Following 5.4
and 5.3, for each pair Ω(i),Ω(j) of these clopen sets

Λq(1Ω(i),Ω(j)) =

∫
G
fΩ(1)Lψ = lim

n

∫
Gn
fnLψ

=
∑

v∈Ωn(j)

∂νfn,Ω(i)(v) =
∑
∂Gn

fn,Ω(j)∂νfn,Ω(i).

As discussed in Proposition 3.1, the corresponding finite graph quadratic forms
〈Λqfn, fn〉 are nonnegative, making the limit nonnegative.
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