Citation: Paul Daniel Phillips, Timothy Andersen, Owen M. McDougal. Assessing the utility and limitations of high throughput virtual screening[J]. AIMS Molecular Science, 2016, 3(2): 238-245. doi: 10.3934/molsci.2016.2.238
[1] | Deng W, Verlinde C (2008) Evaluation of Different Virtual Screening Programs for Docking in a Charged Binding Pocket. J Chem Inf Model 48: 2010-2020. doi: 10.1021/ci800154w |
[2] | Klebe G (2008) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11: 580-594. doi: 10.1016/j.drudis.2006.05.012 |
[3] | Lavecchia A, Cerchia C (2016) In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today 21: 288-298. doi: 10.1016/j.drudis.2015.12.007 |
[4] | Jacob RB, Bullock CW, Andersen T, et al. (2011) DockoMatic: Automated Peptide Analog Creation for High Throughput Virtual Screening. J Comput Chem 32: 2936-2941. doi: 10.1002/jcc.21864 |
[5] | Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303: 1813-1818. doi: 10.1126/science.1096361 |
[6] | Clark DE (2008) What has virtual screening ever done for drug discovery? Expert Opin Drug Discov 3: 841-851. doi: 10.1517/17460441.3.8.841 |
[7] | Liu LJ, Leung KH, Chan DSH, et al. (2014) Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening. Cell Death Dis 5: 96-104. doi: 10.1038/cddis.2014.250 |
[8] | Ma DL, Chan DSH, Lee P, et al. (2011) Molecular modeling of drug-DNA interactions: Virtual screening to structure-based design. Biochimie 93: 1252-1266. doi: 10.1016/j.biochi.2011.04.002 |
[9] | Brenk R, Schipani A, James D, et al. (2008) Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. Chemmedchem 3: 435-444. doi: 10.1002/cmdc.200700139 |
[10] | Ma DL, Chan DSH, Wei G, et al. (2014) Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library. Chem Commun 50: 13885-13888. doi: 10.1039/C4CC04498C |
[11] | Ma DL, Lai TS, Chan FY, et al. (2008) Discovery of a drug-like G-quadruplex binding ligand by high-throughput docking. Chemmedchem 3: 881-884. doi: 10.1002/cmdc.200700342 |
[12] | Ma DL, Chan DSH, Leung CH (2014) Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications. Acc Chem Res 47: 3614-3631. doi: 10.1021/ar500310z |
[13] | Sambasivarao SV, Roberts J, Bharadwaj VS, et al. (2014) Acetylcholine Promotes Binding of alpha-Conotoxin MII at alpha(3)beta(2) Nicotinic Acetylcholine Receptors. Chembiochem 15: 413-424. doi: 10.1002/cbic.201300577 |
[14] | Cartier GE, Yoshikami DJ, Gray WR, et al. (1996) A new alpha-conotoxin which targets alpha 3 beta 2 nicotinic acetylcholine receptors. J Biol Chem 271: 7522-7528. doi: 10.1074/jbc.271.13.7522 |
[15] | Berman HM, Westbrook J, Feng Z, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28: 235-242. doi: 10.1093/nar/28.1.235 |
[16] | Shon KJ, Koerber SC, Rivier JE, et al. (1997) Three-dimensional solution structure of alpha-conotoxin MII, an alpha(3)beta(2) neuronal nicotinic acetylcholine receptor-targeted ligand. Biochemistry 36: 15693-15700. doi: 10.1021/bi971443r |
[17] | Hill JM, Oomen CJ, Miranda LP, et al. (1998) Three-dimensional solution structure of alpha-conotoxin MII by NMR spectroscopy: Effects of solution environment on helicity. Biochemistry 37: 15621-15630. doi: 10.1021/bi981535w |
[18] | Turner M, Eidemiller S, Martin B, et al. (2009) Structural basis for α-conotoxin potency and selectivity. Bioorg Med Chem 17: 5894-5899. doi: 10.1016/j.bmc.2009.07.005 |
[19] | McDougal OM, Granum DM, Swartz M, et al. (2013) pKa Determination of Histidine Residues in α-Conotoxin MII Peptides by 1H NMR and Constant pH Molecular Dynamics Simulation. J Physic Chem B 117: 2653-2661. doi: 10.1021/jp3117227 |
[20] | Armishaw CJ (2010) Synthetic alpha-Conotoxin Mutants as Probes for Studying Nicotinic Acetylcholine Receptors and in the Development of Novel Drug Leads. Toxins 2: 1471-1499. doi: 10.3390/toxins2061471 |
[21] | Azam L, McIntosh JM (2009) Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacol Sin 30: 771-783. doi: 10.1038/aps.2009.47 |
[22] | Bordia T, Grady SR, McIntosh JM, et al. (2007) Nigrostriatal damage preferentially decreases a subpopulation of α6β2 nAChRs in mouse, monkey, and Parkinson's disease striatum. Mol Pharmacol 72: 52-61. doi: 10.1124/mol.107.035998 |
[23] | McIntosh JM, Azam L, Staheli S, et al. (2004) Analogs of α-Conotoxin MII Are Selective for α6-Containing Nicotinic Acetylcholine Receptors. Mol Pharmacol 65: 944-952. doi: 10.1124/mol.65.4.944 |
[24] | Bullock C, Cornia N, Jacob R, et al. (2013) DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling. J Chem Inf Model 53: 2161-2170. doi: 10.1021/ci400047w |
[25] | McDougal OM, Cornia N, Sambasivarao SV, et al. (2014) Homology Modeling and Molecular Docking for the Science Curriculum. Biochem Mol Biol Educ 42: 179-182. doi: 10.1002/bmb.20767 |
[26] | Cavasotto CN, Singh N (2008) Docking and high throughput docking: Successes and the challenge of protein flexibility. Curr Comput-Aided Drug Des 4: 221-234. doi: 10.2174/157340908785747474 |
[27] | Trott O, Olson AJ (2010) Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem 31: 455-461. doi: 10.1002/jcc.21334 |
[28] | Kufareva I, Handel TM, Abagyan R (2015) Experiment-guided Molecular Modeling of Protein-Protein Complexes Involving GPCRs. Methods Mol Biol 1335: 295-311. doi: 10.1007/978-1-4939-2914-6_19 |