We consider the equation
$ u_{tt}+\delta u_t+A^2u+{\lVert{A^{\theta/2} u}\rVert}^2A^\theta u = g $
where $ A^2 $ is a diagonal, self-adjoint and positive-definite operator and $ \theta \in [0, 1] $ and we study some finite-dimensional approximations of the problem. First, we analyze the dynamics in the case when the forcing term $ g $ is a combination of a finite number of modes. Next, we estimate the error we commit by neglecting the modes larger than a given $ N $. We then prove, for a particular class of forcing terms, a theoretical result allowing to study the distribution of the energy among the modes and, with this background, we refine the results. Some generalizations and applications to the study of the stability of suspension bridges are given.
Citation: Matteo Fogato. Asymptotic finite-dimensional approximations for a class of extensible elastic systems[J]. Mathematics in Engineering, 2022, 4(4): 1-36. doi: 10.3934/mine.2022025
We consider the equation
$ u_{tt}+\delta u_t+A^2u+{\lVert{A^{\theta/2} u}\rVert}^2A^\theta u = g $
where $ A^2 $ is a diagonal, self-adjoint and positive-definite operator and $ \theta \in [0, 1] $ and we study some finite-dimensional approximations of the problem. First, we analyze the dynamics in the case when the forcing term $ g $ is a combination of a finite number of modes. Next, we estimate the error we commit by neglecting the modes larger than a given $ N $. We then prove, for a particular class of forcing terms, a theoretical result allowing to study the distribution of the energy among the modes and, with this background, we refine the results. Some generalizations and applications to the study of the stability of suspension bridges are given.
[1] | U. Battisti, E. Berchio, A. Ferrero, F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J. Math. Pure. Appl., 108 (2017), 885-917. doi: 10.1016/j.matpur.2017.05.010 |
[2] | E. Berchio, D. Buoso, F. Gazzola, On the variation of longitudinal and torsional frequencies in a partially hinged rectangular plate, ESAIM COCV, 24 (2018), 63-87. doi: 10.1051/cocv/2016076 |
[3] | F. Bleich, C. B. McCullough, R. Rosecrans, G. S. Vincent, The mathematical theory of vibration in suspension bridges, U. S. Dept. of Commerce, Bureau of Public Roads, Washington D. C., 1950. |
[4] | E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modeling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal. Real, 28 (2016), 91-125. doi: 10.1016/j.nonrwa.2015.09.005 |
[5] | E. Berchio, F. Gazzola, A qualitative explanation of the origin of torsional instability in suspension bridges, Nonlinear Analysis Theor., 121 (2015), 54-72. doi: 10.1016/j.na.2014.10.026 |
[6] | M. Berger, A new approach to the large deflection of plate, J. Appl. Mech., 22 (1955), 465-472. doi: 10.1115/1.4011138 |
[7] | P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Analysis Theor., 10 (1986), 836-842. |
[8] | D. Bonheure, F. Gazzola, E. Moreira dos Santos, Periodic solutions and torsional instability in a nonlinear nonlocal plate equation, SIAM J. Math. Anal., 51 (2019), 3052-3091. doi: 10.1137/18M1221242 |
[9] | E. H. De Brito, The damped elastic stretched string equation generalized: Existence, uniqueness, regularity and stability, Appl. Anal., 13 (1982), 219-233. doi: 10.1080/00036818208839392 |
[10] | D. Burgreen, Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech., 18 (1951), 135-139. doi: 10.1115/1.4010266 |
[11] | T. Cazenave, A. Haraux, F. B. Weissler, A class of nonlinear completely integrable abstract wave equations, J. Dyn. Differ. Equ., 5 (1993), 129-154. doi: 10.1007/BF01063738 |
[12] | T. Cazenave, A. Haraux, F. B. Weissler, Detailed asymptotics for a convex Hamiltonian system with two degrees of freedom, J. Dyn. Differ. Equ., 5 (1993), 155-187. doi: 10.1007/BF01063739 |
[13] | T. Cazenave, F. B. Weissler, Asymptotically periodic solutions for a class of nonlinear coupled oscillators, Portugalie Math., 52 (1995), 109-123. |
[14] | T. Cazenave, F. B. Weissler, Unstable simple modes of the nonlinear string, Quart. Appl. Math., 54 (1996), 287-305. doi: 10.1090/qam/1388017 |
[15] | P. Constantin, C. Foias, R. Temam, On the large time Galerkin approximation of the Navier-Stokes equations, SIAM J. Numer. Anal., 21 (1984), 615-634. doi: 10.1137/0721043 |
[16] | I. D. Chueshov, Introduction to the theory of onfinite-dimensional dissipative systems, Kharkiv, Ukraine: Acta Scientific Publishing House, 2002. |
[17] | I. D. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differ. Equations, 252 (2012), 1129-1262. |
[18] | I. D. Chueshov, Theory of functionals that uniquely determine the asymptotic dynamics of infinite-dimensional dissipative systems, Russ. Math. Surv., 53 (1998), 731-776. doi: 10.1070/RM1998v053n04ABEH000057 |
[19] | I. D. Chueshov, Finite-dimensionality of the attractor in some problems of the nonlinear theory shells, Math. USSR Sbornik, 61 (1988), 411-420. doi: 10.1070/SM1988v061n02ABEH003215 |
[20] | I. D. Chueshov, I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of AMS, 195 (2008), viii+183. |
[21] | A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential attractors for dissipative evolution equations, New York: John-Wiley, 1994. |
[22] | A. Eden, A. J. Milani, Exponential attractors for extensible beam equations, Nonlinearity, 6 (1993), 457-479. doi: 10.1088/0951-7715/6/3/007 |
[23] | Eurocode 1: Actions on structures. Parts 1-4: General actions - Wind actions, The European Union Per Regulation 305/2011, Directive 98/34/EC & 2004/18/EC. Avaiable from: http://www.phd.eng.br/wp-content/uploads/2015/12/en.1991.1.4.2005.pdf. |
[24] | C. Foias, G. Prodi, Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova., 39 (1967), 1-34. |
[25] | V. Ferreira, F. Gazzola, E. Moreira dos Santos, Instability of modes in a partially hinged rectangular plate, J. Differ. Equations., 261 (2016), 6302-6304. doi: 10.1016/j.jde.2016.08.037 |
[26] | C. Fitouri, A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations, J. Math. Pure. Appl., 92 (2009), 313-321. doi: 10.1016/j.matpur.2009.04.010 |
[27] | C. Fitouri, A. Haraux, Boundedness and stability for the damped and forced single well Duffing equation, Disc. Cont. Dyn. Sys., 33 (2013), 211-223. doi: 10.3934/dcds.2013.33.211 |
[28] | B. G. Galerkin, Rods and plates. Series occurring in various questions concerning the elastic equilibrium of rods and plates, Eng. Bull. (Vestn Inszh Tech), 19 (1915), 897-908. |
[29] | M. Garrione, F. Gazzola, Nonlinear equations for beams and degenerate plates with piers, Cham: Springer, 2019. |
[30] | S. Gasmi, A. Haraux, N-cyclic functions and multiple subharmonic solutions of Duffing's equation, J. Math. Pure. Appl., 97 (2012), 411-423. doi: 10.1016/j.matpur.2009.08.005 |
[31] | C. Gasparetto, F. Gazzola, Resonance tongues for the Hill equation with Duffing coefficients and instabilities in a nonlinear beam equation, Commun. Contemp. Math., 20 (2018), 1-22. |
[32] | F. Gazzola, Mathematical models for suspension bridges. Nonlinear structural instability, Cham: Springer, 2015. |
[33] | M. Ghisi, M. Gobbino, A. Haraux, An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term, Nonlinear Anal. Real, 43 (2018), 167-191. doi: 10.1016/j.nonrwa.2018.02.007 |
[34] | M. Ghisi, M. Gobbino, A. Haraux, Small perturbations for a Duffing-like evolution equation involving non-commuting operators, Nonlinear Differ. Equ. Appl., 28 (2021), 14. doi: 10.1007/s00030-021-00679-7 |
[35] | I. Giosan, P. Eng, Structural Vortex Shedding Response Estimation Methodology and Finite Element Simulation - Vortex Shedding Induced Loads on Free Standing Structures. Available from: https://bit.ly/3zEHNOy. |
[36] | A. Haraux, On the double well Duffing equation with a small bounded forcing term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 207-230. |
[37] | A. Haraux, A sharp stability criterion for single well Duffing and Duffing-like equations, Nonlinear Anal., 190 (2020), 111600. doi: 10.1016/j.na.2019.111600 |
[38] | P. J. Holmes, J. E. Marsden, Bifurcation to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis, Automatica, 14 (1978), 367-384. doi: 10.1016/0005-1098(78)90036-5 |
[39] | P. J. Holmes, J. E. Marsden, Bifurcations of dynamical systems and nonlinear oscillations in engineering systems, In: Nonlinear Partial Differential Equations and Applications, Berlin, Heidelberg: Springer, 1978,163-206. |
[40] | P. J. Holmes, J. E. Marsden, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Arch. Rational Mech. Anal. 76 (1981), 135-165. |
[41] | J. Howell, K. Huneycutt, J. T. Webster, S. Wilder, A thorough look at the (in)stability of piston-theoretic beams, Mathematics in Engineering, 1 (2019), 614-647. doi: 10.3934/mine.2019.3.614 |
[42] | J. S. Howell, D. Toundykov, J. T. Webster, A cantilevered extensible beam in axial flow: semigroup well-posedness and postflutter regimes, SIAM J. Math. Anal., 50 (2018), 2048-2085. doi: 10.1137/17M1140261 |
[43] | O. Ladyzhenskaya, A dynamical system generated by Navier-Stokes equation, J. Soviet Math., 3 (1975), 458-479. doi: 10.1007/BF01084684 |
[44] | W. S. Loud, On periodic solutions of Duffing's equation with damping, J. Math. Phys., 34 (1955), 173-178. doi: 10.1002/sapm1955341173 |
[45] | W. S. Loud, Boundedness and convergence of solutions of $x" +cx'+g(x) = e(t)$, Duke Math. J., 24 (1957), 63-72. |
[46] | J. L. Luco, J. Turmo, Effect of hanger flexibility on dynamic response of suspension bridges, J. Eng. Mech., 136 (2010), 1444-1459. doi: 10.1061/(ASCE)EM.1943-7889.0000185 |
[47] | F. Moon, P. Holmes, A magnetoelastic strange attractor, J. Sound Vib., 65 (1979), 275-296. doi: 10.1016/0022-460X(79)90520-0 |
[48] | F. Nakajima, G. Seifert, The number of periodic solutions of 2-dimensional periodic systems, J. Differ. Equations, 49 (1983), 430-440. doi: 10.1016/0022-0396(83)90005-0 |
[49] | M. A. Jorge da Silva, V. Narciso, Attractors and their properties for a class of nonlocal nonextensible beams, Disc. Cont. Dyn. Sys., 35 (2015), 985-1008. doi: 10.3934/dcds.2015.35.985 |
[50] | M. A. Jorge da Silva, V. Narciso, Long-time dynamics for a class of extensible beam with nonlocal nonlinear damping, Evol. Equ. Control The., 6 (2017), 437-470. doi: 10.3934/eect.2017023 |
[51] | F. C. Smith, G. S. Vincent, Aerodynamic stability of suspension bridges: with special reference to the Tacoma Narrows Bridge, Part Ⅱ: Mathematical analysis, Investigation conducted by the Structural Research Laboratory, University of Washington - Seattle: University of Washington Press, 1950. |
[52] | E. S. Titi, On approximate inertial manifolds to the Navier-Stokes Equations, J. Math. Anal. Appl., 149 (1990), 540-557. doi: 10.1016/0022-247X(90)90061-J |
[53] | S. Woionosky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36. doi: 10.1115/1.4010053 |
[54] | Z. Yang, Y. Li, F. Da, Robust attractors for a perturbed nonautonomous extensible beam equation with nonlinear nonlocal damping, Disc. Cont. Dyn. Sys., 39 (2019), 5975-6000. doi: 10.3934/dcds.2019261 |
[55] | Z. Yang, Y. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Disc. Cont. Dyn. Sys., 38 (2018), 2629-2653. doi: 10.3934/dcds.2018111 |