Review

What we need to know about the germ-free animal models

  • Received: 03 December 2023 Revised: 30 January 2024 Accepted: 01 February 2024 Published: 06 February 2024
  • The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.

    Citation: Fatemeh Aghighi, Mahmoud Salami. What we need to know about the germ-free animal models[J]. AIMS Microbiology, 2024, 10(1): 107-147. doi: 10.3934/microbiol.2024007

    Related Papers:

  • The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.



    加载中

    Acknowledgments



    Not applicable

    Author contributions



    M Salami was the project leader of the review. M Salami designed the review. F Aghighi summarized and described the review findings. F Aghighi and M Salami interpreted and discussed review findings. F Aghighi prepared the table and figure. F Aghighi and M Salami prepared the final version.

    Declaration of competing interest



    There is no conflict of interest whatsoever from the author.

    [1] Tillisch K (2014) The effects of gut microbiota on CNS function in humans. Gut Microbes 5: 404-410. https://doi.org/10.4161/gmic.29232
    [2] Mackowiak PA (2013) Recycling metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health 1: 52. https://doi.org/10.3389/fpubh.2013.00052
    [3] Al-Asmakh M, Hedin L (2015) Microbiota and the control of blood-tissue barriers. Tissue Barriers 3: e1039691. https://doi.org/10.1080/21688370.2015.1039691
    [4] McKenney PT, Pamer EG (2015) From Hype to Hope: The gut microbiota in enteric infectious disease. Cell 163: 1326-1332. https://doi.org/10.1016/j.cell.2015.11.032
    [5] Novotny M, Klimova B, Valis M (2019) Microbiome and cognitive impairment: can any diets influence learning processes in a positive way?. Front Aging Neurosci 11: 170. https://doi.org/10.3389/fnagi.2019.00170
    [6] Rup L (2012) The human microbiome project.Springer 315-315. https://doi.org/10.1007/s12088-012-0304-9
    [7] Hu X, Wang T, Jin F (2016) Alzheimer's disease and gut microbiota. Sci China Life Sci 59: 1006-1023. https://doi.org/10.1007/s11427-016-5083-9
    [8] Petschow B, Doré J, Hibberd P, et al. (2013) Probiotics, prebiotics, and the host microbiome: the science of translation. Ann N Y Acad Sci 1306: 1-17. https://doi.org/10.1111/nyas.12303
    [9] Qin J, Li R, Raes J, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65. https://doi.org/10.1038/nature08821
    [10] Ashida H, Ogawa M, Kim M, et al. (2012) Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 8: 36-45. https://doi.org/10.1038/nchembio.741
    [11] Moschen AR, Wieser V, Tilg H (2012) Dietary factors: major regulators of the gut's microbiota. Gut Liver 6: 411. https://doi.org/10.5009/gnl.2012.6.4.411
    [12] Mariat D, Firmesse O, Levenez F, et al. (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9: 123. https://doi.org/10.1186/1471-2180-9-123
    [13] Backhed F, Ley RE, Sonnenburg JL, et al. (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915-1920. https://doi.org/10.1126/science.1104816
    [14] Frank DN, St Amand AL, Feldman RA, et al. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104: 13780-13785. https://doi.org/10.1073/pnas.0706625104
    [15] Swidsinski A, Loening-Baucke V, Lochs H, et al. (2005) Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol 11: 1131-1140. https://doi.org/10.3748/wjg.v11.i8.1131
    [16] Furness JB (2006) The organisation of the autonomic nervous system: peripheral connections. Auton Neurosci 130: 1-5. https://doi.org/10.1016/j.autneu.2006.05.003
    [17] Blackshaw LA, Brookes S, Grundy D, et al. (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19: 1-19. https://doi.org/10.1111/j.1365-2982.2006.00871.x
    [18] Alkasir R, Li J, Li X, et al. (2017) Human gut microbiota: the links with dementia development. Protein Cell 8: 90-102. https://doi.org/10.1007/s13238-016-0338-6
    [19] Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17: 94. https://doi.org/10.1007/s11910-017-0802-6
    [20] Felice VD, O'Mahony SM (2017) The microbiome and disorders of the central nervous system. Pharmacol Biochem Behav 160: 1-13. https://doi.org/10.1016/j.pbb.2017.06.016
    [21] Ding HT, Taur Y, Walkup JT (2017) Gut microbiota and autism: key concepts and findings. J Autism Dev Disord 47: 480-489. https://doi.org/10.1007/s10803-016-2960-9
    [22] Lubomski M, Tan AH, Lim SY, et al. (2019) Parkinson's disease and the gastrointestinal microbiome. J Neurol 267: 2507-2523. https://doi.org/10.1007/s00415-019-09320-1
    [23] Painold A, Morkl S A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode (2019)21: 40-49. https://doi.org/10.1111/bdi.12682
    [24] Zhuang ZQ, Shen LL, Li WW, et al. (2018) Gut microbiota is altered in patients with alzheimer's disease. J Alzheimers Dis 63: 1337-1346. https://doi.org/10.3233/jad-180176
    [25] Arrieta MC, Stiemsma LT, Amenyogbe N, et al. (2014) The intestinal microbiome in early life: health and disease. Front Immunol 5: 427. https://doi.org/10.3389/fimmu.2014.00427
    [26] Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5: 494. https://doi.org/10.3389/fmicb.2014.00494
    [27] Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36: 305-312. https://doi.org/10.1016/j.tins.2013.01.005
    [28] Zhang YJ, Li S, Gan RY, et al. (2015) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16: 7493-7519. https://doi.org/10.3390/ijms16047493
    [29] Lin CS, Chang CJ, Lu CC, et al. (2014) Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed J 37: 259-268. https://doi.org/10.4103/2319-4170.138314
    [30] Norman JM, Handley SA, Virgin HW (2014) Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146: 1459-1469. https://doi.org/10.1053/j.gastro.2014.02.001
    [31] Palm NW, de Zoete MR, Flavell RA (2015) Immune-microbiota interactions in health and disease. Clin Immunol 159: 122-127. https://doi.org/10.1016/j.clim.2015.05.014
    [32] Hansen AK, Hansen CHF, Krych L, et al. (2014) Impact of the gut microbiota on rodent models of human disease. World J Gastroenterol 20: 17727. https://doi.org/10.3748/wjg.v20.i47.17727
    [33] Grenham S, Clarke G, Cryan JF, et al. (2011) Brain–gut–microbe communication in health and disease. Front Physiol 2: 94. https://doi.org/10.3389/fphys.2011.00094
    [34] Nicklas W, Keubler L, Bleich A (2015) Maintaining and monitoring the defined microbiota status of gnotobiotic rodents. ILAR J 56: 241-249. https://doi.org/10.1093/ilar/ilv029
    [35] Grover M, Kashyap PC (2014) Germ-free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil 26: 745-748. https://doi.org/10.1111/nmo.12366
    [36] Bhattarai Y, Kashyap PC (2016) Germ-free mice model for studying host–microbial interactions. Mouse Models for Drug Discovery.Humana New York, NY 123-135. https://doi.org/10.1007/978-1-4939-3661-8_8
    [37] Fiebiger U, Bereswill S, Heimesaat MM (2016) Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur J Microbiol Immunol 6: 253-271. https://doi.org/10.1556/1886.2016.00036
    [38] Kubelkova K, Benuchova M, Kozakova H, et al. (2016) Gnotobiotic mouse model's contribution to understanding host–pathogen interactions. Cell Mol Life Sci 73: 3961-3969. https://doi.org/10.1007/s00018-016-2341-8
    [39] Reinhardt C, Bergentall M, Greiner TU, et al. (2012) Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483: 627-631. https://doi.org/10.1038/nature10893
    [40] Pontarollo G, Kollar B, Mann A, et al. (2023) Commensal bacteria weaken the intestinal barrier by suppressing epithelial neuropilin-1 and Hedgehog signaling. Nat Metab 5: 1174-1187. https://doi.org/10.1038/s42255-023-00828-5
    [41] Bäckhed F, Ding H, Wang T, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci 101: 15718-15723. https://doi.org/10.1073/pnas.0407076101
    [42] Hansen CHF, Nielsen DS, Kverka M, et al. (2012) Patterns of early gut colonization shape future immune responses of the host. PloS one 7: e34043. https://doi.org/10.1371/journal.pone.0034043
    [43] Mazmanian SK, Liu CH, Tzianabos AO, et al. (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107-118. https://doi.org/10.1016/j.cell.2005.05.007
    [44] Neufeld K-AM, Kang N, Bienenstock J, et al. (2011) Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 4: 492-494. https://doi.org/10.4161/cib.4.4.15702
    [45] Olszak T, An D, Zeissig S, et al. (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493. https://doi.org/10.1126/science.1219328
    [46] Schéle E, Grahnemo L, Anesten F, et al. (2013) The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology 154: 3643-3651. https://doi.org/10.1210/en.2012-2151
    [47] Sudo N, Chida Y, Aiba Y, et al. (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558: 263-275. https://doi.org/10.1113/jphysiol.2004.063388
    [48] Bleich A, Mähler M (2005) Environment as a critical factor for the pathogenesis and outcome of gastrointestinal disease: experimental and human inflammatory bowel disease and helicobacter-induced gastritis. Pathobiology 72: 293-307. https://doi.org/10.1159/000091327
    [49] Sellon RK, Tonkonogy S, Schultz M, et al. (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infection and immunity 66: 5224-5231. https://doi.org/10.1128/iai.66.11.5224-5231.1998
    [50] Song F, Ito K, Denning TL, et al. (1999) Expression of the neutrophil chemokine KC in the colon of mice with enterocolitis and by intestinal epithelial cell lines: effects of flora and proinflammatory cytokines. J Immunol 162: 2275-2280. https://doi.org/10.4049/jimmunol.162.4.2275
    [51] Wostmann BS (1981) The germfree animal in nutritional studies. Annu Rev Nutr 1: 257-279. https://doi.org/10.1146/annurev.nu.01.070181.001353
    [52] Al-Asmakh M, Zadjali F (2015) Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol 25: 1583-1588. https://doi.org/10.4014/jmb.1501.01039
    [53] Nuttall GH, Thierfelder H (1896) Thierisches leben ohne bakterien im verdauungskanal. Biol Chem 21: 109-121. https://doi.org/10.1515/bchm2.1896.21.2-3.109
    [54] Gustafsson B (1946) Germ-free rearing of rats. Cells Tissues Organs 2: 376-391. https://doi.org/10.1159/000140222
    [55] Reyniers JA (1946) Rearing germfree albino rats. Lobund reports 1: 1.
    [56] Reyniers JA (1959) The pure-culture concept and gnotobiotics. Ann N Y Acad Sci 78: 3-16. https://doi.org/10.1111/j.1749-6632.1959.tb53091.x
    [57] Bruckner G (1997) How it started-and what is mas?. Institute Microbiol Biochem : 24-34.
    [58] Gustafsson B, Kahlson G, Rosengren E (1957) Biogenesis of histamine studied by its distribution and urinary excretion in germ free reared and not germ free rats fed a histamine free diet. Acta Physiol Scand 41: 217-228. https://doi.org/10.1111/j.1748-1716.1957.tb01522.x
    [59] Gustafsson BE (1959) Lightweight stainless steel systems for rearing germfree animals. Ann N Y Acad Sci 78: 17-28. https://doi.org/10.1111/j.1749-6632.1959.tb53092.x
    [60] Miyakawa M (1959) The miyakawa remote-control germfree rearing unit. Ann N Y Acad Sci 78: 37-46. https://doi.org/10.1111/j.1749-6632.1959.tb53094.x
    [61] Pleasants JR (1959) Rearing germfree cesarean-born rats, mice, and rabbits through weaning. Ann N Y Acad Sci 78: 116-126. https://doi.org/10.1111/j.1749-6632.1959.tb53099.x
    [62] Kirk RG (2012) “Life in a germ-free world”: isolating life from the laboratory animal to the bubble boy. Bull Hist Med 237. https://doi.org/10.1353/bhm.2012.0028
    [63] Betts A, Trexler P (1969) Development and possible uses for gnotobiotic farm animals. The Vet Rec 84: 630-632. https://doi.org/10.1136/vr.84.25.630
    [64] Barnes R, Tuffrey M, Cook R (1968) A “germfree” human isolator. Lancet 291: 622-623. https://doi.org/10.1016/s0140-6736(68)91241-5
    [65] Barnes R, Bentovim A, Hensman S, et al. (1969) Care and observation of a germ-free neonate. Arch Dis Child 44: 211. https://doi.org/10.1136/adc.44.234.211
    [66] Barnes R, Fairweather D, Holliday J, et al. (1969) A germfree infant. Lancet 293: 168-171. https://doi.org/10.1016/s0140-6736(69)91187-8
    [67] Lawrence RJ (1985) David the ‘bubble boy’ and the boundaries of the human. JAMA 253: 74-76. https://doi.org/10.1001/jama.1985.03350250082028
    [68] Wullaert A, Lamkanfi M, McCoy KD (2018) Defining the impact of host genotypes on microbiota composition requires meticulous control of experimental variables. Immunity 48: 605-607. https://doi.org/10.1016/j.immuni.2018.04.001
    [69] Macpherson A, McCoy K (2015) Standardised animal models of host microbial mutualism. Mucosal Immunol 8: 476-486. https://doi.org/10.1038/mi.2014.113
    [70] Dremova O, Mimmler M, Paeslack N, et al. (2023) Sterility testing of germ-free mouse colonies. Front Immunol 14: 1275109. https://doi.org/10.3389/fimmu.2023.1275109
    [71] Kennedy EA, King KY, Baldridge MT (2018) Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front Physiol 9: 1534. https://doi.org/10.3389/fphys.2018.01534
    [72] Bayer F, Ascher S, Pontarollo G, et al. (2019) Antibiotic treatment protocols and germ-free mouse models in vascular research. Front Immunol 10: 2174. https://doi.org/10.3389/fimmu.2019.02174
    [73] Bolsega S, Bleich A, Basic M (2021) Synthetic microbiomes on the rise—application in deciphering the role of microbes in host health and disease. Nutrients 13: 4173. https://doi.org/10.3390/nu13114173
    [74] Qv L, Yang Z, Yao M, et al. (2020) Methods for establishment and maintenance of germ-free rat models. Front Microbiol 11: 1148. https://doi.org/10.3389/fmicb.2020.01148
    [75] Wiles MV, Taft RA (2010) The sophisticated mouse: protecting a precious reagent. Mouse Models for Drug Discovery: Methods and Protocols.Humana Totowa, NJ 23-36. https://doi.org/10.1007/978-1-60761-058-8_2
    [76] Mouse Genome Sequencing Consortium.Initial sequencing and comparative analysis of the mouse genome. Nature (2002) 420: 520-562. https://doi.org/10.1038/nature01262
    [77] Doetschman T, Gregg RG, Maeda N, et al. (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330: 576-578. https://doi.org/10.1038/330576a0
    [78] Turnbaugh PJ, Ley RE, Mahowald MA, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031. https://doi.org/10.1038/nature05414
    [79] Turnbaugh PJ, Ridaura VK, Faith JJ, et al. (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1: 6ra14. https://doi.org/10.1126/scitranslmed.3000322
    [80] Bercik P, Denou E, Collins J, et al. (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599-609. https://doi.org/10.1053/j.gastro.2011.04.052
    [81] Borody TJ, Khoruts A (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9: 88-96. https://doi.org/10.1038/nrgastro.2011.244
    [82] Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13: 701-712. https://doi.org/10.1038/nrn3346
    [83] Aroniadis OC, Brandt LJ (2013) Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 29: 79-84. https://doi.org/10.1097/mog.0b013e32835a4b3e
    [84] Ridaura VK, Faith JJ, Rey FE, et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341: 1241214. https://doi.org/10.1126/science.1241214
    [85] Suez J, Korem T, Zeevi D, et al. (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514: 181-186. https://doi.org/10.1038/nature13793
    [86] Thaiss CA, Zeevi D, Levy M, et al. (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159: 514-529. https://doi.org/10.1016/j.cell.2014.09.048
    [87] Leone V, Gibbons SM, Martinez K, et al. (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17: 681-689. https://doi.org/10.1016/j.chom.2015.03.006
    [88] Wostmann BS (2020) Germfree and gnotobiotic animal models: background and applications.CRC Press. https://doi.org/10.1201/9780138753320
    [89] Yi P, Li L (2012) The germfree murine animal: an important animal model for research on the relationship between gut microbiota and the host. Vet Microbiol 157: 1-7. https://doi.org/10.1016/j.vetmic.2011.10.024
    [90] Gonzalez-Arancibia C, Urrutia-Pinones J, Illanes-Gonzalez J, et al. (2019) Do your gut microbes affect your brain dopamine?. Psychopharmacology 236: 1611-1622. https://doi.org/10.1007/s00213-019-05265-5
    [91] Stinson LF, Payne MS, Keelan JA (2017) Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol 43: 352-369. https://doi.org/10.1080/1040841x.2016.1211088
    [92] Aagaard K, Ma J, Antony KM, et al. (2014) The placenta harbors a unique microbiome. Sci Transl Med 6: 237ra265. https://doi.org/10.1126/scitranslmed.3008599
    [93] Jiménez E, Fernández L, Marín ML, et al. (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51: 270-274. https://doi.org/10.1007/s00284-005-0020-3
    [94] Bearfield C, Davenport ES, Sivapathasundaram V, et al. (2002) Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG 109: 527-533. https://doi.org/10.1111/j.1471-0528.2002.01349.x
    [95] Jiménez E, Marín ML, Martín R, et al. (2008) Is meconium from healthy newborns actually sterile?. Res Microbiol 159: 187-193. https://doi.org/10.1016/j.resmic.2007.12.007
    [96] Rautava S, Collado MC, Salminen S, et al. (2012) Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 102: 178-184. https://doi.org/10.1159/000339182
    [97] Steel JH, Malatos S, Kennea N, et al. (2005) Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res 57: 404-411. https://doi.org/10.1203/01.pdr.0000153869.96337.90
    [98] Arvidsson C, Hallén A, Bäckhed F (2012) Generating and analyzing germ-free mice. Curr Protoc Mouse Biol 2: 307-316. https://doi.org/10.1002/9780470942390.mo120064
    [99] McCoy KD, Geuking MB, Ronchi F (2017) Gut microbiome standardization in control and experimental mice. Curr Protoc Immunol 117: 23.21. https://doi.org/10.1002/cpim.25
    [100] Walter J, Hornef MW (2021) A philosophical perspective on the prenatal in utero microbiome debate. Microbiome 9: 5. https://doi.org/10.1186/s40168-020-00979-7
    [101] Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4: 478-485. https://doi.org/10.1038/nri1373
    [102] Smith K, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19: 59-69. https://doi.org/10.1016/j.smim.2006.10.002
    [103] Faith JJ, Rey FE, O'donnell D, et al. (2010) Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 4: 1094-1098. https://doi.org/10.1038/ismej.2010.110
    [104] Bibiloni R (2012) Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes 3: 536-543. https://doi.org/10.4161/gmic.21905
    [105] Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behaviour–epigenetic regulation of the gut–brain axis. Genes Brain Behav 13: 69-86. https://doi.org/10.1111/gbb.12109
    [106] Basic M, Bleich A (2019) Gnotobiotics: Past, present and future. Lab Anim 53: 232-243. https://doi.org/10.1177/0023677219836715
    [107] Bhattarai Y, Kashyap PC (2016) Germ-free mice model for studying host–microbial interactions. Mouse Models for Drug Discovery: Methods and Protocols.Humana Totowa, NJ 123-135. https://doi.org/10.1007/978-1-4939-3661-8_8
    [108] Lundberg R, Toft MF, August B, et al. (2016) Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes 7: 68-74. https://doi.org/10.1080/19490976.2015.1127463
    [109] Farzi A, Gorkiewicz G, Holzer P Non-absorbable oral antibiotic treatment in mice affects multiple levels of the microbiota-gut-brain axis; Wiley-blackwell 111 river st, hoboken 07030-5774, NJ USA (2012) 78-78.
    [110] Desbonnet L, Clarke G, Traplin A, et al. (2015) Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 48: 165-173. https://doi.org/10.1016/j.bbi.2015.04.004
    [111] Ellekilde M, Selfjord E, Larsen CS, et al. (2014) Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep 4: 1-8. https://doi.org/10.1038/srep05922
    [112] Baldridge MT, Nice TJ, McCune BT, et al. (2015) Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 347: 266-269. https://doi.org/10.1126/science.1258025
    [113] Gonzalez-Perez G, Hicks AL, Tekieli TM, et al. (2016) Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol 196: 3768-3779. https://doi.org/10.4049/jimmunol.1502322
    [114] Brown RL, Sequeira RP, Clarke TB (2017) The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun 8: 1-11. https://doi.org/10.1038/s41467-017-01803-x
    [115] Bruce-Keller AJ, Salbaum JM, Luo M, et al. (2015) Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 77: 607-615. https://doi.org/10.1016/j.biopsych.2014.07.012
    [116] Ericsson AC, Personett AR, Turner G, et al. (2017) Variable colonization after reciprocal fecal microbiota transfer between mice with low and high richness microbiota. Front Microbiol 196. https://doi.org/10.3389/fmicb.2017.00196
    [117] He B, Nohara K, Ajami NJ, et al. (2015) Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Sci Rep 5: 1-12. https://doi.org/10.1038/srep10604
    [118] Kelly JR, Borre Y, O'Brien C, et al. (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82: 109-118. https://doi.org/10.1016/j.jpsychires.2016.07.019
    [119] Yano JM, Yu K, Donaldson GP, et al. (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161: 264-276. https://doi.org/10.1016/j.cell.2015.02.047
    [120] Zhou D, Pan Q, Shen F, et al. (2017) Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 7: 1-11. https://doi.org/10.1038/s41598-017-01751-y
    [121] Ubeda C, Bucci V, Caballero S, et al. (2013) Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81: 965-973. https://doi.org/10.1128/iai.01197-12
    [122] Reikvam DH, Erofeev A, Sandvik A, et al. (2011) Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PloS One 6: e17996. https://doi.org/10.1371/journal.pone.0017996
    [123] Grasa L, Abecia L, Forcén R, et al. (2015) Antibiotic-induced depletion of murine microbiota induces mild inflammation and changes in toll-like receptor patterns and intestinal motility. Microb Ecol 70: 835-848. https://doi.org/10.1007/s00248-015-0613-8
    [124] Zákostelská Z, Málková J, Klimešová K, et al. (2016) Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PloS One 11: e0159539. https://doi.org/10.1371/journal.pone.0159539
    [125] Abt MC, Osborne LC, Monticelli LA, et al. (2012) Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37: 158-170. https://doi.org/10.1016/j.immuni.2012.04.011
    [126] Emal D, Rampanelli E, Stroo I, et al. (2017) Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 28: 1450-1461. https://doi.org/10.1681/asn.2016030255
    [127] Kuss SK, Best GT, Etheredge CA, et al. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249-252. https://doi.org/10.1126/science.1211057
    [128] Williams SC (2014) Gnotobiotics. Proc Natl Acad Sci USA 111: 1661. https://doi.org/10.1073/pnas.1324049111
    [129] Fontaine CA, Skorupski AM, Vowles CJ, et al. (2015) How free of germs is germ-free? Detection of bacterial contamination in a germ free mouse unit. Gut Microbes 6: 225-233. https://doi.org/10.1080/19490976.2015.1054596
    [130] Hörmannsperger G, Schaubeck M, Haller D (2015) Intestinal microbiota in animal models of inflammatory diseases. ILAR J 56: 179-191. https://doi.org/10.1093/ilar/ilv019
    [131] Reyniers J, Sacksteder MR Observations on the survival of germfree C3H mice and their resistance to a contaminated environment (1958) 41-53.
    [132] Gordon HA, Bruckner-kardoss E, Wostmann BS (1966) Aging in germ-free mice: life tables and lesions observed at natural death. J Gerontol 21: 380-387. https://doi.org/10.1093/geronj/21.3.380
    [133] Abrams GD, Bauer H, Sprinz H (1962) Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Mount Sinai Hospial N Y .
    [134] Gordon H, Wostmann B (1973) Chronic mild diarrhea in germfree rodents: a model portraying host-flora synergism. Germfree Res : 593-601.
    [135] Coates ME, Hewitt D, Salter D (1971) Protein metabolism in the germ-free and conventional chick. Germfree research, biological effect of gnotobiotic environments.Academic New York 291-295.
    [136] Shimizu K, Muranaka Y, Fujimura R, et al. (1998) Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim 47: 151-158. https://doi.org/10.1538/expanim.47.151
    [137] Wen L, Ley RE, Volchkov PY, et al. (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455: 1109-1113. https://doi.org/10.1038/nature07336
    [138] Candon S, Perez-Arroyo A, Marquet C, et al. (2015) Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PloS One 10: e0125448. https://doi.org/10.1371/journal.pone.0125448
    [139] Hansen C, Krych L, Nielsen D, et al. (2012) Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55: 2285-2294. https://doi.org/10.1007/s00125-012-2564-7
    [140] Weng M, Walker W (2013) The role of gut microbiota in programming the immune phenotype. J Dev Origins Health Dis 4: 203-214. https://doi.org/10.1017/s2040174412000712
    [141] Jaggar M, Rea K, Spichak S, et al. (2020) You've got male: sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol 56: 100815. https://doi.org/10.1016/j.yfrne.2019.100815
    [142] Schubert AM, Sinani H, Schloss PD (2015) Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio 6: e00974. https://doi.org/10.1128/mbio.00974-15
    [143] Zackular JP, Baxter NT, Chen GY, et al. (2016) Manipulation of the gut microbiota reveals role in colon tumorigenesis. mSphere 1. https://doi.org/10.1128/msphere.00001-15
    [144] Rune I, Hansen C, Ellekilde M, et al. (2013) Ampicillin-improved glucose tolerance in diet-induced obese C57BL/6NTac mice is age dependent. J Diabetes Res 2013. https://doi.org/10.1155/2013/319321
    [145] Atarashi K, Tanoue T, Shima T, et al. (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337-341. https://doi.org/10.1126/science.1198469
    [146] Hansen AK (1995) Antibiotic treatment of nude rats and its impact on the aerobic bacterial flora. Lab Ani 29: 37-44. https://doi.org/10.1258/002367795780740410
    [147] Zhang L, Huang Y, Zhou Y, et al. (2013) Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother 57: 3659-3666. https://doi.org/10.1128/aac.00670-13
    [148] Morgun A, Dzutsev A, Dong X, et al. (2015) Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64: 1732-1743. https://doi.org/10.1136/gutjnl-2014-308820
    [149] Ubeda C, Taur Y, Jenq RR, et al. (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120: 4332-4341. https://doi.org/10.1172/jci43918
    [150] Barfod KK, Roggenbuck M, Hansen LH, et al. (2013) The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol 13: 1-12. https://doi.org/10.1186/1471-2180-13-303
    [151] Srinivas G, Möller S, Wang J, et al. (2013) Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering. Nat Commun 4: 1-7. https://doi.org/10.1038/ncomms3462
