Research article Special Issues

Lewy-Stampacchia inequality for noncoercive parabolic obstacle problems

  • Received: 26 August 2022 Revised: 22 December 2022 Accepted: 22 December 2022 Published: 04 January 2023
  • We investigate the obstacle problem for a class of nonlinear and noncoercive parabolic variational inequalities whose model is a Leray–Lions type operator having singularities in the coefficients of the lower order terms. We prove the existence of a solution to the obstacle problem satisfying a Lewy-Stampacchia type inequality.

    Citation: Fernando Farroni, Gioconda Moscariello, Gabriella Zecca. Lewy-Stampacchia inequality for noncoercive parabolic obstacle problems[J]. Mathematics in Engineering, 2023, 5(4): 1-23. doi: 10.3934/mine.2023071

    Related Papers:

  • We investigate the obstacle problem for a class of nonlinear and noncoercive parabolic variational inequalities whose model is a Leray–Lions type operator having singularities in the coefficients of the lower order terms. We prove the existence of a solution to the obstacle problem satisfying a Lewy-Stampacchia type inequality.



    加载中


    [1] A. Alvino, Sulla disuguaglianza di Sobolev in Spazi di Lorentz, Boll. Un. Mat. It. A (5), 14 (1977), 148–156.
    [2] H. W. Alt, S. Luckhaus, Quasi-linear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311–341. http://doi.org/10.1007/BF01176474 doi: 10.1007/BF01176474
    [3] A. Bensoussan, J. Lions, Applications of variational inequalities in stochastic control, Amsterdam-New York: North-Holland Publishing, 1982.
    [4] V. Bögelein, F. Duzaar, G. Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math., 650 (2011), 107–160. https://doi.org/10.1515/crelle.2011.006 doi: 10.1515/crelle.2011.006
    [5] H. Brézis, Problémes unilatéraux, J. Math. Pures Appl. (9), 51 (1972), 1–168.
    [6] M. Carozza, C. Sbordone, The distance to $L^\infty$ in some function spaces and applications, Differential Integral Equations, 10 (1997), 599–607. https://doi.org/10.57262/die/1367438633 doi: 10.57262/die/1367438633
    [7] F. Donati, A penalty method approach to strong solutions of some nonlinear parabolic unilateral problems, Nonlinear Anal., 6 (1982), 585–597. https://doi.org/10.1016/0362-546X(82)90050-5 doi: 10.1016/0362-546X(82)90050-5
    [8] W. Fang, K. Ito, Weak solutions for diffusion-convection equations, Appl. Math. Lett., 13 (2000), 69–75. https://doi.org/10.1016/S0893-9659(99)00188-3 doi: 10.1016/S0893-9659(99)00188-3
    [9] F. Farroni, G. Moscariello, A nonlinear parabolic equation with drift term, Nonlinear Anal., 177 (2018), 397–412. https://doi.org/10.1016/j.na.2018.04.021 doi: 10.1016/j.na.2018.04.021
    [10] F. Farroni, L. Greco, G. Moscariello, G. Zecca, Noncoercive quasilinear elliptic operators with singular lower order terms, Calc. Var., 60 (2021), 83. https://doi.org/10.1007/s00526-021-01965-z doi: 10.1007/s00526-021-01965-z
    [11] F. Farroni, L. Greco, G. Moscariello, G. Zecca, Nonlinear evolution problems with singular coefficients in the lower order terms, Nonlinear Differ. Equ. Appl., 28 (2021), 38. https://doi.org/10.1007/s00030-021-00698-4 doi: 10.1007/s00030-021-00698-4
    [12] F. Farroni, L. Greco, G. Moscariello, G. Zecca, Noncoercive parabolic obstacle problems, preprint.
    [13] N. Gigli, S. Mosconi, The abstract Lewy–Stampacchia inequality and applications, J. Math. Pure. Appl., 104 (2015), 258–275. https://doi.org/10.1016/j.matpur.2015.02.007 doi: 10.1016/j.matpur.2015.02.007
    [14] L. Greco, G. Moscariello, G. Zecca, An obstacle problem for noncoercive operators, Abstr. Appl. Anal., 2015 (20105), 890289. https://doi.org/10.1155/2015/890289
    [15] O. Guibé, A. Mokrane, Y. Tahraoui, G. Vallet, Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem, Adv. Nonlinear Anal., 9 (2020), 591–612. https://doi.org/10.1515/anona-2020-0015 doi: 10.1515/anona-2020-0015
    [16] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, New York: Academic Press, 1980. https://doi.org/10.1137/1.9780898719451
    [17] J. Korvenpää, T. Kuusi, G. Palatucci, The obstacle problem for nonlinear integro-differential operators, Calc. Var., 55 (2016), 63. https://doi.org/10.1007/s00526-016-0999-2 doi: 10.1007/s00526-016-0999-2
    [18] T. Kuusi, G. Mingione, K. Nyström, Sharp regularity for evolutionary obstacle problems, interpolative geometries and removable sets, J. Math. Pure. Appl., 101 (2014), 119–151. https://doi.org/10.1016/j.matpur.2013.03.004 doi: 10.1016/j.matpur.2013.03.004
    [19] H. Lewy, G. Stampacchia, On the regularity of the solution of a variational inequality, Commun. Pure Appl. Math., 22 (1969), 153–188. https://doi.org/10.1002/cpa.3160220203 doi: 10.1002/cpa.3160220203
    [20] J.-L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302
    [21] J. Leray, J. L. Lions, Quelques résultats de Visik sur le problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97–107. https://doi.org/10.24033/bsmf.1617 doi: 10.24033/bsmf.1617
    [22] G. Mingione, G. Palatucci, Developments and perspectives in nonlinear potential theory, Nonlinear Anal., 194 (2020), 111452. https://doi.org/10.1016/j.na.2019.02.006 doi: 10.1016/j.na.2019.02.006
    [23] A. Mokrane, F. Murat, A proof of the Lewy-Stampacchia's inequality by a penalization method, Potential Anal., 9 (1998), 105–142. https://doi.org/10.1023/A:1008649609888 doi: 10.1023/A:1008649609888
    [24] R. O'Neil, Convolutions operators and $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129–142. https://doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1
    [25] J.-F. Rodrigues, Obstacle problems in mathematical physics, Amsterdam: North-Holland Publishing Co., 1987.
    [26] R. Servadei, E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29 (2013), 1091–1126. https://doi.org/10.4171/RMI/750 doi: 10.4171/RMI/750
    [27] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1765) PDF downloads(268) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog