Research article

$ \mathcal{H} $-representation method for solving reduced biquaternion matrix equation

  • Received: 15 December 2021 Revised: 03 March 2022 Accepted: 15 March 2022 Published: 27 June 2022
  • In this paper, we study the Hankel and Toeplitz solutions of reduced biquaternion matrix equation (1.1). Using semi-tensor product of matrices, the reduced biquaternion matrix equation (1.1) can be transformed into a general matrix equation of the form $ AX = B $. Then, due to the special structure of Hankel matrix and Toeplitz matrix, the independent elements of Hankel matrix or Toeplitz matrix can be extracted by combing the $ \mathcal{H} $-representation method of matrix, so as to reduce the elements involved in the operation in the process of solving matrix equation and reduce the complexity of the problem. Finally, by using Moore-Penrose generalized inverse, the necessary and sufficient conditions for the existence of solutions of reduced biquaternion matrix equation (1.1) are given, and the corresponding numerical examples are given.

    Citation: Xueling Fan, Ying Li, Wenxv Ding, Jianli Zhao. $ \mathcal{H} $-representation method for solving reduced biquaternion matrix equation[J]. Mathematical Modelling and Control, 2022, 2(2): 65-74. doi: 10.3934/mmc.2022008

    Related Papers:

  • In this paper, we study the Hankel and Toeplitz solutions of reduced biquaternion matrix equation (1.1). Using semi-tensor product of matrices, the reduced biquaternion matrix equation (1.1) can be transformed into a general matrix equation of the form $ AX = B $. Then, due to the special structure of Hankel matrix and Toeplitz matrix, the independent elements of Hankel matrix or Toeplitz matrix can be extracted by combing the $ \mathcal{H} $-representation method of matrix, so as to reduce the elements involved in the operation in the process of solving matrix equation and reduce the complexity of the problem. Finally, by using Moore-Penrose generalized inverse, the necessary and sufficient conditions for the existence of solutions of reduced biquaternion matrix equation (1.1) are given, and the corresponding numerical examples are given.



    加载中


    [1] S. Adler, Scattering and decay theory for quaternionic quantum mechanics and structure of induced t nonconservation, Phys. Rev. D, 37 (1988), 3654–3662. https://doi.org/10.1103/PhysRevD.37.3654 doi: 10.1103/PhysRevD.37.3654
    [2] N. Bihan, S. Sangwine, Color image decomposition using quaternion singular value decomposition, International Conference on Visual Information Engineering (VIE 2003). Ideas, Applications, Experience, (2003), 113–116. https://doi.org/10.1049/cp:20030500 doi: 10.1049/cp:20030500
    [3] C. Moxey, S. Sangwine, T. A. Ell, Hypercomplex Correlation Techniques for Vector Images, IEEE T. Signal Proces., 51 (2003), 1941–1953. https://doi.org/10.1109/TSP.2003.812734 doi: 10.1109/TSP.2003.812734
    [4] F. Caccavale, C. Natale, B. Siciliano, L. Villani, Six-DOF impedance control based on angle/axis representations, IEEE Transactions on Robotics and Automation, 15 (1999), 289–300. https://doi.org/10.1109/70.760350 doi: 10.1109/70.760350
    [5] C. Khatri, S. Mitra, Hermitian and Nonnegative Definite Solutions of Linear Matrix Equations, SIAM J. Appl. Math., 31 (1976), 579–585. https://doi.org/10.1137/0131050 doi: 10.1137/0131050
    [6] W. Wang, C. Song, Iterative algorithms for discrete-time periodic Sylvester matrix equations and its application in antilinear periodic system, Appl. Numer. Math., 168 (2021), 251–273. https://doi.org/10.1016/j.apnum.2021.06.006 doi: 10.1016/j.apnum.2021.06.006
    [7] M. Dehghan, A. Shirilord, On the Hermitian and Skew-Hermitian splitting-like iteration approach for solving complex continuous-time algebraic Riccati matrix equation, Appl. Numer. Math., 170 (2021), 109–127. https://doi.org/10.1016/j.apnum.2021.07.001 doi: 10.1016/j.apnum.2021.07.001
    [8] S. Yuan, A. Liao, Y. Lei, Least squares Hermitian solution of the matrix equation $(AXB, CXD) = (E, F)$ with the least norm over the skew field of quaternions, Math. Comput. Model., 48 (2007), 91–100.
    [9] D. Wang, Y. Li, W. Ding, The least squares Bisymmetric solution of quaternion matrix equation $AXB = C$, AIMS Mathematics, 6 (2021), 13247–13257. https://doi.org/10.3934/math.2021766 doi: 10.3934/math.2021766
    [10] F. Zhang, M. Wei, Y. Li, J. Zhao, Special least squares solutions of the quaternion matrix equation $AX = B$ with applications, Appl. Math. Comput., 270 (2015), 425–433. https://doi.org/10.1016/j.amc.2015.08.046 doi: 10.1016/j.amc.2015.08.046
    [11] M. Xu, Y. Wang, A. Wei, Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling, Journal of Control Theory and Applications, 12 (2014), 187–197. https://doi.org/10.1007/s11768-014-0153-7 doi: 10.1007/s11768-014-0153-7
    [12] D. Cheng, J. Feng, H. Lv, Solving Fuzzy Relational Equations Via Semitensor Product, IEEE T. Fuzzy Syst., 20 (2012), 390–396. https://doi.org/10.1109/TFUZZ.2011.2174243 doi: 10.1109/TFUZZ.2011.2174243
    [13] D. Wang, Y. Li, W. Ding, A new method based on semi-tensor product of matrices for solving Generalized Lyapunov Equation on the quaternion skew-filed, Proceedings of the 40th Chinese Control Conference (1), (2021), 177–182.
    [14] W. Ding, Y. Li, D. Wang, A. Wei, Constrainted least squares solution of Sylvester equation, Mathematical Modelling and Control, 1 (2021), 112–120. https://doi.org/10.3934/mmc.2021009 doi: 10.3934/mmc.2021009
    [15] Y. Zhao, Y. Li, J. Zhao, D. Wang, The minimal norm least squares tridiagonal(Anti-)Hermitian solution of the quaternion Stein equation, Proceedings of the 40th Chinese Control Conference (1), (2021), 200–205.
    [16] H. Schutte, J. Wenzel, Hypercomplex Numbers in Digital Signal Processing, IEEE International Symposium on Circuits and Systems, 2 (1990), 1557–1560.
    [17] K. Ueda, S. Takahashi, Digital filters with hypercomplex coefficients, Electronics and Communications in Japan (Part Ⅲ: Fundamental Electronic Science), 76 (1993), 85–98. https://doi.org/10.1002/ecjc.4430760909 doi: 10.1002/ecjc.4430760909
    [18] V. Dimitrov, T. Cooklev, B. Donevsky, On the multiplication of reduced biquaternions and applications, Inform. Process. Lett., 43 (1992), 161–164. https://doi.org/10.1016/0020-0190(92)90009-K doi: 10.1016/0020-0190(92)90009-K
    [19] C. Davenport, A communitative hypercomplex algebra with associated function theory, In Clifford Algebra With Numeric and Symbolic Computations, (1996), 213–227. https://doi.org/10.1007/978-1-4615-8157-4_14 doi: 10.1007/978-1-4615-8157-4_14
    [20] S. Pei, J. Chang, J. Ding, Commutative reduced biquaternions and their Fourier transform for signal and image processing applications, IEEE T. Signal Proces., 52 (2004), 2012–2031. https://doi.org/10.1109/TSP.2004.828901 doi: 10.1109/TSP.2004.828901
    [21] S. Pei, J. Chang, J. Ding, et al, Eigenvalues and Singular Value Decompositions of Reduced Biquaternion Matrices, IEEE T. Circuits-I, 55 (2008), 2673–2685. https://doi.org/10.1109/TCSI.2008.920068 doi: 10.1109/TCSI.2008.920068
    [22] H. Hidayet, Least-squares solutions of the reduced biquaternion matrix equation $AX = B$ and their applications in colour image restoration, J. Mod. Optic., 66 (2019), 1802–1810. https://doi.org/10.1080/09500340.2019.1676474 doi: 10.1080/09500340.2019.1676474
    [23] R. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. https://doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474
    [24] K. Michael, Iterative Methods for Toeplitz Systems, Oxford University Press, Oxford, 2004.
    [25] G. Gelli, L. Izzo, Minimum-Redundancy Linear Arrays for Cyclostationarity-Based Source Location, IEEE T. Signal Proces., 45 (1997), 2605–2608. https://doi.org/10.1109/78.640730 doi: 10.1109/78.640730
    [26] D. Cheng, H. Qi, A. Xue, A Survey on Semi-Tensor Product of Matrices, Journal of Systems Science and Complexity, 20 (2007), 304–322. https://doi.org/10.1007/s11424-007-9027-0 doi: 10.1007/s11424-007-9027-0
    [27] D. Cheng, H. Qi, Z. Liu, From STP to game-based control, Sci. China Inform. Sci., 61 (2018), 1–19. https://doi.org/10.1007/s11432-017-9265-2 doi: 10.1007/s11432-017-9265-2
    [28] D. Li, H. Liu, J. Zhang, J. Zhao, Application of left semi tensor product in matrix equation Practice and understanding of mathematics, J. Am. Math. Soc., 51 (2021), 219–224.
    [29] W. Zhang, B. Chen, H-Representation and Applications to Generalized Lyapunov Equations and Linear Stochastic Systems, IEEE T. Automat. Contr., 57 (2012), 3009–3022. https://doi.org/10.1109/TAC.2012.2197074 doi: 10.1109/TAC.2012.2197074
    [30] A. Israel, Generalized inverses: theory and applications, 3 Eds., New York: Springer, 2003.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1313) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog