Research article Special Issues

Local boundedness for $ p $-Laplacian with degenerate coefficients

  • Received: 09 September 2022 Revised: 15 March 2023 Accepted: 15 March 2023 Published: 03 April 2023
  • We study local boundedness for subsolutions of nonlinear nonuniformly elliptic equations whose prototype is given by $ \nabla \cdot (\lambda |\nabla u|^{p-2}\nabla u) = 0 $, where the variable coefficient $ 0\leq\lambda $ and its inverse $ \lambda^{-1} $ are allowed to be unbounded. Assuming certain integrability conditions on $ \lambda $ and $ \lambda^{-1} $ depending on $ p $ and the dimension, we show local boundedness. Moreover, we provide counterexamples to regularity showing that the integrability conditions are optimal for every $ p > 1 $.

    Citation: Peter Bella, Mathias Schäffner. Local boundedness for $ p $-Laplacian with degenerate coefficients[J]. Mathematics in Engineering, 2023, 5(5): 1-20. doi: 10.3934/mine.2023081

    Related Papers:

  • We study local boundedness for subsolutions of nonlinear nonuniformly elliptic equations whose prototype is given by $ \nabla \cdot (\lambda |\nabla u|^{p-2}\nabla u) = 0 $, where the variable coefficient $ 0\leq\lambda $ and its inverse $ \lambda^{-1} $ are allowed to be unbounded. Assuming certain integrability conditions on $ \lambda $ and $ \lambda^{-1} $ depending on $ p $ and the dimension, we show local boundedness. Moreover, we provide counterexamples to regularity showing that the integrability conditions are optimal for every $ p > 1 $.



    加载中


    [1] D. Albritton, H. Dong, Regularity properties of passive scalars with rough divergence-free drifts, arXiv: 2107.12511.
    [2] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [3] A. K. Balci, L. Diening, M. Surnachev, New examples on Lavrentiev gap using fractals, Calc. Var., 59 (2020), 180. https://doi.org/10.1007/s00526-020-01818-1 doi: 10.1007/s00526-020-01818-1
    [4] A. K. Balci, L. Diening, R. Giova, A. Passarelli di Napoli, Elliptic equations with degenerate weights, SIAM J. Math. Anal., 54 (2022), 2373–2412. https://doi.org/10.1137/21M1412529 doi: 10.1137/21M1412529
    [5] A. K. Balci, S. S. Byun, L. Diening, H. S. Lee, Global maximal regularity for equations with degenerate weights, arXiv: 2201.03524.
    [6] L. Beck, G. Mingione, Lipschitz bounds and non-uniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. https://doi.org/10.1002/cpa.21880 doi: 10.1002/cpa.21880
    [7] P. Bella, M. Schäffner, Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations, Commun. Pure Appl. Math., 74 (2021), 453–477. https://doi.org/10.1002/cpa.21876 doi: 10.1002/cpa.21876
    [8] P. Bella, M. Schäffner, On the regularity of minimizers for scalar integral functionals with $(p, q)$-growth, Anal. PDE, 13 (2020), 2241–2257. https://doi.org/10.2140/apde.2020.13.2241 doi: 10.2140/apde.2020.13.2241
    [9] P. Bella, M. Schäffner, Lipschitz bounds for integral functionals with $(p, q)$-growth conditions, Adv. Calc. Var., in press. https://doi.org/10.1515/acv-2022-0016
    [10] P. Bella, M. Schäffner, Non-uniformly parabolic equations and applications to the random conductance model, Probab. Theory Relat. Fields, 182 (2022), 353–397. https://doi.org/10.1007/s00440-021-01081-1 doi: 10.1007/s00440-021-01081-1
    [11] S. Biagi, G. Cupini, E. Mascolo, Regularity of quasi-minimizers for non-uniformly elliptic integrals, J. Math. Anal. Appl., 485 (2020), 123838. https://doi.org/10.1016/j.jmaa.2019.123838 doi: 10.1016/j.jmaa.2019.123838
    [12] V. Bögelein, F. Duzaar, M. Marcellini, C. Scheven, Boundary regularity for elliptic systems with $p, q$-growth, J. Math. Pure. Appl. (9), 159 (2022), 250–293. https://doi.org/10.1016/j.matpur.2021.12.004 doi: 10.1016/j.matpur.2021.12.004
    [13] D. Cao, T. Mengesha, T. Phan, Weighted-$W^{1, p}$ estimates for weak solutions of degenerate and singular elliptic equations, Indiana Univ. Math. J., 67 (2018), 2225–2277. https://doi.org/10.1512/iumj.2018.67.7533 doi: 10.1512/iumj.2018.67.7533
    [14] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
    [15] G. Cupini, P. Marcellini, E. Mascolo, Nonuniformly elliptic energy integrals with $p, q$-growth, Nonlinear Anal., 177 (2018), 312–324. https://doi.org/10.1016/j.na.2018.03.018 doi: 10.1016/j.na.2018.03.018
    [16] G. Cupini, P. Marcellini, E. Mascolo, A. Passarelli di Napoli, Lipschitz regularity for degenerate elliptic integrals with $p, q$-growth, Adv. Calc. Var., in press. https://doi.org/10.1515/acv-2020-0120
    [17] D. Cruz-Uribe, K. Moen, V. Naibo, Regularity of solutions to degenerate $p$-Laplacian equations, J. Math. Anal. Appl., 401 (2013), 458–478. https://doi.org/10.1016/j.jmaa.2012.12.023 doi: 10.1016/j.jmaa.2012.12.023
    [18] C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. https://doi.org/10.1007/s12220-019-00225-z doi: 10.1007/s12220-019-00225-z
    [19] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Rational Mech. Anal., 242 (2021), 973–1057. https://doi.org/10.1007/s00205-021-01698-5 doi: 10.1007/s00205-021-01698-5
    [20] C. De Filippis, G. Mingione, Nonuniformly elliptic Schauder theory, arXiv: 2201.07369.
    [21] C. De Filippis, M. Piccinini, Borderline global regularity for nonuniformly elliptic systems, Int. Math. Res. Notices, 2022, rnac283. https://doi.org/10.1093/imrn/rnac283
    [22] M. Eleuteri, P. Marcellini, E. Mascolo, Regularity for scalar integrals without structure conditions, Adv. Calc. Var., 13 (2020), 279–300. https://doi.org/10.1515/acv-2017-0037 doi: 10.1515/acv-2017-0037
    [23] L. Esposito, F. Leonetti, G. Mingione, Regularity results for minimizers of irregular integrals with $(p, q)$ growth, Forum Math., 14 (2002), 245–272. https://doi.org/10.1515/form.2002.011 doi: 10.1515/form.2002.011
    [24] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/j.jde.2003.11.007 doi: 10.1016/j.jde.2003.11.007
    [25] E. B. Fabes, C. E. Kenig, R. P. Serapioni, The local regularity of solutions to degenerate elliptic equations, Commun. Part. Diff. Eq., 7 (1982), 77–116. https://doi.org/10.1080/03605308208820218 doi: 10.1080/03605308208820218
    [26] I. Fonseca, J. Malý, G. Mingione, Scalar minimizers with fractal singular sets, Arch. Rational Mech. Anal., 172 (2004), 295–307. https://doi.org/10.1007/s00205-003-0301-6 doi: 10.1007/s00205-003-0301-6
    [27] B. Franchi, R. Serapioni, F. S. Cassano, Irregular solutions of linear degenerate elliptic equations, Potential Anal., 9 (1998), 201–216. https://doi.org/10.1023/A:1008684127989 doi: 10.1023/A:1008684127989
    [28] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245–248. https://doi.org/10.1007/BF01158049 doi: 10.1007/BF01158049
    [29] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
    [30] P. Hästö, J. Ok, Maximal regularity for local minimizer of non-autonomous functionals. J. Eur. Math. Soc., 24 (2022), 1285–1334. https://doi.org/10.4171/JEMS/1118
    [31] J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Mineola, NY: Dover Publications, Inc., 2006.
    [32] J. Hirsch, M. Schäffner, Growth conditions and regularity, an optimal local boundedness result, Commun. Contemp. Math., 23 (2021), 2050029. https://doi.org/10.1142/S0219199720500297 doi: 10.1142/S0219199720500297
    [33] Q. Han, F. Lin, Elliptic partial differential equations, New York and Providence: New York University, Courant Institute of Mathematical Sciences and American Mathematical Society, 1997.
    [34] O. Ladyzhenskaya, N. Ural'tseva, Linear and quasilinear elliptic equations, New York-London: Leon Ehrenpreis Academic Press, 1968.
    [35] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
    [36] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
    [37] G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355–426. https://doi.org/10.1007/s10778-006-0110-3 doi: 10.1007/s10778-006-0110-3
    [38] G. Mingione, V. Rǎdulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. https://doi.org/10.1016/j.jmaa.2021.125197 doi: 10.1016/j.jmaa.2021.125197
    [39] M. K. V. Murthy, G. Stampacchia, Boundary value problems for some degenerate-elliptic operators, Annali di Matematica Pura ed Applicata, 80 (1968), 1–122. https://doi.org/10.1007/BF02413623 doi: 10.1007/BF02413623
    [40] A. Schwarzmann, Optimal boundedness results for degenerate elliptic equations, Thesis TU Dortmund, 2020.
    [41] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247–302. https://doi.org/10.1007/BF02391014 doi: 10.1007/BF02391014
    [42] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721–747. https://doi.org/10.1002/cpa.3160200406 doi: 10.1002/cpa.3160200406
    [43] N. S. Trudinger, On the regularity of generalized solutions of linear, non-uniformly elliptic equations, Arch. Rational Mech. Anal., 42 (1971), 50–62. https://doi.org/10.1007/BF00282317 doi: 10.1007/BF00282317
    [44] N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 265–308.
    [45] X. Zhang, Maximum principle for non-uniformly parabolic equations and applications, arXiv: 2012.05026.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(961) PDF downloads(186) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog