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Abstract: We study local boundedness for subsolutions of nonlinear nonuniformly elliptic equations
whose prototype is given by ∇ · (λ|∇u|p−2∇u) = 0, where the variable coefficient 0 ≤ λ and its inverse
λ−1 are allowed to be unbounded. Assuming certain integrability conditions on λ and λ−1 depending on
p and the dimension, we show local boundedness. Moreover, we provide counterexamples to regularity
showing that the integrability conditions are optimal for every p > 1.

Keywords: elliptic regularity; nonuniform ellipticity; local boundedness; unbounded solutions; weak
solutions

1. Introduction

In this note, we study local boundedness of weak (sub)solutions of non-uniformly elliptic quasi-
linear equations of the form

∇ · a(x,∇u) = 0 in Ω, (1.1)

where Ω ⊂ Rd with d ≥ 2 and a : Ω × Rd → Rd is a Caratheodory function. The main example
that we have in mind are p-Laplace type operators with variable coefficients, that is, there exist p > 1
and A : Ω → Rd×d such that a(x, ξ) = A(x)|ξ|p−2ξ for all x ∈ Ω and ξ ∈ Rd. In order to measure the
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ellipticity of a, we introduce for fixed p > 1

λ(x) := inf
ξ∈Rd\{0}

a(x, ξ) · ξ
|ξ|p

µ(x) := sup
ξ∈Rd\{0}

|a(x, ξ)|p

(a(x, ξ) · ξ)p−1 (1.2)

and suppose that λ and µ are nonnegative. In the uniformly elliptic setting, that is that there exists 0 <
m ≤ M < ∞ such that m ≤ λ ≤ µ ≤ M in Ω, solution to (1.1) are locally bounded, Hölder continuous
and even satisfy Harnack inequality, see e.g., classical results of Ladyzhenskaya & Ural’tseva, Serrin
and Trudinger [34, 41, 42].

In this contribution, we are interested in a nonuniformly elliptic setting and assume that λ−1 ∈ Lt(Ω)
and µ ∈ Ls(Ω) for some integrability exponents s and t. In [7], we studied this in the case of linear
nonuniformly elliptic equations, that is a(x, ξ) = A(x)ξ corresponding to the case p = 2, and showed
local boundedness and Harnack inequality for weak solutions of (1.1) provided it holds 1

s + 1
t <

2
d−1 .

The results of [7] improved classical findings of Trudinger [43, 44] (see also [39]) from the 1970s
and are optimal in view of counterexamples constructed by Franchi et al. in [27]. In this manuscript
we extend these results to the more general situation of quasilinear elliptic equation with p-growth as
described above. More precisely, we show

Theorem 1. Let d ≥ 2, p > 1, and let Ω ⊂ Rd. Moreover, let s ∈ [1,∞] and t ∈ (1/(p − 1),∞] satisfy

1
s

+
1
t
<

p
d − 1

. (1.3)

Let a : Ω × Rd → Rd be a Caratheodory function with a(·, 0) ≡ 0 such that λ and µ defined in (1.2)
satisfy µ ∈ Ls(Ω) and 1

λ
∈ Lt(Ω). Then any weak subsolution of (1.1) is locally bounded from above in

Ω.

Remark 1. Note that Theorem 1, restricted to the case p = 2 recovers the local boundedness part
of [7, Theorem 1.1].

Remark 2. In [15], Cupini, Marcellini and Mascolo studied local boundedness of local minimizer of
nonuniformly elliptic variational integrals of the form

∫
Ω

f (x,∇v) dx where f satisfies

λ(x)|ξ|p ≤ f (x, ξ) ≤ µ(x) + µ(x)|ξ|q with λ−1 ∈ Lt(Ω) and µ ∈ Ls(Ω). (1.4)

They proved local boundedness under the relation 1
pt + 1

qs + 1
p −

1
q < 1

d (see also [11] for related
results). Considering the specific case f (x, ξ) = λ(x)|ξ|p, the result of [15] implies local boundedness
of solutions to ∇ · (λ(x)|∇u|p−2∇u) = 0 provided λ−1 ∈ Lt(Ω) and λ ∈ Ls(Ω) with 1

s + 1
t <

p
d , which is

more restrictive compared to assumption (1.3) in Theorem 1. It would be interesting to investigate if
the methods of the present paper can be combined with the ones of [15] to obtain local boundedness
for minimizer of functionals satisfying (1.4) assuming 1

pt + 1
qs + 1

p −
1
q <

1
d−1 . Note that in the specific

case s = t = ∞, this follows from [32].

Remark 3. We emphasize that we only impose global integrability conditions on λ−1 and µ. Assuming
additional local conditions on the coefficients in the form λ ∼ µ and µ is in some Muckenhoupt class,
local boundedness is proven under weaker integrability conditions in the seminal work [25] in the case
p = 2 (see also [31] for the case p > 1); for further recent results on higher regularity for nonlinear
elliptic equations with Muckenhoupt coefficients we refer to [4, 5, 13, 17].
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The proof of Theorem 1 is presented in Section 2 and follows a variation of the well-known Moser-
iteration method. The main new ingredient compared to earlier works [15, 43] lies in an optimized
choice of certain cut-off functions – an idea that we first used in [7] for linear nonuniformly elliptic
equations (see also [1, 10, 45] for recent applications to linear parabolic equations).

As mentioned above, an example constructed in [27] shows that condition (1.3) is optimal for the
conclusion of Theorem 1 in the case p = 2. In the second main result of this paper, we show – building
on the construction of [27] – that condition (1.3) is optimal for the conclusion of Theorem 1 for all
p ∈ (1,∞). More precisely, we have

Theorem 2. Let d ≥ 3, 1 + 1
d−2 < p < ∞, and let s ≥ 1 and t > 1

p−1 be such that 1
s + 1

t ≥
p

d−1 and
p

1+1/t < d − 1. Then there exists λ : B(0, 1) → (0,∞) satisfying λ ∈ Ls(B1) and λ−1 ∈ Lt(B1) and an
unbounded weak subsolution of

− ∇ · (λ|∇v|p−2∇v) = 0 (1.5)

in B(0, 1). Moreover, the same conclusion is valid for d ≥ 3, 1 < p ≤ 1 + 1
d−2 and s ≥ 1 and t > 1

p−1

satisfying the strict inequalities 1
s + 1

t >
p

d−1 and t
t+1 p < d − 1.

In particular, we see that condition (1.3) is sharp on the scale of Lebesgue-integrability for the
conclusion of Theorem 1. We note that in the particularly interesting case p = 2 and d = 3 the
construction in Theorem 2 fails in the critical case 1

s + 1
t =

p
d−1 , see [1] for counterexamples to local

boundedness for related problems in d = 3.
Let us now briefly discuss a similar but different instance of non-uniform ellipticity which is one of

the many areas within the Calculus of Variations, where G. Mingione made significant contributions.
Consider variational integrals ∫

Ω

F(x,∇u) dx, (1.6)

where the integrand F satisfies (p, q) growth conditions of the form

|ξ|p . F(x, ξ) . 1 + |ξ|q 1 < p ≤ q < ∞, (1.7)

which where first systematically studied by Marcellini in [35, 36]; see also the recent reviews [37,
38]. The focal point in the regularity theory for those functionals is to obtain Lipschitz-bounds on
the minimizer. Indeed, once boundedness of |∇u| is proven the unbalanced growth in (1.7) becomes
irrelevant and there is a huge literature dedicated to Lipschitz estimates under various assumptions
on F, see e.g., the interior estimates [6, 8, 9, 23] in the autonomous case, [2, 14, 16, 18–20, 22, 30] in
the non-autonomous case, [12, 21] for Lipschitz-bounds at the boundary, and also examples where the
regularity of minimizer fail [3, 24, 26, 28, 36]. Finally, we explain a link between functionals with
(p, q)-growth and (linear) equations with unbounded coefficients. Consider the autonomous case that
F(x, ξ) = F(ξ) and let u ∈ W1,p(Ω) be a local minimizer of (1.6). Linearizing the corresponding
Euler-Largrange equation yield (formally)

∇ · D2F(∇u)∇∂iu = 0.

Assuming (p, q)-growth with p = 2 of the form |ζ |2 . D2F(ξ)ζ · ζ . (1 + |ξ|)q−2|ζ |2 implies that

|D2F(∇u)| ∈ L
2

q−2

loc (Ω). Hence condition (1.3) with p = 2 yield local boundedness of ∂iu if q−2
2 < 2

d−1 ,
which is the currently best known general bound ensuring Lipschitz-continuity of local minimizer of
(1.6) – this reasoning was made rigorous in [8] for p ≥ 2 (see also [9] for the case p ∈ (1,∞)).
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2. Local boundedness, proof of Theorem 1

Before we prove Theorem 1, we introduce the notion of solution that we consider here.

Definition 1. Fix a domain Ω ⊂ Rd and a Caratheodory function a : Ω × Rd → Rd such that for a
fixed p ∈ (1,∞) the functions λ, µ ≥ 0 given in (1.2) satisfy 1

λ
∈ L

1
p−1 (Ω) and µ ∈ L1(Ω). The spaces

H1,p
0 (Ω, a) and H1,p(Ω, a) are respectively defined as the completion of C1

c (Ω) and C1(Ω) with respect
to the norm ‖ · ‖H1,p(Ω,a), where

‖u‖H1,p(Ω,a) :=
(∫

Ω

λ|∇u|p + µ|u|p dx
) 1

p

.

We call u a weak solution (subsolution, supersolution) of (1.1) in Ω if and only if u ∈ H1,p(Ω, a) and

∀φ ∈ H1,p
0 (Ω, a), φ ≥ 0 : A(u, φ) = 0 (≤ 0,≥ 0), where A(u, φ) :=

∫
Ω

a(x,∇u) · ∇φ dx.

(2.1)
Moreover, we call u a local weak solution of (1.1) in Ω if and only if u is a weak solution of (1.1)
in Ω′ for every bounded open set Ω′ b Ω. Throughout the paper, we call a solution (subsolution,
supersolution) of (1.1) in Ω a-harmonic (a-subharmonic, a-superharmonic) in Ω.

The above definitions generalize the concepts of weak solutions and the spaces H1(Ω, a) and
H1

0(Ω, a) discussed by Trudinger [43, 44] in the linear case, that is a(x, ξ) = A(x)ξ. We stress that the
condition λ−1 ∈ L

1
p−1 (Ω) and Hölder inequality imply

‖∇u‖L1(Ω) ≤ ‖λ
−1‖

L
1

p−1 (Ω)

(∫
Ω

λ|∇u|p
) 1

p

≤ ‖λ−1‖
L

1
p−1 (Ω)

‖u‖H1,p(Ω,a)

and thus, we have that W1,1(Ω) ⊂ H1,p(Ω, a), where we use that by the same computation as above it
holds ‖u‖L1(Ω) ≤ ‖µ

−1‖
L

1
p−1 (Ω)

‖u‖H1,p(Ω,a) and that by definition we have λ ≤ µ. From this, we also deduce

that the elements of H1,p(Ω, a) are strongly differentiable in the sense of [29]. In particular this implies
that there holds a chain rule in the following sense

Remark 4. Let g : R → R be uniformly Lipschitz-continuous with g(0) = 0 and consider the
composition F := g(u). Then, u ∈ H1,p

0 (Ω, a) (or ∈ H1,p(Ω, a)) implies F ∈ H1,p
0 (Ω, a) (or

∈ H1,p(Ω, a)), and it holds ∇F = g′(u)∇u a.e. (see e.g., [44, Lemma 1.3]). In particular, if u satisfies
u ∈ H1,p(Ω, a) (or ∈ H1,p(Ω, a)) then also the truncations

u+ := max{u, 0}; u− := −min{u, 0}

satisfy u+, u− ∈ H1,p(Ω, a) (or ∈ H1,p(Ω, a)).

Now we come to the local boundedness from above for weak subsolutions of (1.1). In order to state
the estimates in the right dimensionality, we introduce for v ∈ W1,γ(Ω) with γ ≥ 1 the notation

‖v‖W1,γ(Ω) := |Ω|−
1
γ ‖v‖Lγ(Ω) + |Ω|

1
d−

1
γ ‖∇v‖Lγ(Ω), (2.2)

where |Ω| denotes the d-dimensional Lebesgue-measure of Ω. Moreover, we denote by ‖v‖W1,γ(Ω) the
usual Sobolev-norm given by ‖v‖W1,γ(Ω) := ‖v‖Lγ(Ω) + ‖∇v‖Lγ(Ω).
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Theorem 3. Let d ≥ 3, Ω ⊂ Rd and p ∈ (1,∞). Moreover, let s ∈ [1,∞] and t ∈ ( 1
p−1 ,∞] satisfy (1.3).

Let a : Ω × Rd → Rd be a Caratheodory function with a(·, 0) ≡ 0 such that λ and µ defined in (1.2)
satisfy µ ∈ Ls(Ω) and 1

λ
∈ Lt(Ω) and for every measurable set S ⊂ Ω, we set

Λ(S ) :=
(?

S
µs)1/s(?

S
λ−t)1/t

.

Then, there exists c = c(d, p, s, t) ∈ [1,∞) such that for any weak subsolution u of (1.1) and for any
ball BR ⊂ Ω it holds

sup
BR/2

u ≤ cΛ(BR)
1
p

1
δ ‖u+‖

W
1, 1

1+1/t p
(BR)

,

where ‖ · ‖W1,γ(Br) is defined in (2.2); and δ := 1
s∗
− ( 1

p −
1
pt ) > 0 (see Lemma 1 for the definition of s∗).

Moreover, in the case 1 + 1
t <

p
d−1 , there exists c = c(d, p, t) ∈ [1,∞) such that

sup
BR/2

u ≤ c‖u+‖
W

1, 1
1+1/t p

(BR)
.

In the two-dimensional case, we have the following

Proposition 1. Let Ω ⊂ R2 and p ∈ (1,∞). Let a : Ω × Rd → Rd be a Caratheodory function with
a(·, 0) ≡ 0 such that λ and µ defined in (1.2) satisfy µ ∈ L1(Ω) and 1

λ
∈ L

1
p−1 (Ω). Then, there exists

c = c(d, p) ∈ [1,∞) such that for any weak subsolution u of (1.1) and for any ball BR ⊂ Ω it holds

sup
BR/2

u ≤ c‖u+‖W1,1(BR).

Before we proof Theorem 3 and Proposition 1, we show that they imply the claim of Theorem 1.

Proof of Theorem 1. In view of Theorem 3 and Proposition 1 it remains to show that for any weak
subsolution u of (1.1) and for any ball BR ⊂ Ω it holds ‖u+‖W1, t

t+1 p(BR)
< ∞. This is a consequence of

Hölder inequality and the concept of weak subsolution, see Definition 1. Indeed, we have(∫
BR

(|u| + |∇u|)
tp

t+1

) t+1
t

≤

(∫
BR

λ−t
) 1

t
∫

BR

λ(|u| + |∇u|)p < ∞,

where the right-hand side is finite since u ∈ H1,p(Ω, a) (note that λ ≤ µ by definition). �

For the proof of Theorem 3, we need a final bit of preparation, namely the following optimization
lemma

Lemma 1 (Radial optimization). Let d ≥ 3, p > 1, s > 1, and let s∗ := max{1,
( 1

p

(
1 − 1

s

)
+ 1

d−1

)−1
}. For

1
2 ≤ ρ < σ ≤ 2, let v ∈ W1,s∗(Bσ) and µ ∈ Ls(Bσ), µ ≥ 0, be such that µ|v|p ∈ L1(Bσ). Then there exists
c = c(d, p, s) such that

J(ρ, σ, v) := inf
{∫

Bσ
µ|v|p|∇η|p dx : η ∈ C1

0(Bσ), η ≥ 0, η = 1 in Bρ

}
satisfies

J(ρ, σ, v) ≤ c(σ − ρ)−
pd

d−1 ‖µ‖Ls(Bσ\Bρ)
(
‖∇v‖p

Ls∗ (Bσ\Bρ) + ρ−p‖v‖p
Ls∗ (Bσ\Bρ)

)
.
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Lemma 1 generalizes [7, Lemma 2.1] from p = 2 to p > 1 and we provide a proof in the appendix.

Proof of Theorem 3. By standard scaling and translation arguments it suffices to suppose that B1 b Ω

and u is locally bounded in B 1
2
. Hence, we suppose from now on that B1 b Ω. In Steps 1–4 below,

we consider the case s > 1. We first derive a suitable Caccioppoli-type inequality for powers of u+

(Step 1) and perform a Moser-type iteration (Steps 2–4). In Step 5, we consider the case 1 + 1
t <

p
d−1

which includes the case s = 1.
Step 1. Caccioppoli inequality.

Assuming B ⊂ Ω, for any cut-off function η ∈ C1
0(B), η ≥ 0 and any β ≥ 1, there holds∫

ηpλ(x)uβ−1
+ |∇u+|

p ≤

( p
β

)p ∫
up+β−1

+ µ(x)|∇η|p. (2.3)

For β ≥ 1, we use the weak formulation (2.1) with φ := ηpuβ+: ∗∫
a(x,∇u) · ∇(ηpuβ+) ≤ 0.

We have
∫

(a(x,∇u) − a(x,∇u+)) · ∇(ηpu+) = 0, so that we were able to replace u with u+ inside a(x, ·).
Applying Leibniz rule we get from the previous display

β

∫
ηpuβ−1a(x,∇u) · ∇u ≤ −

∫
pηp−1uβa(x,∇u) · ∇η, (2.4)

where to simplify the notation for the rest of this proof we write u instead of u+. Using definition of µ
in (1.2) in form of |a(x, ξ)| ≤ µ(x)

1
p (a(x, ξ) · ξ)

p−1
p for any ξ ∈ Rd (in fact we use (1.2) for ξ , 0 and for

ξ = 0 the inequality follow from the assumption a(x, 0) = 0), we can bound the r.h.s. in the last math
display from above by

p
∫

ηp−1uβµ(x)
1
p (a(x,∇u) · ∇u)

p−1
p |∇η| = p

∫
uβ−(β−1) p−1

p µ(x)
1
p |∇η|(ηpuβ−1a(x,∇u) · ∇u)

p−1
p

≤ p
(∫

up+β−1µ(x)|∇η|p
) 1

p
(∫

ηpuβ−1a(x,∇u) · ∇u)
) p−1

p

,

where in the second step we applied Hölder inequality with exponents p and p
p−1 , respectively. Observe

that the last term on the r.h.s. appears on the l.h.s. in (2.4), so that after absorbing it we get from (2.4)

β
(∫

ηpuβ−1a(x,∇u) · ∇u
) 1

p

≤ p
(∫

up+β−1µ(x)|∇η|p
) 1

p

,

which after taking the p-th power turns into∫
ηpuβ−1a(x,∇u) · ∇u ≤

( p
β

)p ∫
up+β−1µ(x)|∇η|p.

∗Rigorously, we are a priori not allowed to test with uβ. Instead, for N ≥ 1 one should modify uβ by replacing uβ with affine
αNα−1u− (α−1)Nβ in the set u ≥ N, obtain the conclusion by testing the weak formulation with this modified function, and subsequently
sends N → ∞ – for details, see [7, Page 460].
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By definition of λ in (1.2) in form of λ(x)|ξ|p ≤ a(x, ξ) · ξ for any ξ ∈ Rd, one has λ(x)|∇u|p ≤
a(x,∇u) · ∇u, thus implying the claimed Caccioppoli inequality (2.3).

Step 2. Improvement of integrability.
We claim that there exists c = c(d, p, s) ∈ [1,∞) such that for 1

2 ≤ ρ < σ ≤ 1 and α ≥ 1 it holds

‖∇(uα)‖
L

pt
t+1 (Bρ)

≤ c(σ − ρ)−
d

d−1 Λ(Bσ)
1
p ‖uα‖W1,s∗ (Bσ\Bρ). (2.5)

Let η ∈ C1
0(Bσ), η ≥ 0, with η = 1 in Bρ. First, we rewrite the Caccioppoli inequality (2.3) from

Step 1 as inequality for u1+
β−1

p :(
p

p + β − 1

)p ∫
ηpλ(x)|∇(u1+

β−1
p )|p ≤

( p
β

)p ∫
µ(x)(u1+

β−1
p )p|∇η|p. (2.6)

Calling v := u1+
β−1

p , we can estimate the r.h.s. with the help of Lemma 1, yielding∫
ηpλ(x)|∇v|p ≤ c

(
p + β − 1

β

)p

(σ − ρ)−
pd

d−1 ‖µ‖Ls(Bσ\Bρ)
(
‖∇v‖p

Ls∗ (Bσ\Bρ) + ρ−p‖v‖p
Ls∗ (Bσ\Bρ)

)
.

Using Hölder inequality with exponents ( t+1
t , t + 1) and the fact that η = 1 in Bρ, we see that

‖∇v‖p

L
pt

t+1 (Bρ)
≤ ‖λ−1‖Lt(Bρ)‖λ|∇v|p‖L1(Bρ) ≤ ‖λ

−1‖Lt(Bρ)

∫
ηpλ(x)|∇v|p.

Using that 1
2 ≤ ρ ≤ σ ≤ 1, combination of two previous relations yields

‖∇v‖p

L
pt

t+1 (Bρ)
≤ c

(
p + β − 1

β

)p

(σ − ρ)−
pd

d−1 Λ(Bσ)‖v‖p
W1,s∗ (Bσ\Bρ),

which after taking p-root turns into

‖∇(uα)‖
L

pt
t+1 (Bρ)

≤ c(σ − ρ)−
d

d−1 Λ(Bσ)
1
p ‖uα‖W1,s∗ (Bσ\Bρ),

with α := 1 +
β−1

p .

Step 3. One-step improvement.
First, we note that (1.3) and t > 1

p−1 imply δ := 1
s∗
− 1

p (1 + 1
t ) > 0. In particular it holds s∗ <

tp
t+1 . We

claim that there exists c = c(d, s, t, p) such that for 1
2 ≤ ρ < σ ≤ 1 there holds

‖uχα‖
1
χα

W1,s∗ (Bρ) ≤

( cΛ(Bσ)
1
p

(σ − ρ)
d

d−1

) 1
χα

‖uα‖
1
α

W1,s∗ (Bσ), (2.7)

where χ := 1 + δ > 1. Using Hölder inequality with exponent pt
(t+1)s∗

> 1 and its dual exponent
pt

pt−(t+1)s∗
= 1

δs∗
we get

(∫
Bρ
|∇(u(1+δ)α)|s∗

) 1
s∗

= (1 + δ)α
(∫

Bρ
|∇u|s∗u(α−1)s∗uαδs∗

) 1
s∗

= (1 + δ)
(∫

Bρ
|∇(uα)|s∗uαδs∗

) 1
s∗

Mathematics in Engineering Volume 5, Issue 5, 1–20.
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≤ (1 + δ)
(∫

Bρ
|∇(uα)|

pt
t+1

) t+1
pt
(∫

Bρ
uα

)δ
.

Combining the above estimate with (2.5) from Step 2, we get (recall χ = 1 + δ)

‖∇(uχα)‖Ls∗ (Bρ) ≤ c(σ − ρ)−
d

d−1 Λ(Bσ)
1
p ‖uα‖χ

W1,s∗ (Bσ),

where we hided χ = 1 + δ < d
d−1 into c. In order to have full W1,s∗(Bρ)-norm also on the l.h.s., using

s∗ ≥ 1 as well as χ < d
d−1 we can use Sobolev inequality to the effect

‖uχα‖Ls∗ (Bρ) ≤ c‖uα‖W1,s∗ (Bρ),

thus obtaining the claim.

Step 4. Iteration.
We iterate the outcome of Step 3. For ᾱ ≥ 1 and n ∈ N let αn := ᾱχn−1, ρn := 1

2 + 1
2n+1 , σn := ρn + 1

2n+1 =

ρn−1. Then (2.8) from Step 4 with α := αn has the form

‖uαn+1‖
1

αn+1

W1,s∗ (Bρn ) ≤ (cΛ(B1)
1
p 4n)

1
ᾱχn ‖uαn‖

1
αn

W1,s∗ (Bρn−1 ). (2.8)

Using that Lp approximates L∞ as p→ ∞, we see that

‖u‖L∞(B1/2) ≤

( ∞∏
n=1

(cΛ(Bσ)
1
p 4n)

1
ᾱχn

)
‖uᾱ‖

1
ᾱ

W1,s∗ (B1)

≤ cΛ(Bσ)
1

pᾱ
1
χ−1 ‖uᾱ‖

1
ᾱ

W1,s∗ (B1), (2.9)

which for ᾱ = 1 yields the desired claim where we use χ = 1 + δ and s∗ ≤
tp

t+1 .

Step 5. The remaining case 1 + 1
t <

p
d−1 .

Using Fubini theorem, we can choose a generic radius r0 ∈ (1
2 , 1) such that

‖u+‖
pt

t+1

W1, pt
t+1 (S r0 )

≤ 2‖u+‖
pt

t+1

W1, pt
t+1 (B1)

.

We test the weak formulation of −∇ · a(x,∇u) ≤ 0 see (2.1) with the non-negative test function φ :=
(u+ − supS r0

u+)+, which obviously vanishes on S r0 and can be therefore trivially extended by zero to
the whole domain Ω. This yields

0
(2.1)
≥

∫
Br0

a(x,∇u) · ∇φ =

∫
Br0

a(x,∇φ) · ∇φ
(1.2)
≥

∫
Br0

λ(x)|∇φ|p.

In particular, we see that ∇φ = 0 a.e. in Br0 , hence φ ≡ 0 and thus

‖u+‖L∞(B 1
2

) ≤ ‖u+‖L∞(Br0 ) ≤ sup
S r0

u+.

Using that pt
t+1 > d − 1, which follows from 1 + 1

t < p
d−1 , we have by Sobolev embedding that

supS r0
u+ ≤ c‖u+‖W1, pt

t+1 (S r0 )
for some c = c(d, p, t) > 0 which by the above choice of r0 completes the

claim.
�
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Proof of Proposition 1. This follows exactly as in Step 5 of the proof of Theorem 3 using that for d = 2
it holds supS r0

u+ ≤ c‖u+‖W1,1(S r0 ). �

We close this section by deriving from Theorem 3 in the case s > 1 an L∞ − Lγ estimate.

Corollary 1. Let d ≥ 2, Ω ⊂ Rd and p ∈ (1,∞). Moreover, let s ∈ (1,∞] and t ∈ ( 1
p−1 ,∞] satisfy (1.3).

Let a : Ω × Rd → Rd be a Caratheodory function with a(·, 0) ≡ 0 such that λ and µ defined in (1.2)
satisfy µ ∈ Ls(Ω) and 1

λ
∈ Lt(Ω). Then, any weak subsolution u of (1.1) and any γ > 0 there exists

c = c(γ, d, p, s, t) ∈ [1,∞) such that for any ball BR ⊂ Ω

sup
BR/2

u ≤ cΛ(BR)
1
γ

s
s−1 (1+ 1

δ )
(?

BR

uγ+
) 1
γ

.

Proof. Without loss of generality we consider R = 1 and suppose that B1 b Ω. Caccioppoli
inequality (2.6) with β = 1 + p(α − 1) for α ≥ 1 and η ∈ C1

c (B1) with η = 1 on B 1
2

and |∇η| ≤ 2 and
Hölder inequality yield

‖∇(uα+)‖p

L
pt

t+1 (B1/2)
≤ ‖λ−1‖Lt(B1)

∫
B1

ηpλ|∇(uα+)|p ≤ (2p)p‖λ−1‖Lt(B1)

∫
B1

µuαp
+

≤ (2p)p‖λ−1‖Lt(B1)‖µ‖Ls(B1)‖uα+‖L s
s−1 p(B1).

The above inequality combined with tp
t+1 ≤ p ≤ sp

s−1 implies ‖uα+‖
1
α

W1, tp
t+1 (B1/2)

≤ cΛ(B1)
1
αp ‖u+‖L

αps
s−1 (B1)

(note

that 1 ≤ Λ(Br)) for some c = c(d, p) ∈ [1,∞). Hence, we have in combination with (2.9) that

‖u+‖L∞(B1/4) ≤ cΛ(B1)
1
αp (1+ 1

δ )
‖u+‖L

αps
s−1 (B1)

, (2.10)

where c = c(α, d, p, t, s) ∈ [1,∞).
From estimate (2.10) the claim follows by routine arguments and we only sketch the idea (see [7,

Proof of Theorem 3.3, Step 2] for precise arguments in the case p = 2). By scaling and translation, we
deduce from (2.10) that for all ρ > 0 and x ∈ B1 such that Bρ(x) ⊂ B1 it holds for α ≥ 1

‖u+‖L∞(Bρ/4(x)) ≤ cΛ(Bρ(x))
1
αp (1+ 1

δ )ρ−
d
p (1− 1

s )
‖u+‖L

αps
s−1 (Bρ(x))

,

where c is as in (2.10). Combining the above estimate with a simple covering argument, we obtain that
there exists c = c(α, d, p, s, t) ∈ [1,∞) such that for all θ ∈ (0, 1) and r ∈ (0, 1] it holds

‖u+‖L∞(Bθr) ≤ cΛ(Br)
1
αp (1+ 1

δ )(1 − θ)−κr−d s−1
αps ‖u+‖L

αps
s−1 (Br)

,

where κ := d
αp (( 1

t + 1
s )(1 + 1

δ
) + 1 − 1

s ) which is the claim for all γ ≥ ps
s−1 (by choosing α = s−1

ps γ). The
claim for γ ∈ (0, ps

s−1 ) follows by a standard interpolation and iteration argument see e.g., the textbook
reference [33, p. 75] in the uniformly elliptic case or as mentioned above [7, Proof of Theorem 3.3,
Step 2] for a closely related setting. �
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3. Counterexample, proof of Theorem 2

Proof of Theorem 2. The following construction is very much inspired by a construction in [27] in the
linear case, that is p = 2, and d = 4 (which was already extended to d ≥ 3 in [40]).

Let d ≥ 3. Throughout the proof, we set

x = (x1, . . . , xd) = (x1, x′) and |x′| =

√√√ d∑
j=2

x2
j .

For any p ∈ (1,∞) and θ ∈ [0, 1], we define λθ(x) := ωθ(|x′|) where ωθ : (0, 1)→ R+ is defined as

ωθ(r) =

(i + 1)(p−1)θ4−piθ when r ∈ [ 1
24−i, 4−i),

((i + 1)−(p−1)4pi)1−θ when r ∈ [ 1
44−i, 1

24−i)
(3.1)

for i ∈ N. We will construct an explicit subsolution to −∇ · (λθ|∇v|p−2∇v) = 0, which is of the form

v(x) = eαx1φ(|x′|) (3.2)

for some parameter α = α(d, p) > 0 and φ : (0, 1)→ R is defined by

φ(r) =

i +
ηi

2Q−1 ((4ir)−Q − 1) when r ∈ [ 1
2 4−i, 4−i),

(i + 1) − (1 − ηi)(4i+1r − 1)2 when r ∈ [ 1
4 4−i, 1

2 4−i)
, with Q =

max{d − 3, 1} if p ≥ 2
d−2
p−1 − 1 if 1 < p < 2

(3.3)

where ηi ∈ [0, 1] will be specified below. Note that Q > 0 and φ is continuous by definition. We choose
ηi ∈ (0, 1) such that the flux λθ|∇v|p−2∇v is continuous at |x′| = 1

24−i for every i ∈ N. More precisely,
we set ηi to be the largest constant (in [0, 1]) satisfying

Fi(ηi) = 0, (3.4)

where Fi : (0, 1]→ R is given by

Fi(η) :=
√

(α(i + η)4−i)2 + (CQη)2 p−2CQη

−
√

(α(i + η)(i + 1)−1)2 + (8(1 − η)4i(i + 1)−1)2 p−28(1 − η)42i(i + 1)−1

with

CQ = Q
2Q+1

2Q − 1
.

Note that ηi is well-defined since Fi : (0, 1)→ R is continuous with

lim
η→0

Fi(η) = −
√

(αi)2 + (2 · 4i+1)2 p−28 · 42i(i + 1)−(p−1) < 0

and
lim
η→1

Fi(η) =

√
(α(i + 1)4−i)2 + C2

Q
p−2CQ > 0.
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The definition of ηi is rather implicit and we provide now some explicit bounds on ηi which will be
useful for later computations. We distinguish two cases. For p ≥ 2 and α ≥ CQ, we have that

∃ j = j(d, p) ≥ 2 such that ∀i ≥ j: ηi ≥ 1 − 8−1(4p−2CQ)4−2i(i + 1) =: η
i
. (3.5)

Indeed, let j = j(d, p) ≥ 2 be such that η
i
∈ (0, 1) for all i ≥ j. By definition of ηi, it suffices to show

that Fi(ηi
) ≤ 0 for i ≥ j. We have

Fi(ηi
) ≤

√
(α(i + 1)4−i)2 + C2

Q
p−2CQ −

√
(αi/(i + 1))2 p−2(4p−2CQ)

=

√
((i + 1)4−i)2 + (CQ/α)2 p−2αp−2CQ − α

p−2
√

(i/(i + 1))2 p−2(4p−2CQ)

≤ αp−2(2p−2CQ − 2−(p−2)(4p−2CQ)) = 0,

where we used for the last inequality (i + 1)4−i ≤ 1 and i/(i + 1) ≥ 1
2 for i ≥ 1 and α ≥ CQ.

In the case p ∈ (1, 2), we have for α ≥ 2
2−p
p−1 CQ that

∃ j = j(α, d, p) ≥ 2 such that ∀i ≥ j: ηi ≥ 1 − 8−1α4−2i(i + 1) =: ηi. (3.6)

Indeed, this follows as above from

Fi(ηi) ≤ Cp−1
Q −

√
α2 + (α4−i)2 p−2α ≤ Cp−1

Q − αp−12p−2 ≤ 0.

Step 1. We show that for every α ≥ max{1, 2
2−p
p−1 }CQ, the function v defined in (3.2) has finite energy,

that is
∫

B1
λθ(|v|p + |∇v|p) < ∞ provided (1 − θ)p < d − 1.

We show first
∫

B1
λθ|v|p < ∞. For this, we observe that 0 ≤ φ(r) ≤ log(4/r) for all r ∈ (0, 1). Indeed,

φ ≥ 0 is clear from the definition (3.3) and for r ∈ [1
44−i, 4−i), we have

φ(r) ≤ i + 1 = log4(4i+1) ≤ log4( 4
r ) ≤ log( 4

r ).

Similarly, we get

ωθ(r) ≤

((2r)p log(4/r)p−1)θ when r ∈ [ 1
24−i, 4−i),

(rp log(2/r)p−1)−(1−θ) when r ∈ [ 1
44−i, 1

24−i)
. (3.7)

Hence, there exists C = C(α, d, p) > 0 such that∫
B1

λθvp dx ≤ C
∫ 1

0
r−(1−θ)p log(2/r)p−(1−θ)(p−1)rd−2 dr < ∞,

where the last integral is finite since (1 − θ)p < d − 1.
Next, we show

∫
B1
λθ|∇v|p < ∞. For this we compute the gradient of v:

∇v =

(
αφ

φ′ x′
|x′ |

)
eαx1 and |∇v| =

√
α2φ2 + φ′2eαx1 . (3.8)

Moreover, we compute

φ′(r) =

−Q ηi
2Q−1 (4ir)−Qr−1 when r ∈ ( 1

24−i, 4−i),
−2(1 − ηi)4i+1(4i+1r − 1) when r ∈ (1

44−i, 1
24−i)

(3.9)
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and for later usage

φ′′(r) =

Q(Q + 1) ηi
2Q−1 (4ir)−Qr−2 when r ∈ (1

24−i, 4−i),
−2(1 − ηi)42(i+1) when r ∈ (1

44−i, 1
24−i)

. (3.10)

From (3.5) and (3.6), we obtain that there exists C = C(α, d, p) > 0 such that 0 ≤ 1 − ηi ≤ C4−2i(i + 1)
for i ≥ j(α, d, p) and thus in combination with (3.9) there exists C = C(α, d, p) > 0 such that

|φ′(r)| ≤ C

r−1 when r ∈ ( 1
24−i, 4−i),

log(2/r)r when r ∈ ( 1
44−i, 1

24−i)

for all i ≥ j. Hence, we find C = C(α, d, p) > 0 such that∫
B1

λθ|∇v|p ≤ C + C
∫ 1

0

(
(rp log(2/r)p−1)θr−p + (rp log(2/r)p−1)−(1−θ)(log(2/r)r)p

)
rd−2 dr < ∞,

where we use again (1 − θ)p < d − 1. Finally, it is easy to check that the sequence (vk)k defined
by vk(x) = eαx1φk(|x′|) with φk(x) = φ(x) if |x| > 4−k and φk(x) = k if |x′| ≤ 4−k is a sequence of
Lipschitz functions satisfying limk→∞

∫
B1
λθ(|v− vk|

p + |∇v−∇v|p)→ 0 as k → ∞ and a straightforward
regularization shows that v in H1,p(B1, a) with a(x, ξ) := λθ(x)|ξ|p−2ξ.

Step 2. We claim that there exist α0 = α0(d, p) ≥ 1 such that for every α ≥ α0 there exists
ρ = ρ(α, d, p) ∈ (0, 1] such that v defined in (3.2) is a weak subsolution in {x ∈ B1 : δ < |x′| < ρ} for
all δ > 0.

For this, we observe first that by (3.8) the nonlinear strain |∇v|p−2∇v of v is given by

|∇v|p−2∇v =
√
α2φ2 + φ′2 p−2

(
αφ

φ′ x′
|x′ |

)
eα(p−1)x1 . (3.11)

Introducing the notation M2i = B1 ∩ {
1
24−i < |x′| < 4−i} and M2i+1 = B1 ∩ {

1
44−i < |x′| < 1

24−i}, we
obtain with help of integrating by parts∫

B1

λθ|∇v|p−2∇v · ∇ϕ =
∑
i∈N

∫
Mi

ωθ|∇v|p−2∇v · ∇ϕ

=
∑
i∈N

−

∫
Mi

ωθ∇ · (|∇v|p−2∇v)ϕ +

∫
∂Mi

ωθ|∇v|p−2∇v · νϕ

=
∑
i∈N

−

∫
Mi

ωθ∇ · (|∇v|p−2∇v)ϕ +

∫
∂Mi

ωθ

√
α2φ2 + φ′2 p−2φ′e(p−1)αx1ϕ,

where ν denotes the outer unit normal to Mi that is ν = (0, x′/|x′|). Hence, it suffices to show that there
exists α0 > 0 such that for all α ≥ α0 there exists j = j(α, d, p) ≥ 2 such that

(i) v satisfies ∇ · (|∇v|p−2∇v) ≥ 0 in the classical sense in each shell Mi for all i ≥ j;

(ii) the flux has only nonnegative jumps at the interfaces, that is

(ωθ

√
α2φ2 + φ′2 p−2φ′)(γ−) := lim

r→γ
r<γ

(ωθ

√
α2φ2 + φ′2 p−2φ′)(r)
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≤ lim
r→γ
r>γ

(ωθ

√
α2φ2 + φ′2 p−2φ′)(r) =: (ωθ|∇v|p−2φ′)(γ+)

for all γ ∈
⋃

i∈N,i≥ j{4−i} ∪ { 124−i}.

Substep 2.1. Argument for (i). Let α ≥ 1 be such that

α ≥ α0(p, d) := max
{
1,CQ, 2

2−p
p−1 CQ, 2p

√
CQ(1 +

d − 2
p − 1

), 8
d − 1
p − 1

}
(3.12)

and let j = j(α, d, p) ≥ 2 be such that the estimates (3.5) and (3.6) are valid.
We show that v with α as above, satisfies ∇ · (|∇v|p−2∇v) ≥ 0 in the classical sense in each shell Mi

for all i ≥ j. We compute with help of (3.11) on Mi

∇ · (|∇v|p−2∇v)

=

(
α2(p − 1)

√
α2φ2 + φ′2 p−2φ + (p − 2)

√
α2φ2 + φ′2 p−4|φ′|2(α2φ + φ′′)

+
√
α2φ2 + φ′2 p−2(φ′′ + (d − 2)

φ′

|x′|
)
)
eα(p−1)x1

=
√
α2φ2 + φ′2 p−4

(
α2(p − 1)(α2φ2 + φ′2)φ + (p − 2)φ′2(α2φ + φ′′)

+ (α2φ2 + φ′2)(φ′′ + (d − 2)
φ′

|x′|
)
)
eα(p−1)x1 . (3.13)

We show that v is a classical subsolution in M2i+1. Note that φ > 0 and φ′, φ′′ < 0 on (1
44−i, 1

24−i).
We consider first the case p ≥ 2. From φ > 0, φ′′ < 0 and φ′2 ≤ α2φ2 + φ′2, we deduce

(p − 2)φ′2(α2φ + φ′′) ≥ (p − 2)(α2φ2 + φ′2)φ′′

and in combination with (3.13) that

∇ · (|∇v|p−2∇v) ≥
√
α2φ2 + φ′2 p−2(α2(p − 1)φ + (p − 1)φ′′ + (d − 2)

φ′

|x′|
)eα(p−1)x1 .

Hence, ∇ · (|∇v|p−2∇v) ≥ 0 on M2i+1 is equivalent to

α2(p − 1)φ(r) + (p − 1)φ′′(r) + (d − 2)
φ′(r)

r
≥ 0 for all r ∈ (1

44−i, 1
24−i),

which is by (3.3), (3.9) and (3.10) valid if and only if

α2(p − 1)
(
i + 1 − (1 − ηi)(4i+1r − 1)2

)
− 2(1 − ηi)4i+1((p − 1)4i+1 + r−1(d − 2)(4i+1r − 1)) ≥ 0

for all r ∈ (1
44−i, 1

24−i). We estimate with help of ηi ∈ [0, 1],

α2(p − 1)
(
(i + 1) − (1 − ηi)(4i+1r − 1)2

)
− 2(1 − ηi)4i+1((p − 1)4i+1 + r−1(d − 2)(4i+1r − 1))

≥α2(p − 1)i − 2(1 − ηi)42(i+1)(p − 1 + d − 2).
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The lower bound on ηi ≥ ηi
, see (3.5), implies 1 − ηi ≤ 1 − η

i
≤ 8−1(4p−2CQ)4−2i(i + 1) and thus

α2(p − 1)i − 2(1 − ηi)42(i+1)(p − 1 + d − 2) ≥ α2(p − 1)i − 4p−1CQ(i + 1)(p + d − 3) ≥ 0, (3.14)

where the last inequality is valid since (i + 1)/i ≤ 2 for i ≥ 1 and α2 ≥ 4p−1CQ2(1 + d−2
p−1 ) (which is

ensured by α ≥ α0, see (3.12)).

Next, we consider the case p ∈ (1, 2). We deduce from (3.13) with p − 2 < 0 and φ > 0, φ′, φ′′ < 0
that

∇ · (|∇v|p−2∇v)

≥
√
α2φ2 + φ′2 p−4

(
(α2φ2 + φ′2)

(
α2(p − 1)φ + φ′′ + (d − 2)

φ′

|x′|

)
− (2 − p)φ′2φ

)
eα(p−1)x1 . (3.15)

Similar computations as above yield for all r ∈ ( 1
44−i, 1

24−i) and p ∈ (1, 2)

α2(p − 1)φ(r) + φ′′(r) + (d − 2)
φ′(r)

r
≥ α2(p − 1)(i + ηi) − 2(1 − ηi)42(i+1)(d − 1)

(3.6)
≥ α2(p − 1)i − 4α(i + 1)(d − 1) ≥ 1

where the last inequality is valid for all i ≥ 1 and α ≥ 8 d−1
p−1 (see (3.12)). Inserting this into (3.15), we

obtain (using 2 − p ≤ 1)

∇ · (|∇v|p−2∇v) ≥
√
α2φ2 + φ′2 p−4

(
α2φ2 − φ′2φ

)
eα(p−1)x1

(3.9),(3.6)
≥

√
α2φ2 + φ′2 p−4φ

(
α2φ − (α(i + 1)4−i)2

)
eα(p−1)x1 ≥ 0,

where we use in the last inequality that 4−2i(i + 1)2 ≤ 1 and φ ≥ 1 on (1
44−i, 1

24−i) with i ≥ 1.
Now, we show that v is a classical subsolution in M2i. In view of (3.13) it suffices to show that for

all r ∈ ( 1
24−i, 4−i) it holds

α4(p−1)φ3(r) +α2(2p−3)φ(r)φ′2(r) +φ′2((p−1)φ′′(r) +
d − 2

r
φ′(r)) +α2φ2(r)(φ′′(r) +

d − 2
r

φ′(r)) ≥ 0
(3.16)

For p ≥ 3
2 , we obviously have

α4(p − 1)φ3(r) + α2(2p − 3)φ(r)φ′2(r) ≥ 0 for all r ∈ (1
24−i, 4−i).

Let us first consider p ≥ 2. In the case d ≥ 4, the choice of φ ensures

∀r ∈ (
1
2

4−i, 4−i) : φ′′(r) +
d − 2

r
φ′(r) = 0 and (p − 1)φ′′(r) +

d − 2
r

φ′(r) = (p − 2)φ′′(r) ≥ 0

and similarly for d = 3 that φ′′(r) + d−2
r φ

′(r) = 1
2φ
′′(r) ≥ 0 and (p − 1)φ′′(r) + d−2

r φ
′(r) ≥ 0. Altogether,

we have that (3.16) is valid for all r ∈ ( 1
24−i, 4−i) provided p ≥ 2.

Next, we consider the case p ∈ (1, 2). The choice of φ ensures

∀r ∈ (
1
2

4−i, 4−i) : (p − 1)φ′′(r) +
d − 2

r
φ′(r) = 0 and φ′′(r) +

d − 2
r

φ′(r) = (2 − p)φ′′(r) ≥ 0.
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Using the above two identities, we see that (3.16) is equivalent to

α4(p − 1)φ3(r) + α2(2p − 3)φ(r)φ′2(r) + α2φ2(r)(2 − p)φ′′(r) ≥ 0

and thus it suffices to show
α2(2p − 3)φφ′2 + α2φ2(2 − p)φ′′ ≥ 0.

For p ∈ [ 3
2 , 2] the above inequality directly follows from φ, φ′′ ≥ 0 and it is left to consider p ∈ (1, 3

2 )
in which case the above inequality is equivalent to

3 − 2p
2 − p

φ′2

φ′′
≤ φ.

The above inequality is valid on (1
24−i, 4−i) provided i ≥ 2. Indeed, this follows from φ ≥ i on ( 1

24−i, 4−i)
and

3 − 2p
2 − p

φ′2

φ′′
≤

3 − 2p
2 − p

Q
Q + 1

ηi

2Q − 1
2Q ≤ 2

Q
Q + 1

≤ 2.

Substep 2.2. Argument for (ii). Let α ≥ 1 and j = j(α, d, p) ≥ 2 be as in Substep 2.1.
In view of (3.8), we need to show that for all γ ∈

⋃
i∈N,i≥ j{4−i} ∪ { 124−i} it holds

(ωθ

√
α2φ2 + φ′2 p−2φ′)(γ+) ≥ (ωθ

√
α2φ2 + φ′2 p−2φ′)(γ−). (3.17)

For γ ∈
⋃

i∈N{4−i}, we directly observe that

(ωθ

√
α2φ2 + φ′2 p−2φ′)(γ+) = 0 > (ωθ

√
α2φ2 + φ′2 p−2φ′)(γ−).

Moreover, the definition of ηi via (3.4) ensures that (3.17) holds as an equality for all γ ∈
⋃

i∈N,i≥ j{
1
24−i}

which finishes the argument.

Step 3. Let 1 < p < ∞ and θ ∈ [0, 1] be such that (1 − θ)p < d − 1. Let α ≥ α0 and ρ = ρ(α, d, p) ∈
(0, 1) be as in Step 2. We show that v is a weak subsolution on Ωρ := B1 ∩ {|x′| < ρ}.

We follow a similar reasoning as in [27]. For k ∈ N, let ψk ∈ C1(R; [0, 1]) be a cut-off function
satisfying

ψk = 0 on [0, 1
24−k], ψk ≡ 1 on [4−k, 1], ‖ψ′k‖L∞(0,1) ≤ 4k+1

and we define ϕk ∈ C1(B1) by ϕk(x) = ψk(|x′|). For every η ∈ C1
c (Ωρ) with η ≥ 0, we have∫

Ωρ

λθ|∇v|p−2∇v · ∇φ dx =

∫
Ωρ

λθ|∇v|p−2∇v · (∇((1 − ϕk)η) + ∇(ϕkη)) dx

≤

∫
Ωρ

λθ|∇v|p−2∇v · ∇((1 − ϕk)η) dx, (3.18)

where we use that 0 ≤ ϕkη ∈ C1
c (Ωρ \ Ω4−k−1) and that by Step 2 v is a subsolution on Ωρ \ Ωδ for every

δ ∈ (0, ρ). It remains to show that the integral on the right-hand side in (3.18) vanishes as k → ∞. Note
that 0 ≤ 1 − ϕk ≤ 1 and 1 − ϕk ≡ 0 on Ωρ \Ω4−k . Hence, with help of the product rule, we obtain∣∣∣∣∣∫

Ωρ

λθ|∇v|p−2∇v · ∇((1 − ϕk)η) dx
∣∣∣∣∣ ≤ ∫

Ω4−k

λθ|∇v|p−1|∇η| dx +

∫
Ωρ

ηλθ|∇v|p−2|∇v · ∇ϕk| dx.

Mathematics in Engineering Volume 5, Issue 5, 1–20.



16

By dominated convergence, the first term on the right-hand side converges to zero as k tends to ∞
(recall that we showed in Step 1 that λθ|∇v|p ∈ L1(B1)). To estimate the remaining integral we use
|∇v · ∇ϕk| = |φ′||∇ϕk|eαx1 ≤ C4k+1|φ′| for some C = C(α) > 0 on the set {|x′| ∈ (1

24−k, 4−k)} and
∇v · ∇ϕk = 0 otherwise. Hence, we have that |∇v|p−2|∇v · ∇ϕk| ≤ C4k+1|x′|−(p−1) on {|x′| ∈ (1

24−k, 4−k)}
and thus we obtain (using λθ = (k + 1)θ(p−1)(2|x′|)pθ on {|x′| ∈ ( 1

24−k, 4−k)}, see (3.1))∫
Ωρ

ηλθ|∇v|p−2|∇v · ∇ϕk| dx

≤C‖η‖L∞(B1)4k+1(k + 1)θ(p−1)
∫ 4−k

1
2 4−k

r−(p−1)rpθrd−2 dr

= C‖η‖L∞(B1)4k+1(k + 1)θ(p−1) 1
d − p(1 − θ)

4−k(d−p(1−θ))
(
1 − 2−(d−p(1−θ)

)
k→∞
→ 0,

where we use p(1 − θ) < d − 1 the assumption and thus d − p(1 − θ) > 1.

Step 4. Conclusion.

Substep 4.1. We consider the case 1 + 1
d−2 < p < ∞. Let s > 1 and t > 1

p−1 be such that 1
s + 1

t =
p

d−1

and t
t+1 p < d − 1. We claim that there exist 0 ≤ λ ∈ Ls(B1) with λ−1 ∈ Lt(B1) and an unbounded weak

subsolution to (1.5). We set θ = 1
t

d−1
p and observe that 1

s + 1
t =

p
d−1 implies θ ∈ [0, 1] and 1 − θ = 1

s
d−1

p .
Moreover, the restriction t

t+1 p < d − 1 in the form p < (1 + 1
t )(d − 1) ensures

(1 − θ)p = (1 −
1
t

d − 1
p

)p = (p −
1
t
(d − 1)) < d − 1.

Hence, in view of Steps 1–3, there exist the function v defined in (3.2) with α = α0 = α0(p, d) ≥ 1 such
that v is an unbounded weak subsolution to

−∇ · (λθ|∇v|p−2∇v) = 0 in B(0, ρ) with ρ = ρ(d, p) ∈ (0, 1],

where λθ(x) = ωθ(|x′|), cf. (3.1). Appealing to (3.7), we have that there exists C = C(d, p) > 0 such
that

‖λθ‖Ls(B1) ≤ C
(∫ 1

0
(r−p log(2/r)−(p−1))

d−1
p rd−2 dr

) 1
s

= C
(∫ 1

0
r−1 log(2/r)−(1− 1

p )(d−1) dr
) 1

s

< ∞

where we use that p > 1 + 1
d−2 implies (1 − 1

p )(d − 1) > 1. Similarly, we have

‖λ−1
θ ‖Lt(B1) ≤C

(∫ 1

0
r−1 log(2/r)−(1− 1

p )(d−1) dr
) 1

t

< ∞.

Finally, we observe that by a simple scaling argument namely considering ṽ(x) = v(x/ρ) and λ(x) :=
λθ(x/ρ) we find that ṽ is a weak subsolution to (1.5) in B1 and λ satisfies λ ∈ Ls(B1) and λ−1 ∈ Lt(B1).

Substep 4.2. We consider 1 < p ≤ 1 + 1
d−2 . Let s and t be as in the statement of the theorem. Clearly,

we find s > s and t > t such that 1
s + 1

t =
p

d−1 . Hence, for λθ with θ = 1
t

d−1
p , we obtain as in Substep 4.1,
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17

an unbounded subsolution. It remains to check if λθ ∈ Ls(B1) and λ−1 ∈ Lt(B1). By construction, we
have 1 − θ = 1

s
d−1

p and thus

‖λθ‖Ls(B1) ≤ C
(∫ 1

0
(r−p log(2/r)−(p−1))

d−1
p

s
s rd−2 dr

) 1
s

= C
(∫ 1

0
r−(d−1) s

s +d−2 log(2/r)−(1− 1
p )(d−1) s

s dr
) 1

s

< ∞,

where we use s/s < 1 and thus −(d − 1) s
s + d − 2 > −1. A similar argument shows λ−1

θ ∈ Lt(B1) which
finishes the argument. �
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A. Proof of Lemma 1

Proof of Lemma 1. As a starting point we use [32, Lemma 2.1], which states for any δ ∈ (0, 1]

J(ρ, σ, v) ≤ (σ − ρ)−(p−1+ 1
δ )
(∫ σ

ρ

(∫
S r

µ|v|p dHd−1
)δ

dr
) 1
δ

.

With this at hand, we proceed in analogy to the Step 2 of Proof of [7, Lemma 2.1]:
Observe that the assumption s > 1 implies s∗ ∈ [1, d − 1). To estimate the right-hand side, on each

sphere we will use “scale-invariant” Sobolev inequality with α := s∗ in the form(∫
S r

|φ|α
∗
) 1
α∗

≤ c
((∫

S r

|∇φ|α
) 1
α

+
1
r

(∫
S r

|φ|α
) 1
α
)
,

which holds with c = c(d, α) with 1 ≤ α < d − 1, 1
α∗

= 1
α
− 1

d−1 and any r > 0. Moreover, observe that
by Jensen inequality the previous estimate holds also if we change the exponent α∗ on the l.h.s. to a
smaller exponent α′ ∈ [1, α∗), while picking up a dimensional factor of |S r|

1
α′
− 1
α∗ . Since by assumption

r ∈ (ρ, σ) ⊂ [1
2 , 2], we can hide this factor into the constant c on the r.h.s.

The definition of s∗ implies that for α = s∗ holds ps
s−1 ≤ α

∗. Hence, for any δ ∈ (0, 1] we estimate

(∫ σ

ρ

(∫
S r

µ|v|p
)δ

dr
) 1
δ

≤

(∫ σ

ρ

(∫
S r

µs
) δ

s
(∫

S r

|v|p
s

s−1

)δ s−1
s

dr
) 1
δ

≤ c
(∫ σ

ρ

(∫
S r

µs
) δ

s
[(∫

S r

|∇v|s∗
) pδ

s∗
+

1
rpδ

(∫
S r

|v|s∗
) pδ

s∗
]

dr
) 1
δ

,

with s∗ defined above. To be able to apply Hölder inequality in r to get two bulk integrals, we require
δ
s +

pδ
s∗

= 1. By choosing δ = (1 +
p

d−1 )−1 ∈ (0, 1) in the case s∗ > 1 and δ := (1
s + p)−1 if s∗ = 1, we

obtain

J((ρ, σ, v) ≤
c

(σ − ρ)
pd

d−1

(∫
Bσ\Bρ

µs
) 1

s
[(∫

Bσ\Bρ
|∇v|s∗

) p
s∗

+
1
ρp

(∫
Bσ\Bρ

|v|s∗
) p

s∗
]

Observe that in the latter case of s∗ = 1 and δ = ( 1
s + p) the correct prefactor is actually c(σ−ρ)−(2p−1+ 1

s ).
Nevertheless, the estimate farther holds thanks to 2p − 1 + 1

s ≥
pd

d−1 , which in turn is equivalent to
1 ≤ 1

p (1 − 1
s ) + 1

d−1 – the condition which is exactly fulfilled in this case. �
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