Citation: Uday Chintapula, Samir M Iqbal, Young-Tae Kim. A compendium of single cell analysis in aging and disease[J]. AIMS Molecular Science, 2020, 7(1): 49-69. doi: 10.3934/molsci.2020004
[1] |
Armbrecht L, Dittrich PS (2017) Recent Advances in the Analysis of Single Cells. Anal Chem 89: 2-21. doi: 10.1021/acs.analchem.6b04255
![]() |
[2] |
Al Amir Dache Z, Otandault A, Tanos R, et al. (2020) Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 34: 3616-3630. doi: 10.1096/fj.201901917RR
![]() |
[3] |
Tritschler S, Theis FJ, Lickert H, et al. (2017) Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 6: 974-990. doi: 10.1016/j.molmet.2017.06.021
![]() |
[4] |
Ryan FP (2016) Viral symbiosis and the holobiontic nature of the human genome. APMIS 124: 11-19. doi: 10.1111/apm.12488
![]() |
[5] |
Dimijian GG (2000) Evolving together: the biology of symbiosis, part 2. Proc (Bayl Univ Med Cent) 13: 381-390. doi: 10.1080/08998280.2000.11927712
![]() |
[6] |
Hofmeyr JHS (2008) The harmony of the cell: cellular processes. Essays Biochem 45: 57-66. doi: 10.1042/bse0450057
![]() |
[7] |
Lane N, Martin W (2010) The energetics of genome complexity. Nature 467: 929-934. doi: 10.1038/nature09486
![]() |
[8] |
Wallace DC (2007) Why Do We Still Have a Maternally Inherited Mitochondrial DNA? Insights from Evolutionary Medicine. Annu Rev Biochem 76: 781-821. doi: 10.1146/annurev.biochem.76.081205.150955
![]() |
[9] |
Mojtahedi M, Skupin A, Zhou J, et al. (2016) Cell Fate Decision as High-Dimensional Critical State Transition. PLoS Biol 14: 1-29. doi: 10.1371/journal.pbio.2000640
![]() |
[10] |
From M, Hematopoietic P (2015) Brief Report: Single-Cell Analysis Reveals Cell Division-Independent Emergence of Stem Cells. Stem Cells 33: 3152-3157. doi: 10.1002/stem.2106
![]() |
[11] |
Kolodziejczyk AA, Kim JK, Svensson V, et al. (2015) The Technology and Biology of Single-Cell RNA Sequencing. Mol Cell 58: 610-620. doi: 10.1016/j.molcel.2015.04.005
![]() |
[12] |
Ziegenhain C, Vieth B, Parekh S, et al. (2017) Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol Cell 65: 631-643.e4. doi: 10.1016/j.molcel.2017.01.023
![]() |
[13] |
Rosenberg AB, Roco CM, Muscat RA, et al. (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360: 176-182. doi: 10.1126/science.aam8999
![]() |
[14] |
Lee BWL, Ghode P, Ong DST (2019) Redox regulation of cell state and fate. Redox Biol 25: 101056. doi: 10.1016/j.redox.2018.11.014
![]() |
[15] |
Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25: 1491-1498. doi: 10.1101/gr.190595.115
![]() |
[16] |
MacLean AL, Hong T, Nie Q (2018) Exploring intermediate cell states through the lens of single cells. Curr Opin Syst Biol 9: 32-41. doi: 10.1016/j.coisb.2018.02.009
![]() |
[17] | Hu P, Zhang W, Xin H, et al. (2016) Single Cell Isolation and Analysis. Front Cell Dev Biol 4: 1-12. |
[18] |
Armbrecht L, Dittrich PS (2017) Recent Advances in the Analysis of Single Cells. Anal Chem 89: 2-21. doi: 10.1021/acs.analchem.6b04255
![]() |
[19] |
Bengtsson M, Ståhlberg A, Rorsman P, et al. (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15: 1388-1392. doi: 10.1101/gr.3820805
![]() |
[20] |
Wang J, Min Z, Jin M, et al. (2015) Protocol for Single Cell Isolation by Flow Cytometry BT- Single Cell Sequencing and Systems Immunology. Single Cell Sequencing and Systems Immunology, Translational Bioinformatics Dordrecht: Springer, 155-163. doi: 10.1007/978-94-017-9753-5_11
![]() |
[21] |
Espina V, Wulfkuhle JD, Calvert VS, et al. (2006) Laser-capture microdissection. Nat Protoc 1: 586-603. doi: 10.1038/nprot.2006.85
![]() |
[22] |
Reece A, Xia B, Jiang Z, et al. (2016) Microfluidic techniques for high throughput single cell analysis. Curr Opin Biotechnol 40: 90-96. doi: 10.1016/j.copbio.2016.02.015
![]() |
[23] |
Torres AJ, Hill AS, Love JC (2014) Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding. Anal Chem 86: 11562-11569. doi: 10.1021/ac4030297
![]() |
[24] |
Islam M, Sajid A, Mahmood MAI, et al. (2015) Nanotextured polymer substrates show enhanced cancer cell isolation and cell culture. Nanotechnology 26: 225101. doi: 10.1088/0957-4484/26/22/225101
![]() |
[25] |
Fang T, Shang W, Liu C, et al. (2019) Nondestructive Identification and Accurate Isolation of Single Cells through a Chip with Raman Optical Tweezers. Anal Chem 91: 9932-9939. doi: 10.1021/acs.analchem.9b01604
![]() |
[26] |
Muraro MJ, Dharmadhikari G, Grün D, et al. (2016) A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst 3: 385-394.e3. doi: 10.1016/j.cels.2016.09.002
![]() |
[27] |
Ji Y, Qi D, Li L, et al. (2019) Multiplexed profiling of single-cell extracellular vesicles secretion. Proc Natl Acad Sci 116: 5979-5984. doi: 10.1073/pnas.1814348116
![]() |
[28] |
Yeo T, Tan SJ, Lim CL, et al. (2016) Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci Rep 6: 22076. doi: 10.1038/srep22076
![]() |
[29] |
Yuan J, Sheng J, Sims PA (2018) SCOPE-Seq: a scalable technology for linking live cell imaging and single-cell RNA sequencing. Genome Biol 19: 227. doi: 10.1186/s13059-018-1607-x
![]() |
[30] |
Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. Methods Cell Biol 123: 77-94. doi: 10.1016/B978-0-12-420138-5.00005-7
![]() |
[31] |
Ayan B, Ozcelik A, Bachman H, et al. (2016) Acoustofluidic coating of particles and cells. Lab Chip 16: 4366-4372. doi: 10.1039/C6LC00951D
![]() |
[32] |
Johnson BN, Mutharasan R (2016) Acoustofluidic particle trapping, manipulation, and release using dynamic-mode cantilever sensors. Analyst Dec 142: 123-131. doi: 10.1039/C6AN01743F
![]() |
[33] |
Mao Z, Li P, Wu M, et al. (2017) Enriching Nanoparticles via Acoustofluidics. ACS Nano 11: 603-612. doi: 10.1021/acsnano.6b06784
![]() |
[34] |
Acero Sanchez JL, Joda H, Henry OYF, et al. (2017) Electrochemical Genetic Profiling of Single Cancer Cells. Anal Chem 89: 3378-3385. doi: 10.1021/acs.analchem.6b03973
![]() |
[35] |
Long D, Shang Y, Qiu Y, et al. (2018) A single-cell analysis platform for electrochemiluminescent detection of platelets adhesion to endothelial cells based on Au@DL-ZnCQDs nanoprobes. Biosens Bioelectron 102: 553-559. doi: 10.1016/j.bios.2017.11.058
![]() |
[36] |
Zhang J, Zhou J, Pan R, et al. (2018) New Frontiers and Challenges for Single-Cell Electrochemical Analysis. ACS Sens 3: 242-250. doi: 10.1021/acssensors.7b00711
![]() |
[37] |
Yang W, Tu Z, Wang H, et al. (2018) The mechanism of reduced IgG/IgE-binding of beta-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS. Food Funct 9: 417-425. doi: 10.1039/C7FO01082F
![]() |
[38] |
Umar A, Jaremko M, Burgers PC, et al. (2008) High-throughput proteomics of breast carcinoma cells: a focus on FTICR-MS. Expert Rev Proteomics 5: 445-455. doi: 10.1586/14789450.5.3.445
![]() |
[39] | Tosevski V, Ulashchik E, Trovato A, et al. (2017) CyTOF Mass Cytometry for Click Proliferation Assays. Curr Protoc Cytom 81: 7.50.1-7.50.14. |
[40] |
Fletcher JS, Rabbani S, Henderson A, et al. (2008) A new dynamic in mass spectral imaging of single biological cells. Anal Chem 80: 9058-9064. doi: 10.1021/ac8015278
![]() |
[41] |
Shen Y, Tolic N, Masselon C, et al. (2004) Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS. Anal Chem 76: 144-154. doi: 10.1021/ac030096q
![]() |
[42] |
VanInsberghe M, Zahn H, White AK, et al. (2018) Highly multiplexed single-cell quantitative PCR. PLoS One 13: e0191601. doi: 10.1371/journal.pone.0191601
![]() |
[43] | Chen J, Xu Y, Shi Y, et al. (2019) Functionalization of Atomic Force Microscope Cantilevers with Single-T Cells or Single-Particle for Immunological Single-Cell Force Spectroscopy. J Vis Exp e59609. |
[44] |
Lulevich V, Zink T, Chen HY, et al. (2006) Cell Mechanics Using Atomic Force Microscopy-Based Single-Cell Compression. Langmuir 22: 8151-8155. doi: 10.1021/la060561p
![]() |
[45] |
Balasubramanian S, Kagan D, Hu CMJ, et al. (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed Engl 50: 4161-4164. doi: 10.1002/anie.201100115
![]() |
[46] |
Esteban-Fernandez de Avila B, Martin A, Soto F, et al. (2015) Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano 9: 6756-6764. doi: 10.1021/acsnano.5b02807
![]() |
[47] |
Zhang Y, Jin L, Xu J, et al. (2017) Dynamic characterization of drug resistance and heterogeneity of the gastric cancer cell BGC823 using single-cell Raman spectroscopy. Analyst 143: 164-174. doi: 10.1039/C7AN01287J
![]() |
[48] |
Franco D, Trusso S, Fazio E, et al. (2017) Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines. Spectrochim Acta A Mol Biomol Spectrosc 187: 15-22. doi: 10.1016/j.saa.2017.06.020
![]() |
[49] | Bayani J, Squire JA (2004) Fluorescence in situ Hybridization (FISH). Curr Protoc cell Biol Chapter 22: Unit 22.4. |
[50] |
Yurov YB, Vostrikov VM, Vorsanova SG, et al. (2001) Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev 23: 186-190. doi: 10.1016/S0387-7604(01)00363-1
![]() |
[51] |
Querido E, Dekakra-Bellili L, Chartrand P (2017) RNA fluorescence in situ hybridization for high-content screening. Methods 126: 149-155. doi: 10.1016/j.ymeth.2017.07.005
![]() |
[52] |
Ravindranathan A, Diolaiti ME, Cimini BA, et al. (2019) In Situ Visualization of Telomere Length, Telomere Elongation, and TERT Expression in Single Cells. Curr Protoc Cell Biol 85: e97. doi: 10.1002/cpcb.97
![]() |
[53] |
Habib N, Li Y, Heidenreich M, et al. (2016) Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353: 925-928. doi: 10.1126/science.aad7038
![]() |
[54] |
Spaethling JM, Na YJ, Lee J, et al. (2017) Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics. Cell Rep 18: 791-803. doi: 10.1016/j.celrep.2016.12.066
![]() |
[55] |
Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207: 1173-1182. doi: 10.1084/jem.20091318
![]() |
[56] |
Sarkar S, Motwani V, Sabhachandani P, et al. (2015) T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray. J Clin Cell Immunol 6: 334. doi: 10.4172/2155-9899.1000334
![]() |
[57] |
Ludwig LS, Lareau CA, Ulirsch JC, et al. (2019) Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics. Cell 176: 1325-1339.e22. doi: 10.1016/j.cell.2019.01.022
![]() |
[58] |
Mishra P, Martin DC, Androulakis IP, et al. (2019) Fluorescence Imaging of Actin Turnover Parses Early Stem Cell Lineage Divergence and Senescence. Sci Rep 9: 10377. doi: 10.1038/s41598-019-46682-y
![]() |
[59] |
Mansur N, Hasan MR, Kim Y, et al. (2017) Functionalization of nanotextured substrates for enhanced identification of metastatic breast cancer cells. Nanotechnology 28: 385101. doi: 10.1088/1361-6528/aa7f84
![]() |
[60] |
Nguyen AT, Sathe SR, Yim EKF (2016) From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J Phys Condens Matter 28: 183001. doi: 10.1088/0953-8984/28/18/183001
![]() |
[61] |
Palmer CP, Mycielska ME, Burcu H, et al. (2008) Single cell adhesion measuring apparatus (SCAMA): Application to cancer cell lines of different metastatic potential and voltage-gated Na+ channel expression. Eur Biophys J 37: 359-368. doi: 10.1007/s00249-007-0219-2
![]() |
[62] |
Dong H, Sun H, Zheng J (2016) A microchip for integrated single-cell genotoxicity assay. Talanta 161: 804-811. doi: 10.1016/j.talanta.2016.09.040
![]() |
[63] | Du Y, Li N, Yang H, et al. (2017) Mimicking Liver Sinusoidal Structures and Functions using a 3D-configured Microfluidic Chip. Lab Chip 17-20. |
[64] |
Kaminski TS, Scheler O, Garstecki P (2016) Droplet microfluidics for microbiology: techniques, applications and challenges. Lab Chip 16: 2168-2187. doi: 10.1039/C6LC00367B
![]() |
[65] |
Gawel DR, Serra-Musach J, Lilja S, et al. (2019) A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Med 11: 47. doi: 10.1186/s13073-019-0657-3
![]() |
[66] |
Vaux DL, Haecker G, Strasser A (1994) An Evolutionary on Apoptosis Perspective Minireview. Cell 76: 777-779. doi: 10.1016/0092-8674(94)90350-6
![]() |
[67] |
Kowalczyk MS, Tirosh I, Heckl D, et al. (2015) Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25: 1860-1872. doi: 10.1101/gr.192237.115
![]() |
[68] |
Apple DM, Solano-Fonseca R, Kokovay E (2017) Neurogenesis in the aging brain. Biochem Pharmacol 141: 77-85. doi: 10.1016/j.bcp.2017.06.116
![]() |
[69] |
Dulken BW, Buckley MT, Navarro Negredo P, et al. (2019) Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571: 205-210. doi: 10.1038/s41586-019-1362-5
![]() |
[70] | Ximerakis M, Lipnick SL, Simmons SK, et al. (2018) Single-cell transcriptomics of the aged mouse brain reveals convergent, divergent and unique aging signatures. bioRxiv 440032. |
[71] |
Zhang Y, Kim MS, Jia B, et al. (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548: 52-57. doi: 10.1038/nature23282
![]() |
[72] |
Kim Y, Karthikeyan K, Chirvi S, et al. (2009) Neuro-optical microfluidic platform to study injury and regeneration of single axons. Lab Chip 9: 2576-2581. doi: 10.1039/b903720a
![]() |
[73] |
Iourov IY, Vorsanova SG, Yurov YB (2012) Single Cell Genomics of the Brain: Focus on Neuronal Diversity and Neu- ropsychiatric Diseases. Curr Genomics 13: 477-488. doi: 10.2174/138920212802510439
![]() |
[74] |
Graff J, Kim D, Dobbin MM, et al. (2011) Epigenetic Regulation of Gene Expression in Physiological and Pathological Brain Processes. Physiol Rev 91: 603-649. doi: 10.1152/physrev.00012.2010
![]() |
[75] |
Faggioli F, Vijg J, Montagna C (2011) Chromosomal aneuploidy in the aging brain. Mech Ageing Dev 132: 429-436. doi: 10.1016/j.mad.2011.04.008
![]() |
[76] |
Yurov YB, Vorsanova SG, Iourov IY (2009) GIN'n'CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet 2: 23. doi: 10.1186/1755-8166-2-23
![]() |
[77] | Kim DW, Washington PW, Wang ZQ, et al. (2019) Single cell RNA-Seq analysis identifies molecular mechanisms controlling hypothalamic patterning and differentiation. bioRxiv 657148. |
[78] |
Song R, Sarnoski EA, Acar M (2018) The Systems Biology of Single-Cell Aging. iScience 7: 154-169. doi: 10.1016/j.isci.2018.08.023
![]() |
[79] |
Coffman JA, Rieger S, Rogers AN, et al. (2016) Comparative biology of tissue repair, regeneration and aging. npj Regen Med 1: 16003. doi: 10.1038/npjregenmed.2016.3
![]() |
[80] |
Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18: 83. doi: 10.1186/s13059-017-1215-1
![]() |
[81] |
Safian MF, Zinn N, Seidler J, et al. (2016) Microquantification of phospholipid classes by stable isotope dilution and nanoESI mass spectrometry. Anal Bioanal Chem 408: 7663-7667. doi: 10.1007/s00216-016-9859-3
![]() |
[82] |
Simmons AJ, Scurrah CR, McKinley ET, et al. (2016) Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks. Sci Signal 9: rs11. doi: 10.1126/scisignal.aah4413
![]() |
[83] |
Ginsberg SD, Che S, Counts SE, et al. (2006) Single cell gene expression profiling in Alzheimer's disease. NeuroRx 3: 302-318. doi: 10.1016/j.nurx.2006.05.007
![]() |
[84] |
Elstner M, Morris CM, Heim K, et al. (2009) Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson's disease gene. Ann Neurol 66: 792-798. doi: 10.1002/ana.21780
![]() |
[85] |
Darmanis S, Sloan SA, Zhang Y, et al. (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci 112: 7285-7290. doi: 10.1073/pnas.1507125112
![]() |
[86] |
Yamada A, Renault R, Chikina A, et al. (2016) Transient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip. Lab Chip 16: 4691-4701. doi: 10.1039/C6LC01143H
![]() |
[87] |
Srikakulapu P, Hu D, Yin C, et al. (2016) Artery Tertiary Lymphoid Organs Control Multilayered Territorialized Atherosclerosis B-Cell Responses in Aged ApoE-/- Mice. Arterioscler Thromb Vasc Biol 36: 1174-1185. doi: 10.1161/ATVBAHA.115.306983
![]() |
[88] |
Winkels H, Ehinger E, Vassallo M, et al. (2018) Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circ Res 122: 1675-1688. doi: 10.1161/CIRCRESAHA.117.312513
![]() |
[89] |
Gladka MM, Molenaar B, de Ruiter H, et al. (2018) Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of Fibroblasts Activation. Circulation 138: 166-180. doi: 10.1161/CIRCULATIONAHA.117.030742
![]() |
[90] |
Jia G, Preussner J, Chen X, et al. (2018) Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun 9: 4877. doi: 10.1038/s41467-018-07307-6
![]() |
[91] |
Ashton MP, Eugster A, Dietz S, et al. (2019) Association of Dendritic Cell Signatures With Autoimmune Inflammation Revealed by Single-Cell Profiling. Arthritis Rheumatol 71: 817-828. doi: 10.1002/art.40793
![]() |
[92] |
Wollny D, Zhao S, Everlien I, et al. (2016) Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas. Dev Cell 39: 289-301. doi: 10.1016/j.devcel.2016.10.002
![]() |
[93] |
Kallionpää H, Somani J, Tuomela S, et al. (2019) Early Detection of Peripheral Blood Cell Signature in Children Developing β-Cell Autoimmunity at a Young Age. Diabetes 68: 2024-2034. doi: 10.2337/db19-0287
![]() |
[94] |
Jin Z, Fan W, Jensen MA, et al. (2017) Single-cell gene expression patterns in lupus monocytes independently indicate disease activity, interferon and therapy. Lupus Sci Med 4: e000202. doi: 10.1136/lupus-2016-000202
![]() |
[95] | O'Gorman WE, Kong DS, Balboni IM, et al. (2017) Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J Autoimmun S0896-8411: 30412-7. |
[96] |
Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517: 293-301. doi: 10.1038/nature14189
![]() |
[97] |
Bedard PL, Hansen AR, Ratain MJ, et al. (2013) Tumour heterogeneity in the clinic. Nature 501: 355-364. doi: 10.1038/nature12627
![]() |
[98] |
Chung W, Eum HH, Lee HO, et al. (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8: 15081. doi: 10.1038/ncomms15081
![]() |
[99] |
Xin Y, Kim J, Ni M, et al. (2016) Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proc Natl Acad Sci U S A 113: 3293-3298. doi: 10.1073/pnas.1602306113
![]() |
[100] |
Gong H, Do D, Ramakrishnan R (2018) Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits. Methods Mol Biol 1783: 193-207. doi: 10.1007/978-1-4939-7834-2_10
![]() |
[101] |
DeLaughter DM (2018) The Use of the Fluidigm C1 for RNA Expression Analyses of Single Cells. Curr Protoc Mol Biol 122: e55. doi: 10.1002/cpmb.55
![]() |
[102] |
Capper D (2012) Addressing Diffuse Glioma as a Systemic Brain Disease With Single-Cell Analysis. Arch Neurol 69: 523. doi: 10.1001/archneurol.2011.2910
![]() |
[103] |
Wang Y, Waters J, Leung ML, et al. (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512: 155-160. doi: 10.1038/nature13600
![]() |
[104] |
Gorgannezhad L, Umer M, Islam MN, et al. (2018) Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. Lab Chip 18: 1174-1196. doi: 10.1039/C8LC00100F
![]() |
[105] |
Burinaru TA, Avram M, Avram A, et al. (2018) Detection of Circulating Tumor Cells Using Microfluidics. ACS Comb Sci 20: 107-126. doi: 10.1021/acscombsci.7b00146
![]() |
[106] |
Islam M, Asghar W, Kim Y (2014) Cell Elasticity-based Microfluidic Label-free Isolation of Metastatic Tumor Cells. J Adv Med Med Res 4: 2129-2140. doi: 10.9734/BJMMR/2014/7392
![]() |
[107] |
Chen W, Weng S, Zhang F, et al. (2013) Nanoroughened Surfaces for E ffi cient Capture of Circulating Tumor Cells without Using Capture Antibodies. ACS Nano 7: 566-575. doi: 10.1021/nn304719q
![]() |
[108] | Islam M, Hasan MR, Sajid A, et al. (2016) Electrical Profiling and Aptamer Functionalized Nanotextured Surface in a Single Biochip for the Detection of Tumor Cells. Funct Nanostruct 13-21. |
[109] |
Shen Y, Nakajima M, Kojima S, et al. (2011) Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter. Meas Sci Technol 22: 115802. doi: 10.1088/0957-0233/22/11/115802
![]() |
[110] |
Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1: E131-138. doi: 10.1038/13043
![]() |
[111] |
Lasky LA, Singer MS, Dowbenko D, et al. (1992) An endothelial ligand for L-Selectin is a novel mucin-like molecule. Cell 69: 927-938. doi: 10.1016/0092-8674(92)90612-G
![]() |
[112] |
Szekanecz Z, Koch AE (2000) Cell-cell interactions in synovitis. Endothelial cells and immune cell migration. Arthritis Res 2: 368-373. doi: 10.1186/ar114
![]() |
[113] |
Okegawa T, Pong RC, Li Y, et al. (2004) The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol 51: 445-457. doi: 10.18388/abp.2004_3583
![]() |
[114] |
Hirohashi S, Kanai Y (2003) Cell adhesion system and human cancer morphogenesis. Cancer Sci 94: 575-581. doi: 10.1111/j.1349-7006.2003.tb01485.x
![]() |
[115] |
Perinpanayagam H, Zaharias R, Stanford C, et al. (2001) Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. J Orthop Res 19: 993-1000. doi: 10.1016/S0736-0266(01)00045-6
![]() |
[116] |
Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6: 1191-1197. doi: 10.1038/ni1276
![]() |
[117] |
Simon SI, Green CE (2005) Molecular Mechanics and Dynamics of Leukocyte Recruitment During Inflammation. Annu Rev Biomed Eng 7: 151-185. doi: 10.1146/annurev.bioeng.7.060804.100423
![]() |
[118] |
Oh KS, Patel H, Gottschalk RA, et al. (2017) Anti-Inflammatory Chromatinscape Suggests Alternative Mechanisms of Glucocorticoid Receptor Action. Immunity 47: 298-309.e5. doi: 10.1016/j.immuni.2017.07.012
![]() |
[119] |
Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interaction induces apoptosis. J Cell Biol 124: 619-626. doi: 10.1083/jcb.124.4.619
![]() |
[120] |
Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272: 177-185. doi: 10.1016/j.canlet.2008.05.029
![]() |
[121] |
Trott DW, Henson GD, Ho MHT, et al. (2018) Age-related arterial immune cell infiltration in mice is attenuated by caloric restriction or voluntary exercise. Exp Gerontol 109: 99-107. doi: 10.1016/j.exger.2016.12.016
![]() |
[122] |
Valencia AMJ, Wu PH, Yogurtcu ON, et al. (2015) Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget 6: 43438-43451. doi: 10.18632/oncotarget.5874
![]() |
[123] |
Helenius J, Heisenberg CP, Gaub HE, et al. (2008) Single-cell force spectroscopy. J Cell Sci 121: 1785-1791. doi: 10.1242/jcs.030999
![]() |
[124] |
Mao S, Zhang Q, Li H, et al. (2018) Measurement of Cell–Matrix Adhesion at Single-Cell Resolution for Revealing the Functions of Biomaterials for Adherent Cell Culture. Anal Chem 90: 9637-9643. doi: 10.1021/acs.analchem.8b02653
![]() |
[125] |
Kwon KW, Choi SS, Lee SH, et al. (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7: 1461-1468. doi: 10.1039/b710054j
![]() |
[126] |
de Wit J, Ghosh A (2015) Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci 17: 4. doi: 10.1038/nrn.2015.3
![]() |
[127] |
Speicher MR (2013) Single-cell analysis: toward the clinic. Genome Med 5: 74. doi: 10.1186/gm478
![]() |
[128] |
Xie Y, Nama N, Li P, et al. (2016) Probing Cell Deformability via Acoustically Actuated Bubbles. Small 12: 902-910. doi: 10.1002/smll.201502220
![]() |
[129] |
Shaffer SM, Dunagin MC, Torborg SR, et al. (2017) Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546: 431-435. doi: 10.1038/nature22794
![]() |
[130] |
Yuan GC, Cai L, Elowitz M, et al. (2017) Challenges and emerging directions in single-cell analysis. Genome Biol 18: 84. doi: 10.1186/s13059-017-1218-y
![]() |
[131] |
Hayes J, Thygesen H, Tumilson C, et al. (2015) Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature. Mol Oncol 9: 704-714. doi: 10.1016/j.molonc.2014.11.004
![]() |
[132] |
Goldstein LD, Chen YJJ, Dunne J, et al. (2017) Massively parallel nanowell-based single-cell gene expression profiling. BMC Genomics 18: 519. doi: 10.1186/s12864-017-3893-1
![]() |
[133] |
Aytes A, Mitrofanova A, Lefebvre C, et al. (2014) Cross-Species Regulatory Network Analysis Identifies a Synergistic Interaction between FOXM1 and CENPF that Drives Prostate Cancer Malignancy. Cancer Cell 25: 638-651. doi: 10.1016/j.ccr.2014.03.017
![]() |
[134] |
Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5: 1259-1272. doi: 10.1039/C2NR32554C
![]() |
[135] |
Yamanaka YJ, Szeto GL, Gierahn TM, et al. (2012) Cellular Barcodes for Efficiently Profiling Single-Cell Secretory Responses by Microengraving. Anal Chem 84: 10531-10536. doi: 10.1021/ac302264q
![]() |
[136] |
Song R, Acar M (2019) Stochastic modeling of aging cells reveals how damage accumulation, repair, and cell-division asymmetry affect clonal senescence and population fitness. BMC Bioinformatics 20: 391. doi: 10.1186/s12859-019-2921-3
![]() |
[137] |
Bressloff PC, Newby JM (2013) Stochastic models of intracellular transport. Rev Mod Phys 85: 135-196. doi: 10.1103/RevModPhys.85.135
![]() |
[138] |
Ribeiro RDC, Pal D, Jamieson D, et al. (2017) Temporary Single-Cell Coating for Bioprocessing with a Cationic Polymer. ACS Appl Mater Interfaces 9: 12967-12974. doi: 10.1021/acsami.6b16434
![]() |
[139] |
Kharchenko PV, Silberstein L, Scadden DT (2014) Bayesian approach to single-cell differential expression analysis. Nat Methods 11: 740-742. doi: 10.1038/nmeth.2967
![]() |