Research article Special Issues

Efficient implementation of the hybridized Raviart-Thomas mixed method by converting flux subspaces into stabilizations

  • Received: 07 September 2023 Revised: 11 December 2023 Accepted: 28 February 2024 Published: 11 March 2024
  • We show how to reduce the computational time of the practical implementation of the Raviart-Thomas mixed method for second-order elliptic problems. The implementation takes advantage of a recent result which states that certain local subspaces of the vector unknown can be eliminated from the equations by transforming them into stabilization functions; see the paper published online in JJIAM on August 10, 2023. We describe in detail the new implementation (in MATLAB and a laptop with Intel(R) Core (TM) i7-8700 processor which has six cores and hyperthreading) and present numerical results showing 10 to 20% reduction in the computational time for the Raviart-Thomas method of index $ k $, with $ k $ ranging from 1 to 20, applied to a model problem.

    Citation: Sreevatsa Anantharamu, Bernardo Cockburn. Efficient implementation of the hybridized Raviart-Thomas mixed method by converting flux subspaces into stabilizations[J]. Mathematics in Engineering, 2024, 6(2): 221-237. doi: 10.3934/mine.2024010

    Related Papers:

  • We show how to reduce the computational time of the practical implementation of the Raviart-Thomas mixed method for second-order elliptic problems. The implementation takes advantage of a recent result which states that certain local subspaces of the vector unknown can be eliminated from the equations by transforming them into stabilization functions; see the paper published online in JJIAM on August 10, 2023. We describe in detail the new implementation (in MATLAB and a laptop with Intel(R) Core (TM) i7-8700 processor which has six cores and hyperthreading) and present numerical results showing 10 to 20% reduction in the computational time for the Raviart-Thomas method of index $ k $, with $ k $ ranging from 1 to 20, applied to a model problem.



    加载中


    [1] D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19 (1985), 7–32. https://doi.org/10.1051/m2an/1985190100071 doi: 10.1051/m2an/1985190100071
    [2] Y. Chen, T. A. Davis, W. W. Hager, S. Rajamanickam, Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Software, 35 (2008), 1–14. https://doi.org/10.1145/1391989.1391995 doi: 10.1145/1391989.1391995
    [3] B. Cockburn, Static condensation, hybridization, and the devising of the HDG methods, In: G. Barrenechea, F. Brezzi, A. Cangiani, E. Georgoulis, Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Cham: Springer, 114 (2016), 129–177. https://doi.org/10.1007/978-3-319-41640-3_5
    [4] B. Cockburn, Discontinuous Galerkin methods for computational fluid dynamics, In: E. Stein, R. de Borst, T. J. R. Hughes, Encyclopedia of computational mechanics, 2 Eds., John Wiley & Sons, Ltd., 5 (2018), 141–203. https://doi.org/10.1002/9781119176817.ecm2053
    [5] B. Cockburn, Hybridizable discontinuous Galerkin methods for second-order elliptic problems: overview, a new result and open problems, Japan J. Indust. Appl. Math., 40 (2023), 1637–1676. https://doi.org/10.1007/s13160-023-00603-9 doi: 10.1007/s13160-023-00603-9
    [6] B. Cockburn, G. Fu, Superconvergence by $M$-decompositions. Part Ⅱ: Construction of two-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51 (2017), 165–186. https://doi.org/10.1051/m2an/2016016 doi: 10.1051/m2an/2016016
    [7] B. Cockburn, G. Fu, Superconvergence by $M$-decompositions. Part Ⅲ: Construction of three-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51 (2017), 365–398. https://doi.org/10.1051/m2an/2016023 doi: 10.1051/m2an/2016023
    [8] B. Cockburn, G. Fu, A systematic construction of finite element commuting exact sequences, SIAM J. Numer. Anal., 55 (2017), 1650–1688. https://doi.org/10.1137/16M1073352 doi: 10.1137/16M1073352
    [9] B. Cockburn, G. Fu, F. J. Sayas, Superconvergence by $M$-decompositions. Part Ⅰ: General theory for HDG methods for diffusion, Math. Comp., 86 (2017), 1609–1641. https://doi.org/10.1090/mcom/3140 doi: 10.1090/mcom/3140
    [10] B. Cockburn, G. Fu, K. Shi, An introduction to the theory of $M$-decompositions, In: D. Di Pietro, A. Ern, L. Formaggia, Numerical methods for PDEs, Cham: Springer, 15 (2018), 5–29. https://doi.org/10.1007/978-3-319-94676-4_2
    [11] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), 1319–1365. https://doi.org/10.1137/070706616 doi: 10.1137/070706616
    [12] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput., 6 (1991), 345–390. https://doi.org/10.1007/BF01060030 doi: 10.1007/BF01060030
    [13] P. A. Raviart, J. M. Thomas, A mixed finite element method for second order elliptic problems, In: I. Galligani, E. Magenes, Mathematical aspects of finite element method, Lecture Notes in Mathematics, Springer, 606 (1977), 292–315. https://doi.org/10.1007/BFb0064470
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(929) PDF downloads(242) Cited by(0)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog