
https://www.aimspress.com/journal/mine

Mathematics in Engineering, 6(2): 221–237.
DOI:10.3934/mine.2024010
Received: 07 September 2023
Revised: 11 December 2023
Accepted: 28 February 2024
Published: 11 March 2024

Research article

Efficient implementation of the hybridized Raviart-Thomas mixed method
by converting flux subspaces into stabilizations†

Sreevatsa Anantharamu1 and Bernardo Cockburn2,*

1 Senior Applications Engineer, X-ScaleSolutions, LLC, USA
2 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

† This contribution is part of the Special Issue: Advancements in Polytopal Element Methods
Guest Editors: Michele Botti; Franco Dassi; Lorenzo Mascotto; Ilario Mazzieri
Link: www.aimspress.com/mine/article/6538/special-articles

* Correspondence: Email: bcockbur@umn.edu; Tel: +16126252587.

Abstract: We show how to reduce the computational time of the practical implementation of
the Raviart-Thomas mixed method for second-order elliptic problems. The implementation takes
advantage of a recent result which states that certain local subspaces of the vector unknown can
be eliminated from the equations by transforming them into stabilization functions; see the paper
published online in JJIAM on August 10, 2023. We describe in detail the new implementation
(in MATLAB and a laptop with Intel(R) Core (TM) i7-8700 processor which has six cores and
hyperthreading) and present numerical results showing 10 to 20% reduction in the computational time
for the Raviart-Thomas method of index k, with k ranging from 1 to 20, applied to a model problem.

Keywords: mixed methods; hybridization; static condensation; mixed methods; hybridizable
discontinuous Galerkin methods

1. Introduction

Let us begin by noting that the title of the paper contains both words: ‘mixed methods’ and
‘stabilization’. At first glance, this might appear to be a technical error since mixed methods do not
need stabilization since stability is directly ensured by the choice of their function spaces. However,
this is not an error. In a recent paper, [5], one of the authors showed how a portion of the flux space of
any hybridized mixed method can be recast as a stabilization of a equivalent hybridizable discontinuous
Galerkin (HDG) methods. By equivalent, we mean that the original hybridized mixed method and the
new HDG methods result in exactly the same solution. In this paper, we show that the implementation

https://www.aimspress.com/journal/mine
https://dx.doi.org/10.3934/mine.2024010
www.aimspress.com/mine/article/6538/special-articles

222

of the equivalent HDG method is faster than that of original hybridized mixed method. We carry out
this for two equivalent HDG methods.

We apply this implementation procedure to a particular mixed method, namely, the Raviart-Thomas
(RT) method [13] in symplexes for two reasons. The first is that its extension to any other mixed (or
HDG) method defined on polytopal meshes is particularly straightforward* The second reason is that,
if this procedure does not work on a simple mixed method, it is very unlikely it would have a chance
to work on more sophisticated mixed methods on polytopal meshes. In other words, we consider the
material presented here as a necessary stepping stone towards the treatment of the cases of mixed and
HDG methods defined in general polytopes.

The paper is organized as follows. In Section 2, we describe how to obtain an HDG method from
a hybridized mixed method, we follow [5]. In Section 3, we describe in full detail the implementation
of the hybridized RT method. We then do the same for two equivalent HDG methods. In Section 4, we
display our numerical results. We end with some concluding remarks. We use the standard notation
used for HDG methods, see, for example, [4, 5].

2. Background

2.1. Subspace-to-stabilization.

For the sake of completeness, we begin by summarizing the subspace-to-stabilization result [5,
Section 5]. Consider the Poisson problem:

cq = − ∇u, in Ω, and
∇ · q = f , in Ω,

(2.1)

with the boundary condition that u = uD on the boundary ∂Ω. Here, c is the coefficient, f is the source
term and uD is the Dirichlet boundary data. In this paper, we consider the case c = Id. The method
can be easily generalized to arbitrary symmetric positive definite tensor fields c. The hybridized mixed
method formulation for this problem is as follows: For each element K of the mesh, find qh and uh

belonging to the local function spaces V(K) and W(K), respectively, such that:

(qh, v)K − (uh,∇ · v)K = − 〈ûh, v · n〉∂K ,

(∇ · qh,w)K =(f ,w)K ,
(2.2)

for all test functions v and w belonging to the local function spaces V(K) and W(K), respectively. The
above equations are referred to as the ‘local problem’. Here, ûh is an approximation to u on the faces
of the triangulation and is a data to the above problem. The additional equations for this face variable
are:

〈q+
h · n

+ + q−h · n
−, µ〉FI =0, for all µ ∈ Mh(FI),
〈ûh, µ〉FD =〈uD, µ〉FD , for all µ ∈ Mh(FD),

(2.3)

where FI is each interior face of the mesh, FD is each Dirichlet boundary face of the mesh and Mh(F)
is the local function space on face F. The above equations are referred to as the ‘global problem’.

*How to define mixed methods for polyhedral elements has been shown in the series of papers on M-decompositions [6, 7, 9] and on
new commuting diagrams [8]. See also the review [10] and the references therein.

Mathematics in Engineering Volume 6, Issue 2, 221–237.

223

Split V(K) into Vs(K) ⊕ Va(K). Here, Vs(K) is the subspace of V(K) that will be converted into
stabilization and Va(K) is the subspace of V(K) that will be used to define the local problem of the
equivalent HDG method. Their exact definition is deferred until later. This splitting converts the local
problem (Eq (2.2)) into:

((qa + qs) , va)K − (uh,∇ · va)K = − 〈ûh, va · n〉∂K ,

((qa + qs) , vs)K − (uh,∇ · vs)K = − 〈ûh, vs · n〉∂K ,

(∇ · (qa + qs) ,w)K =(f ,w)K ,

for all test functions va, vs, and w in the local function spaces Va(K), Vs(K), and W(K), respectively.
Requiring the functions in Va(K) and Vs(K) to be orthogonal to each other in the (·, ·)K inner-product,
we obtain:

(qa, va)K − (uh,∇ · va)K = − 〈ûh, va · n〉∂K ,

(qs, vs)K − (uh,∇ · vs)K = − 〈ûh, vs · n〉∂K ,

(∇ · (qa + qs) ,w)K =(f ,w)K .

(2.4)

Integrating the second equation by parts and requiring Vs(K) to be any subspace of V(K) that is L2(K)-
orthogonal to ∇W(K) yields

(qs, vs)K = 〈uh − ûh, vs · n〉∂K . (2.5)

Note that in the above equation, qs (which is the portion of q in the subspace Vs(K)) depends solely on
the jump uh − ûh on the faces of the element. Observe that the appearance of the term uh − ûh has some
similarity to the flux stabilization τ(uh − ûh) that is used in a HDG method (note that (τ(·) here is a
linear-mapping that satisfies certain requirements). This similarity is exploited to define a stabilization
function τ(uh− ûh) for the HDG method that is equivalent to the above hybridized mixed method below.

Based on the form of Eq (2.5), let us define LVs to be the local lifting operator that maps a function
µ in the space L2(∂K) to the function LVs(µ) in the space Vs(K) as:

(LVs(µ), vs)K = 〈µ, vs · n〉∂K , (2.6)

for all test functions vs in the local space Vs(K). Then, qs = LVs(uh − ûh), where by LVs(uh), we mean
LVs(uh|∂K). Moreover, the hybridized mixed method in Eq (2.4) can be manipulated to the following
HDG method for the portion qa of the flux approximation and the full scalar approximation uh: Find
qa and uh in the local function spaces Va(K) and W(K), respectively, such that:

(qa, va)K − (uh,∇ · va)K = −〈ûh, va · n〉∂K ,

−(qa,∇w)K + 〈qh · n,w〉∂K = (f ,w)K , and
qh · n = qa · n + τ(uh − ûh),

(2.7)

where the stabilization function τ(·) is defined using the lifting operator as: τ(uh− ûh) = n·LVs(uh− ûh).
The global problem of the HDG method is same as the one in Eq (2.3).

The flux approximation qh of the hybridized mixed method in Eq (2.2) is then obtained from the
above HDG method as qh = qa + LVs(uh − ûh). Thus, the effect of the local space Vs(K) is fully
encapsulated in the defined stabilization function τ via the lifting operator LVs . This is the crux of the
‘spaces-to-stabilization’ idea.

Mathematics in Engineering Volume 6, Issue 2, 221–237.

224

In summary, the conditions on the local spaces Va(K) and Vs(K) are that:

Vs(K) should be any subspace of V(K) that is L2-orthogonal to ∇W(K),
Va(K) should be the remaining portion of V(K) that is orthogonal to Vs(K)
in the (·, ·)K inner-product.

(2.8)

The former and latter conditions above were used to obtain the Eqs (2.5) and (2.4), respectively.

2.2. The equivalent hybridizable discontinuous Galerkin method after static condensation

Similar to other HDG methods, the degrees of freedom corresponding to qa and uh can be statically
condensed to yield a globally-coupled problem just for the degrees of freedom corresponding to the
face variable ûh as follows. The local problem for the equivalent HDG method given in Eq (2.7) can
be shown to be equal to the following local problem:

Find qa and uh in the local function spaces Va(K) and W(K), respectively, such that

(qa, va)K − (uh,∇ · va)K = − 〈ûh, va · n〉∂K ,

(∇ · qa,w)K + (LVs (uh) , LVs (w))K =(f ,w)K + (LVs (ûh) , LVs (w))K ,
(2.9)

for all test functions va and w in the local function spaces Va(K) and W(K), respectively. The influence
of ûh and f on (qa, uh) can be separated as (qa, uh) = (Qûh ,Uûh) + (Q f ,U f). Here, (Qûh ,Uûh) is the
solution to the following problem with µ = ûh:

Find Qµ and Uµ in the local function spaces Va(K) and W(K), respectively, such that:

(Qµ, va)K − (Uµ,∇ · va)K = −〈µ, va · n〉∂K ,

(∇ · Qµ,w)K + (LVs

(
Uµ

)
, LVs (w))K = (LVs (µ) , LVs (w))K ,

(2.10)

for all test functions va and w in the local function spaces Va(K) and W(K), respectively. (Q f ,U f) is
the solution to the problem:

Find Q f and U f in the local function spaces Va(K) and W(K), respectively, such that:

(Q f , va)K − (U f ,∇ · va)K =0,

(∇ · Q f ,w)K + (LVs

(
U f

)
, LVs (w))K =(f ,w)K ,

(2.11)

for all test functions va and w in the local function spaces Va(K) and W(K), respectively.
Using the above decomposition, we can show that the equation for ûh given in Eq (2.3) is equal to

the following problem:
Find ûh belonging to the global function space Mh such that:∑

K

(Qûh ,Qµ)K +
∑

K

(LVs(Uûh − ûh), LVs(Uµ − µ))K =
∑

K

(f ,Uµ)K , ∀µ ∈ Mh(FI),

〈ûh, µ〉FD =〈uD, µ〉FD , ∀µ ∈ Mh(FD),
(2.12)

for each interior face FI and Dirichlet boundary face FD of the triangulation. Here, the global function
space Mh is the set of functions in L2(F), where F is the union of all faces F in the mesh, and the
restriction of Mh on face F is Mh(F).

Mathematics in Engineering Volume 6, Issue 2, 221–237.

225

3. Implementations of the hybridized Raviart-Thomas mixed method

We use this subspace-to-stabilization idea to come up with two new implementations of the
hybridized RT mixed method. Each implementation stems from a different choice of the subspace
Vs(K). We note that for the usual hybridized RT method, the local spaces V(K), W(K) and Mh(F) are:

V(K) = [Pk(K)]d ⊕ xP̃k(K), W(K) = Pk(K) and Mh(F) = Pk(F).

Here, Pk(K) denotes the space polynomials of degree k defined on K, P̃k(K) denotes the space of
homogeneous polynomials of degree k defined on K and d is the spatial dimension of the problem.
Table 1 shows the three choices of Vs(K) and the name of the implementation that stems from each of
these choices.

Table 1. The different implementations of the hybridized RT method. Note that V(1)
s (K)

is the largest subspace of V that is L2-orthogonal to [Pk(K)]d, and that V(2)
s (K) is of the

form V(1)
s (K) ⊕ V(3)(K) where V(3)(K) is the subspace of polynomials in [Pk(K)]d that are

L2-orthogonal to [Pk−1(K)]d.

Implementation Vs(K) Notes Va(K)

Usual-HRT ∅ Usual [Pk(K)]d ⊕ xP̃k(K)

Stab-1-HRT V(1)
s (K) New [Pk(K)]d

Stab-2-HRT V(2)
s (K) New [Pk−1(K)]d

The implementation Usual-HRT is the usual implementation of the hybridized RT method, see [1].
This stems from the choice Vs(K) = ∅ (the empty set). The implementations Stab-1-HRT and Stab-
2-HRT are the two new implementations proposed in this paper. The new implementation Stab-1-
HRT stems from the choice Vs(K) = V(1)

s (K), where V(1)
s (K) is the largest subspace of V(K) that is

L2−orthogonal to [Pk(K)]d. The other new implementation V(2)
s (K) stems from choosing Vs(K) =

V(2)
s (K), where V(2)

s (K) is the space V(2)
s (K) plus the vector-valued polynomials in [Pk(K)]d that are

L2-orthogonal to [Pk−1(K)]d.
For each of these implementations, the local space Va(K) is the (·, ·)K-orthogonal complement

of Vs(K) within V(K). The space Va(K) for the Usual-HRT, Stab-1-HRT, and Stab-2-HRT
implementation is [Pk(K)]d + xPk(K), [Pk(K)]d, and [Pk−1(K)]d, respectively. The details of each of
these implementations are given next.

3.1. Usual-HRT (usual)

The details of the Usual-HRT implementation are given below.

3.1.1. Basis

In the Usual-HRT implementation, the space Va(K) equals [Pk(K)]d⊕xP̃k(K). We use the following
basis functions for this space in each element K:

ϕ(K)
1 , . . . ,ϕ(K)

n .

Mathematics in Engineering Volume 6, Issue 2, 221–237.

226

Here, n = dm+m′, where m = Ck+d−1
d , m′ = Ck+d−1

d−1 and Cb
a is the binomial coefficient b!/(a!(b−a)!). The

first dm basis functions ϕ(K)
1 , . . . ,ϕ(K)

dm correspond to the [Pk(K)]d portion of the space. The remaining
m′ functions ϕ(K)

dm+1, . . . ,ϕ
(K)
n correspond to the remaining portion of the space.

These basis functions are orthonormal to each other. They satisfy the orthonormality condition:∫
K
ϕ(K)

i · ϕ
(K)
j dΩ = |K|δi j, (3.1)

where δi j is the Kroenecker delta and |K| is the measure (area in 2D and volume in 3D) of
element K. The first dm basis functions ϕ1, . . . ,ϕdm are constructed using the (normalized) Dubiner
polynomials [12] as:

ϕ(K)
d(i′−1)+ j′ = q(K)

i′ e j′ , for i′ = 1,m and j′ = 1, . . . , d. (3.2)

Here, e j′ are the canonical basis functions of Rd. q1, . . . , qm are the orthonormal Dubiner polynomials
in the element K obtained by mapping the orthonormal polynomials in the reference simplex K̂ to the
element K as:

q(K)
i (x(K)(x̂)) = q̂i(x̂),

where x(K)(x̂) is the affine mapping from the reference element K̂ to the element K. These polynomials
satisfy the following orthonormality relation:∫

K
q(K)

i q(K)
j dΩ = |K|δi j. (3.3)

The remaining m′ basis functions ϕ(K)
dm+1, . . . ,ϕ

(K)
n are constructed by multiplying the degree k Dubiner

polynomial basis functions with x and orthonormalizing them with the rest of the basis functions using
the modified Gram-Schmidt kernel. This is described in Algorithm 1.

Algorithm 1 Generating ϕ(K)
dm+1, . . . ,ϕ

(K)
n .

for i = dm + 1, . . . , n do
ϕ(K)

i ← xq(K)
i−(d−1)m−m′

Orthonormalize ϕ(K)
i against the previous (i− 1) basis functions using a modified Gram-Schmidt

kernel
end for

For the space W(K) (which equals Pk(K)), we use the same orthonormal Dubiner polynomial basis
functions:

q(K)
1 , . . . , q(K)

m .

For the space Mh(F), we also use orthonormal Dubiner polynomial basis functions but defined on the
faces of the mesh. They are:

ψ(F)
1 , . . . , ψ(F)

m′ ,

where F is a typical face of the mesh.

Mathematics in Engineering Volume 6, Issue 2, 221–237.

227

3.1.2. Local problem

Using the above basis functions converts the local problem that depends on µ (Eq (2.10)) to the
following matrix problem:In×n|K| −D(K)

m×n
T

D(K)
m×n 0m×m

 Qµ,(K)
n×((d+1)m′)

Uµ,(K)
m×((d+1)m′)

 =

[
−bQµ,(K)

n×((d+1)m′)
0m×((d+1)m′)

]
. (3.4)

Here, In×n is the identity matrix, 0a×b is a×b matrix of zeros, D(K)
m×n is the divergence matrix, Qµ,(K)

n×(d+1)m′ is
the degree of freedom matrix corresponding to the element-wise mapping Qµ, Uµ,(K)

m×((d+1)m′) is the degree
of freedom matrix corresponding to the element-wise mapping Uµ, and −bQµ,(K)

n×((d+1)m′) is the right-hand
side matrix corresponding to the degrees of freedom Qµ,(K)

n×(d+1)m′ . The size of all matrices is given in the
subscript. The entries of the divergence and right-hand matrices are:[

D(K)
m×n

]
i, j

=

∫
K

qi∇ · ϕ
(K)
j dΩ, and

[
bQµ,(K)

n×((d+1)m′)

]
i,(j−1)m′+r

=

∫
F j

ψ
(F j)
r ϕ

(K)
i · ndΓ, (3.5)

respectively, where F j is the jth face of element K.
For efficient solution of the above local problem, we perform two optimizations. The first

optimization pertains to computing the divergence matrix D(K)
m×n. This matrix has the following form:

D(K)
m×n =

 D(K)(1)

(m−m′)×dm
0m′×dm

D(K)(2)

m×m′

 . (3.6)

Here, D(K)(1)

(m−m′)×dm is the portion of the divergence-matrix from the first dm basis functions, ϕ(K)
1 , . . . ,ϕ(K)

dm ,
which correspond to the [Pk(K)]d portion of the space. The remaining portion of the divergence matrix,
D(K)(2)

m×m′ , is from the last m′ basis functions, ϕ(K)
dm+1, . . . ,ϕ

(K)
n . This form is exploited for its efficient

computation as follows. The portion D(K)(1)

(m−m′)×dm is first computed in along the coordinates of the
reference element K̂. We will denote this reference divergence matrix as D̂(m−m′)×dm and is given by:

[
D̂(m−m′)×dm

]
i, j

=

∫
K̂

q̂i∇̂ · ϕ̂ j dΩ̂.

Then, to compute D(K)(1)

(m−m′)×dm in each element K, we simply combine the columns of D̂(m−m′)×dm using the
entries of the Jacobian of x(K)(x̂). Hence, we do not differentiate the first dm basis functions separately
for each element of the mesh but just once in the reference element. Elementwise differentiation is
performed only for the last m′ basis functions needed to compute the remaining of the divergence
matrix, portion, D(K)(2)

m×m′ .
The second optimization pertains to the solution of the local matrix problem in Eq (3.4). Since the

mass matrix is identity, the degrees of freedom matrix Qµ,(K)
n×(d+1)m′ can be easily eliminated to obtain the

following matrix problem just for the degrees of freedom Uµ,(K)
m×((d+1)m′):

L(K)
m×mUµ,(K)

m×((d+1)m′) = D(K)
m×nbQµ,(K)

n×((d+1)m′). (3.7)

Mathematics in Engineering Volume 6, Issue 2, 221–237.

228

Here, L(K)
m×m is the Laplacian matrix and is equal to:

L(K)
m×m = D(K)

m×nD(K)
m×n

T
.

To solve this problem, the matrix L(K)
m×m is first factored using the (dense) Cholesky factorization method

and the computed factor is used to obtain Uµ,(K)
m×((d+1)m′).

Similarly, the above basis functions convert the local problem that depends on f (Eq (2.11)) to the
following matrix problem: In×n|K| −D(K)

m×n
T

D(K)
m×n 0m×m

 [Q f ,(K)
n×1

U f ,(K)
m×1

]
=

[
0n×1

|K|P(K) fm×1

]
.

Here, Q f ,(K)
n×1 and U f ,(K)

m×1 are the degrees of freedom vector corresponding to the mapping Q f and U f ,
respectively.Here, P(K) fm×1 is the degree of freedom vector obtained by L2-projection of f onto W
using the above basis functions. Similar to the local problem that depended on µ, the above matrix
problem is also solved by eliminating the degrees of freedom corresponding to Q f ,(K)

n×1 and then using
the above computed Cholesky factor to obtain U f ,(K)

m×1 .

3.1.3. Global problem

Using the above computed local problem solutions, the element matrix A(K)
((d+1)m′)×((d+1)m′) and element

vector b(K)
((d+1)m′)×1 are computed in each element K as:

A(K)
((d+1)m′)×((d+1)m′) = Qµ,(K)

n×(d+1)m′
T

Qµ,(K)
n×(d+1)m′ |K|, and

b(K)
((d+1)m′)×1 = Uµ,(K)

m×(d+1)m′
T

P(K) fm×1|K|,
(3.8)

respectively. These element matrices and vectors are assembled together and the degrees of freedom of
ûh corresponding to the Dirichlet boundary faces are statically condensed to obtain the global matrix
problem:

Am′nF×m′nF ûm′nF×1 = bm′nF×1. (3.9)

Here, nF is the total number of faces of the mesh minus the Dirichlet boundary faces. Am′nF×m′nF is
the global left-hand side matrix. bm′nF×1 is the global right-hand side vector. ûm′nF×1 is the degree
of freedom vector corresponding to ûh. The above global matrix problem is solved using the sparse
Cholesky factorization method.

3.2. Stab-1-HRT (new)

The details of the new Stab-1-HRT implementation are given below. For general HDG methods,
see [3, 11].

3.2.1. Basis

In this implementation, for the space Va(K) in each element K, we use the following orthonormal
basis functions:

ϕ(K)
1 , . . . ,ϕ(K)

dm .

Mathematics in Engineering Volume 6, Issue 2, 221–237.

229

The above functions ϕ(K)
i are the same ones that were defined in Section 3.1.1. For the space Vs(K),

we use:
ϕ(K)

dm+1, . . . ,ϕ
(K)
n .

These are the remaining m′ basis functions that were defined in Section 3.1.1. For the remaining spaces
W and Mh, we use the same basis functions as that used in Section 3.1.1.

3.2.2. Local problem

In this implementation, we have to compute the stabilization mapping LVs (given in Eq (2.6)). Using
the above basis functions for Vs(K), the matrix form of this mapping becomes:

Ls,(K)
m′×(d+1)m′ =

1
|K|

bs,(K)
m′×(d+1)m′ .

Here, bs,(K)
m′×(d+1)m′ is the right-hand side of the stabilization mapping given by:

[
bs,(K)

m′×((d+1)m′)

]
i,(j−1)m′+r

=

∫
F j

ψ
(F j)
r ϕ

(K)
dm+i · ndΓ.

Using the above basis functions for Va and the above matrix form of the stabilization mapping, the
local problem that depends on µ (Eq (2.10)) becomes the following local matrix problem:In×n|K| −D(K)

m×dm
T

D(K)
m×dm Ms,(K)

m×m

 Qµ,(K)
dm×(d+1)m′

Uµ,(K)
m×(d+1)m′

 =

−bQµ,(K)
dm×((d+1)m′)

bUµ,(K)
m×((d+1)m′)

 . (3.10)

Here, Ms,(K)
m×m is the mass matrix that arises from the equivalent stabilization. It relates to the stabilization

mapping matrix as:

Ms,(K)
m×m = |K|

[
Ls,(K)

m′×(d+1)m′B
(K)
(d+1)m′×m

]T [
Ls,(K)

m′×(d+1)m′B
(K)
(d+1)m′×m

]
,

where B(K)
(d+1)m′×m is the linear mapping from the degrees of freedom of u to that of µ in element K. D(K)

m×n

is the same divergence matrix that was defined in Section 3.1.2. The right-hand side matrix bUµ,(K)
m×((d+1)m′)

is given by:
bUµ,(K)

m×((d+1)m′) = |K|
[
Ls,(K)

m′×(d+1)m′B
(K)
(d+1)m′×m

]T
Ls,(K)

m′×(d+1)m′ .

Observe that the divergence matrix D(K)
m×dm in Eq (3.10) has the following form:

D(K)
m×dm =

 D(K)(1)

(m−m′)×dm
0m′×dm

 ,
where the portion D(K)(1)

(m−m′)×dm is the same as that defined in Eq (3.6). Observe that the portion D(K)(2)

n×m′

that was present in Eq (3.6) is not present above. Hence, we only compute the portion D(K)(1)

(m−m′)×dm

using the optimized implementation described in Section 3.1.2. We never compute D(K)(2)

n×m′ that required
differentiation of the last m′ basis functions separately in each element of the mesh. This yields in

Mathematics in Engineering Volume 6, Issue 2, 221–237.

230

considerable reduction in the time taken to compute the individual local problems and is demonstrated
by the numerical experiments in Section 4.

Similar to the Usual-HRT implementation, the degree of freedom matrix Qµ,(K)
dm×(d+1)m′ is eliminated

to obtain the following equation for Uµ,(K)
m×(d+1)m′:

L(K),1
m×mUµ,(K)

m×(d+1)m′ = D(K)
m×nbQµ,(K)

dm×((d+1)m′) + bUµ,(K)
m×((d+1)m′). (3.11)

Here, the Laplacian matrix L(K),1
m×m is given by:

L(K),1
m×m = D(K)

m×dmD(K)
m×dm

T
+ Ms,(K)

m×m .

The Laplacian is first factored using the Cholesky factorization method and the computed factors are
used to compute Uµ,(K)

m×(d+1)m′ .
Similarly, the chosen basis functions convert the local problem that depends on f to the following

matrix problem: In×n|K| −D(K)
m×dm

T

D(K)
m×dm Ms,(K)

m×m

 Q f ,(K)
dm×(d+1)m′

U f ,(K)
m×(d+1)m′

 =

[
0dm×1

|K|P(K) fm×1

]
.

The above matrix problem is solved similar to the above local problem that depended only on µ. The
same Cholesky factors are used for its solution.

3.2.3. Global problem

In this implementation, the element matrix and vector are computed as:

A(K)
((d+1)m′)×((d+1)m′) = Qµ,(K)

dm×(d+1)m′
T

Qµ,(K)
dm×(d+1)m′ |K|, and

b(K)
((d+1)m′)×1 = Uµ,(K)

m×(d+1)m′
T

P(K) fm×1|K|.
(3.12)

Then, similar to the Usual-HRT implementation, the above element matrices and element vectors are
assembled to form the global problem:

Am′nF×m′nF ûm′nF×1 = bm′nF×1.

This global problem is solved using the sparse Cholesky factorization.

3.3. Stab-2-HRT (new)

The details of the new Stab-2-HRT implementation are given below.

3.3.1. Basis

In this implementation, for the space Va(K) in each element K, we use the following orthonormal
basis functions:

ϕ(K)
1 , . . . ,ϕ(K)

d(m−m′)),

where the above functions ϕ(K)
i are the same functions defined in Section 3.1.1. For the space Vs(K),

we use the remaining (d + 1)m′ functions as the basis:

ϕ(K)
d(m−m′)+1, . . . ,ϕn.

For the spaces W and Mh, we use the same basis functions that were used in Section 3.1.1.

Mathematics in Engineering Volume 6, Issue 2, 221–237.

231

3.3.2. Local problem

The local problem solution for this implementation is very similar to that of the Stab-1-HRT
implementation. The matrix form of the stabilization mapping LVs is:

Ls,(K)
(d+1)m′×(d+1)m′ =

1
|K|

bs,(K)
(d+1)m′×(d+1)m′ ,

where [
bs,(K)

(d+1)m′×((d+1)m′)

]
i,(j−1)m′+r

=

∫
F j

ψ
(F j)
r ϕ

(K)
d(m−m′)+i · ndΓ.

The local problem that depends on µ (Eq (2.10)) becomes the following matrix problem:Id(m−m′)×d(m−m′)|K| −D(K)
m×d(m−m′)

T

D(K)
m×d(m−m′) M(K),(L)

m×m

 Qµ,(K)
d(m−m′)×(d+1)m′

Uµ,(K)
m×(d+1)m′

 =

−bQµ,(K)
dm×((d+1)m′)

bUµ,(K)
m×((d+1)m′)

 , (3.13)

where the mass-matrix from the stabilization term is:

Ms,(K)
m×m = |K|

[
Ls,(K)

(d+1)m′×(d+1)m′B
(K)
(d+1)m′×m

]T [
Ls,(K)

(d+1)m′×(d+1)m′B
(K)
(d+1)m′×m

]
.

Then, similar to the Stab-1-HRT implementation, the above local matrix problem is solved using the
Cholesky factorization methodology after eliminating the matrix Qµ,(K)

d(m−m′)×(d+1)m′ .
The local problem that depends on f becomes:Id(m−m′)×d(m−m′)|K| −D(K)

m×d(m−m′)
T

D(K)
m×d(m−m′) M(K),(L)

m×m


Q f ,(K)

d(m−m′)×1

U f ,(K)
m×1

 =

 −0dm×1

|K|P(K) fm×1

 . (3.14)

The above matrix problem is also solved using the same Cholesky factors that were computed while
solving the above local problem that depended on µ alone.

3.3.3. Global problem

In this implementation, the element matrix and vector are computed as:

A(K)
((d+1)m′)×((d+1)m′) =|K|

(
Qµ,(K)

dm×(d+1)m′
T

Qµ,(K)
dm×(d+1)m′ +

[
Ls,(K)

(d+1)m′×(d+1)m′

(
B(K)

(d+1)m′×mUµ,(K)
m×(d+1)m′ − I(d+1)m′×(d+1)m′

)]T

[
Ls,(K)

(d+1)m′×(d+1)m′

(
B(K)

(d+1)m′×mUµ,(K)
m×(d+1)m′ − I(d+1)m′×(d+1)m′

)])
,

b(K)
((d+1)m′)×1 =Uµ,(K)

m×(d+1)m′
T

P(K) fm×1|K|.

Then, similar to the Stab-1-HRT implementation, the above element matrices and element vectors are
assembled to form the global problem

Am′nF×m′nF ûm′nF×1 = bm′nF×1

and this global problem is solved using the sparse Cholesky factorization.

Mathematics in Engineering Volume 6, Issue 2, 221–237.

232

4. Numerical results

We present results comparing the three implementations. We consider the Poisson problem
with f = 8π2 sin(2πx1) sin(2πx2) in the domain (0, 1)2. The domain is first split into 16 uniform
quadrilateral elements along each direction. Each quadrilateral element is further split into two
triangular elements. This leads to a uniform mesh of 512 triangular elements. Polynomial degrees
1 to 20 are considered. Zero-Dirichlet boundary condition is imposed on all the four sides of the
domain. All these implementations were first validated to make sure they yield identical solutions.

All numerical experiments were performed in MATLAB. We use a workstation with Intel(R)
Core(TM) i7-8700 processor. The processor has six cores and hyperthreading. We also note that
MATLAB uses the multi-threaded MKL BLAS backend for certain matrix and vector manipulations.
Hence, there is some inherent parallelism in our implementation. For the global problem solution, we
use the sparse direct solver available in MATLAB. MATLAB uses the sparse multi-threaded Cholesky
solver CHOLMOD [2] for our symmteric positive definite problem when performing x=A\b.

Tables 2 and 3 show the time consumed by the one-time operations (that are performed just once in
the reference element), the local problem solution in all the elements, global problem solution and the
total solution time. The breakdown of the time taken by the different components of the local problem
solution are shown in Tables 4 and 5. The percentage benefit of the new implementations compared to
the Usual-HRT implementation is shown in Table 6.

Table 2. Comparison of the time (in seconds) for one-time operations and local problem
solutions.
k One-time operations Local problem solutions

Usual-HRT Stab-1-HRT Stab-2-HRT Usual-HRT Stab-1-HRT Stab-2-HRT

1 8.54E-03 4.66E-03 6.14E-03 1.07E-01 8.29E-02 9.56E-02
2 3.04E-03 2.11E-03 2.19E-03 1.65E-01 1.17E-01 1.26E-01
3 3.46E-03 8.79E-04 8.62E-04 2.36E-01 1.78E-01 1.89E-01
4 1.20E-03 1.20E-03 1.25E-03 3.59E-01 2.76E-01 2.90E-01
5 1.77E-03 1.70E-03 1.83E-03 5.31E-01 4.23E-01 4.40E-01
6 2.43E-03 2.52E-03 2.45E-03 8.82E-01 7.23E-01 6.70E-01
7 3.37E-03 3.36E-03 3.39E-03 1.25E+00 1.05E+00 1.07E+00
8 4.93E-03 5.01E-03 4.92E-03 1.74E+00 1.45E+00 1.47E+00
9 6.85E-03 6.85E-03 7.16E-03 2.28E+00 1.99E+00 2.02E+00
10 9.15E-03 9.17E-03 9.00E-03 3.07E+00 2.62E+00 2.68E+00
11 1.21E-02 1.26E-02 1.25E-02 3.98E+00 3.43E+00 3.47E+00
12 1.70E-02 1.72E-02 1.71E-02 5.13E+00 4.41E+00 4.59E+00
13 2.33E-02 2.35E-02 2.37E-02 6.56E+00 5.83E+00 5.84E+00
14 3.01E-02 2.99E-02 3.02E-02 8.27E+00 7.26E+00 7.39E+00
15 4.01E-02 3.99E-02 4.04E-02 1.06E+01 9.26E+00 9.34E+00
16 5.18E-02 5.12E-02 5.46E-02 1.30E+01 1.14E+01 1.16E+01
17 7.16E-02 7.28E-02 7.09E-02 1.60E+01 1.40E+01 1.41E+01
18 9.03E-02 8.97E-02 9.03E-02 1.95E+01 1.71E+01 1.73E+01
19 1.25E-01 1.25E-01 1.26E-01 2.51E+01 2.07E+01 2.09E+01
20 1.68E-01 1.63E-01 1.66E-01 2.99E+01 2.48E+01 2.51E+01

Mathematics in Engineering Volume 6, Issue 2, 221–237.

233

Table 3. Comparison of time (in seconds) for global problem solution and total solution.
k Global problem solution Total solution

Usual-HRT Stab-1-HRT Stab-2-HRT Usual-HRT Stab-1-HRT Stab-2-HRT

1 3.02E-02 3.00E-02 3.12E-02 1.46E-01 1.18E-01 1.33E-01
2 2.76E-02 2.66E-02 3.06E-02 1.96E-01 1.46E-01 1.59E-01
3 2.70E-02 2.65E-02 3.04E-02 2.66E-01 2.06E-01 2.20E-01
4 3.03E-02 3.04E-02 3.41E-02 3.90E-01 3.08E-01 3.26E-01
5 3.44E-02 3.35E-02 3.77E-02 5.67E-01 4.58E-01 4.79E-01
6 3.96E-02 3.92E-02 4.19E-02 9.24E-01 7.65E-01 7.14E-01
7 4.66E-02 4.65E-02 5.08E-02 1.30E+00 1.10E+00 1.13E+00
8 5.24E-02 5.07E-02 5.54E-02 1.80E+00 1.51E+00 1.53E+00
9 5.81E-02 5.84E-02 6.35E-02 2.35E+00 2.06E+00 2.09E+00
10 6.54E-02 6.52E-02 6.99E-02 3.15E+00 2.69E+00 2.76E+00
11 7.22E-02 7.10E-02 7.73E-02 4.06E+00 3.51E+00 3.56E+00
12 8.00E-02 7.92E-02 8.51E-02 5.22E+00 4.51E+00 4.69E+00
13 9.06E-02 8.95E-02 9.55E-02 6.68E+00 5.94E+00 5.96E+00
14 1.00E-01 1.01E-01 1.05E-01 8.40E+00 7.39E+00 7.53E+00
15 1.12E-01 1.10E-01 1.16E-01 1.07E+01 9.41E+00 9.50E+00
16 1.25E-01 1.23E-01 1.29E-01 1.32E+01 1.16E+01 1.17E+01
17 1.39E-01 1.37E-01 1.42E-01 1.62E+01 1.42E+01 1.43E+01
18 1.52E-01 1.50E-01 1.55E-01 1.97E+01 1.73E+01 1.75E+01
19 1.62E-01 1.60E-01 1.69E-01 2.54E+01 2.09E+01 2.12E+01
20 1.81E-01 1.78E-01 1.85E-01 3.03E+01 2.51E+01 2.55E+01

Table 4. Comparison of time (in seconds) for computation of the additional RT basis
functions and their contribution to the divergence matrix for all the elements in the mesh.
k Additional RT basis Div. matrix of additional RT basis

Usual-HRT Stab-1-HRT Stab-2-HRT Usual-HRT Stab-1-HRT Stab-2-HRT

1 2.50E-02 2.52E-02 2.59E-02 2.74E-02 - -
2 5.57E-02 5.35E-02 5.35E-02 4.43E-02 - -
3 1.05E-01 1.05E-01 1.04E-01 5.99E-02 - -
4 1.88E-01 1.88E-01 1.88E-01 8.57E-02 - -
5 3.16E-01 3.18E-01 3.17E-01 1.15E-01 - -
6 5.49E-01 5.48E-01 5.23E-01 1.61E-01 - -
7 8.37E-01 8.37E-01 8.36E-01 2.08E-01 - -
8 1.23E+00 1.21E+00 1.21E+00 2.72E-01 - -
9 1.68E+00 1.71E+00 1.70E+00 3.35E-01 - -

10 2.30E+00 2.29E+00 2.30E+00 4.29E-01 - -
11 3.05E+00 3.05E+00 3.05E+00 5.31E-01 - -
12 3.98E+00 3.97E+00 4.03E+00 6.83E-01 - -
13 5.12E+00 5.24E+00 5.16E+00 8.89E-01 - -
14 6.52E+00 6.57E+00 6.62E+00 1.08E+00 - -
15 8.42E+00 8.47E+00 8.46E+00 1.37E+00 - -
16 1.04E+01 1.05E+01 1.05E+01 1.61E+00 - -
17 1.28E+01 1.29E+01 1.29E+01 2.05E+00 - -
18 1.58E+01 1.58E+01 1.58E+01 2.41E+00 - -
19 1.93E+01 1.92E+01 1.92E+01 4.31E+00 - -
20 2.32E+01 2.31E+01 2.32E+01 5.04E+00 - -

Mathematics in Engineering Volume 6, Issue 2, 221–237.

234

Table 5. Comparison of time (in seconds) for the solution of the local matrix problems using
the Cholesky decomposition for each element in the mesh.

k Local matrix problem
Usual-HRT Stab-1-HRT Stab-2-HRT

1 3.47E-02 3.88E-02 4.98E-02
2 4.04E-02 4.20E-02 5.07E-02
3 4.27E-02 4.78E-02 5.86E-02
4 4.93E-02 5.42E-02 6.88E-02
5 5.69E-02 6.34E-02 8.10E-02
6 1.15E-01 1.21E-01 9.54E-02
7 1.37E-01 1.45E-01 1.68E-01
8 1.58E-01 1.58E-01 1.85E-01
9 1.65E-01 1.82E-01 2.21E-01

10 2.06E-01 2.03E-01 2.54E-01
11 2.36E-01 2.34E-01 2.82E-01
12 2.74E-01 2.69E-01 3.40E-01
13 3.27E-01 3.70E-01 4.62E-01
14 3.95E-01 4.26E-01 5.03E-01
15 4.55E-01 4.87E-01 5.74E-01
16 5.54E-01 5.44E-01 6.88E-01
17 6.07E-01 6.41E-01 7.81E-01
18 7.19E-01 7.51E-01 9.29E-01
19 8.61E-01 9.04E-01 1.12E+00
20 1.02E+00 1.05E+00 1.31E+00

Table 6. Percentage performance benefit of the Stab-1-HRT and Stab-2-HRT
implementations over the Usual-HRT implementation.

k Local problem solution Total solution
Stab-1-HRT Stab-2-HRT Stab-1-HRT Stab-2-HRT

1 22.65 10.90 19.40 8.93
2 28.84 23.40 25.32 18.63
3 24.35 20.03 22.72 17.46
4 23.04 19.06 21.16 16.55
5 20.34 17.23 19.21 15.53
6 17.94 23.99 17.15 22.64
7 16.20 14.47 15.58 13.59
8 16.85 15.67 16.41 15.01
9 12.77 11.44 12.40 10.88

10 14.87 12.83 14.53 12.38
11 13.85 12.71 13.58 12.32
12 13.95 10.49 13.70 10.20
13 11.15 11.01 10.97 10.74
14 12.21 10.64 12.01 10.42
15 12.31 11.56 12.16 11.36
16 12.50 11.24 12.36 11.04
17 12.40 11.64 12.24 11.47
18 12.20 11.08 12.07 10.94
19 17.59 16.47 17.40 16.25
20 17.15 16.01 16.98 15.82

Mathematics in Engineering Volume 6, Issue 2, 221–237.

235

The new implementations Stab-1-HRT and Stab-2-HRT are faster than the Usual-HRT
implementation for all the polynomial degrees. From Table 6, we observe that they are 10-20% faster
depending on the polynomial degree. Stab-1-HRT is slightly faster than Stab-2-HRT for nearly all
polynomial degrees (except degree six).

The local problem solutions consume the majority of the total solution time. These local problem
solution solutions are faster for the new Stab-1-HRT and Stab-2-HRT implementations compared to
the usual-HRT implementations. From Tables 4 and 5 (which show the breakdown of the local problem
solutions), we observe that this performance benefit is essentially because in the new Stab-1-HRT and
Stab-2-HRT implementations, we need not compute the derivative of the additional RT basis functions,
i.e., ϕdm+1, . . . , ϕn, and their contribution to the divergence matrix of the local problems. However, in
the usual-HRT implementation, these derivatives and their contribution to the divergence matrix must
be computed. In the Stab-1-HRT and Stab-2-HRT implementations, there is an overhead associated
with the computation of the stabilization mappings. However, the benefits from not computing
the derivative of the additional RT basis functions and their contribution to the divergence matrix
significantly outweights this overhead. Hence, the new implementations of the hybridized RT method
yield significant (10–20%) performance benefit compared to the usual implementation.

5. Conclusions and ongoing work

As pointed out in [5], although the choice of the local function space Va(K) is not unique, as we
have also seen here, the smallest of these local spaces, ∇W(K) = ∇Pk(K), is actually unique. It remains
to be seen it we still retain an advantage over the usual implementation of the hybridized RT method
for this choice. This constitutes the subject of ongoing work.

The present paper is currently being extended along the following directions:
(1) As pointed out in the Introduction, the choice of the RT method as the mixed method is by

no means restrictive, as the approach proposed here can also be applied to any other mixed method
for polyhedral meshes, for e.g., those defined using M-decompositions in [6, 7, 9] and using new
commuting diagrams [8] (see also the review [10]) and the references therein). The space V(K) in
these methods also have the form [Pk(K)]d ⊕ Vfill and the W(K) is still equal to Pk(K). Similar to the
implementation presented here, the effect of Vfill (and also a portion of [Pk(K)]d) can be encapsulated
within a mapping LVs defined in a similar way.

In our new implementations, we have not defined the basis functions via the Piola Transform. On
the other hand, the reference unit simplex is only used to define the orthonormal polynomial basis
functions for [Pk(K)]d and to compute the divergence matrix via chain rule. In the case of polytopal
elements, we note that the polytopal mixed methods in [6–10] do not make use of a reference element.
Hence, it would be a different baseline to compare our implementations to.

Furthermore, the application of this approach to other general HDG methods can be carried out very
easily, as we are going to show elsewhere.

(2) In d = 3 dimensions, we expect similar or better speedups. For e.g., for simplexes and Stab-2-
HRT, the reduction in the computational effort for the local problem is approximately proportional to
dim(V(2)

s (K)) which is (d + 1) Ck+d−1
d−1 . The factor

dim(V(2)
s (K))

dim(V(K))
=

(d + 1) Ck+d−1
d−1

(dCk+d
d + Ck+d−1

d−1)
=

d + 1
d + k

.

Mathematics in Engineering Volume 6, Issue 2, 221–237.

236

For large k, this factor is around 4/3 times larger for d = 3 compared to d = 2. Hence, we expect
similar or bigger speedups for three-dimensional problems. Extension to d = 3 is part of our ongoing
work.

(3) Finally, note that, although we have exploited the fact that the tensor-valued function c is the
identity for our model second-order elliptic problem, it is easy to extend what has been done to a
general elliptic problem. This is also part of our ongoing work.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Bernardo Cockburn’s research was supported in part by the Advanced Computational Center for
Entry Systems Simulation (ACCESS) through NASA grant 80NSSC21K1117.

Conflict of interest

The authors declare no conflicts of interest.

References

1. D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: implementation,
postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19 (1985), 7–32.
https://doi.org/10.1051/m2an/1985190100071

2. Y. Chen, T. A. Davis, W. W. Hager, S. Rajamanickam, Algorithm 887: CHOLMOD, supernodal
sparse Cholesky factorization and update/downdate, ACM Trans. Math. Software, 35 (2008), 1–
14. https://doi.org/10.1145/1391989.1391995

3. B. Cockburn, Static condensation, hybridization, and the devising of the HDG methods, In: G.
Barrenechea, F. Brezzi, A. Cangiani, E. Georgoulis, Building bridges: connections and challenges
in modern approaches to numerical partial differential equations, Cham: Springer, 114 (2016),
129–177. https://doi.org/10.1007/978-3-319-41640-3 5

4. B. Cockburn, Discontinuous Galerkin methods for computational fluid dynamics, In: E. Stein, R.
de Borst, T. J. R. Hughes, Encyclopedia of computational mechanics, 2 Eds., John Wiley & Sons,
Ltd., 5 (2018), 141–203. https://doi.org/10.1002/9781119176817.ecm2053

5. B. Cockburn, Hybridizable discontinuous Galerkin methods for second-order elliptic problems:
overview, a new result and open problems, Japan J. Indust. Appl. Math., 40 (2023), 1637–1676.
https://doi.org/10.1007/s13160-023-00603-9

6. B. Cockburn, G. Fu, Superconvergence by M-decompositions. Part II: Construction of
two-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51 (2017), 165–186.
https://doi.org/10.1051/m2an/2016016

Mathematics in Engineering Volume 6, Issue 2, 221–237.

https://dx.doi.org/https://doi.org/10.1051/m2an/1985190100071
https://dx.doi.org/https://doi.org/10.1145/1391989.1391995
https://dx.doi.org/https://doi.org/10.1007/978-3-319-41640-3_5
https://dx.doi.org/https://doi.org/10.1002/9781119176817.ecm2053
https://dx.doi.org/https://doi.org/10.1007/s13160-023-00603-9
https://dx.doi.org/https://doi.org/10.1051/m2an/2016016

237

7. B. Cockburn, G. Fu, Superconvergence by M-decompositions. Part III: Construction of
three-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51 (2017), 365–398.
https://doi.org/10.1051/m2an/2016023

8. B. Cockburn, G. Fu, A systematic construction of finite element commuting exact sequences,
SIAM J. Numer. Anal., 55 (2017), 1650–1688. https://doi.org/10.1137/16M1073352

9. B. Cockburn, G. Fu, F. J. Sayas, Superconvergence by M-decompositions. Part I:
General theory for HDG methods for diffusion, Math. Comp., 86 (2017), 1609–1641.
https://doi.org/10.1090/mcom/3140

10. B. Cockburn, G. Fu, K. Shi, An introduction to the theory of M-decompositions, In: D. Di
Pietro, A. Ern, L. Formaggia, Numerical methods for PDEs, Cham: Springer, 15 (2018), 5–29.
https://doi.org/10.1007/978-3-319-94676-4 2

11. B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin,
mixed and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal.,
47 (2009), 1319–1365. https://doi.org/10.1137/070706616

12. M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput., 6 (1991), 345–390.
https://doi.org/10.1007/BF01060030

13. P. A. Raviart, J. M. Thomas, A mixed finite element method for second order elliptic problems,
In: I. Galligani, E. Magenes, Mathematical aspects of finite element method, Lecture Notes in
Mathematics, Springer, 606 (1977), 292–315. https://doi.org/10.1007/BFb0064470

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 6, Issue 2, 221–237.

https://dx.doi.org/https://doi.org/10.1051/m2an/2016023
https://dx.doi.org/https://doi.org/10.1137/16M1073352
https://dx.doi.org/https://doi.org/10.1090/mcom/3140
https://dx.doi.org/https://doi.org/10.1007/978-3-319-94676-4_2
https://dx.doi.org/https://doi.org/10.1137/070706616
https://dx.doi.org/https://doi.org/10.1007/BF01060030
https://dx.doi.org/https://doi.org/10.1007/BFb0064470
https://creativecommons.org/licenses/by/4.0

	Introduction
	Background
	Subspace-to-stabilization.
	The equivalent hybridizable discontinuous Galerkin method after static condensation

	Implementations of the hybridized Raviart-Thomas mixed method
	Usual-HRT (usual)
	Basis
	Local problem
	Global problem

	Stab-1-HRT (new)
	Basis
	Local problem
	Global problem

	Stab-2-HRT (new)
	Basis
	Local problem
	Global problem

	Numerical results
	Conclusions and ongoing work