    [152] Fröhlich EE, Farzi A, Mayerhofer R, et al. (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56: 140-155. https://doi.org/10.1016/j.bbi.2016.02.020
    [153] Delungahawatta T, West C, Stanisz A, et al. (2018) A301 antibiotics increase vagal afferent firing in the mouse jejunum. J Can Assoc Gastroenterol 1: 432-432. https://doi.org/10.1093/jcag/gwy009.301
    [154] Delungahawatta T, Amin JY, Stanisz AM, et al. (2017) Antibiotic driven changes in gut motility suggest direct modulation of enteric nervous system. Front Neurosci 11: 588. https://doi.org/10.3389/fnins.2017.00588
    [155] Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14: 405-416. https://doi.org/10.1038/nri3684
    [156] Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157: 142-150. https://doi.org/10.1016/j.cell.2014.02.032
    [157] Noverr MC, Noggle RM, Toews GB, et al. (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72: 4996-5003. https://doi.org/10.1128/iai.72.9.4996-5003.2004
    [158] Kim Y-G, Udayanga KGS, Totsuka N, et al. (2014) Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 15: 95-102. https://doi.org/10.1016/j.chom.2013.12.010
    [159] Hernández-Chirlaque C, Aranda CJ, Ocón B, et al. (2016) Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J Crohn's Colitis 10: 1324-1335. https://doi.org/10.1093/ecco-jcc/jjw096
    [160] Kuno T, Hirayama-Kurogi M, Ito S, et al. (2016) Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of germ-free and antibiotics-treated mice. Mol Pharm 13: 2691-2701. https://doi.org/10.1021/acs.molpharmaceut.6b00259
    [161] Reinhardt C, Bergentall M, Greiner TU, et al. (2012) Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483: 627-631. https://doi.org/10.1038/nature10893
    [162] Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11: 227-238. https://doi.org/10.1038/nrmicro2974
    [163] Josefsdottir KS, Baldridge MT, Kadmon CS, et al. (2017) Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood 129: 729-739. https://doi.org/10.1182/blood-2016-03-708594
    [164] Iwamura C, Bouladoux N, Belkaid Y, et al. (2017) Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis. Blood 129: 171-176. https://doi.org/10.1182/blood-2016-06-723742
    [165] Zhang D, Chen G, Manwani D, et al. (2015) Neutrophil ageing is regulated by the microbiome. Nature 525: 528-532. https://doi.org/10.1038/nature15367
    [166] Ichinohe T, Pang IK, Kumamoto Y, et al. (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci 108: 5354-5359. https://doi.org/10.1073/pnas.1019378108
    [167] Oh JE, Kim B-C, Chang D-H, et al. (2016) Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proc Natl Acad Sci 113: E762-E771. https://doi.org/10.1073/pnas.1518589113
    [168] Naik S, Bouladoux N, Wilhelm C, et al. (2012) Compartmentalized control of skin immunity by resident commensals. Science 337: 1115-1119. https://doi.org/10.1126/science.1225152
    [169] Luczynski P, McVey Neufeld K-A, Oriach CS, et al. (2016) Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Interl J Neuropsychopharmacol 19. https://doi.org/10.1093/ijnp/pyw020
    [170] Uzbay T (2019) Germ-free animal experiments in the gut microbiota studies. Current Opinion in Pharmacology 49: 6-10. https://doi.org/10.1016/j.coph.2019.03.016
    [171] Spychala MS, Venna VR, Jandzinski M, et al. (2018) Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol 84: 23-36. https://doi.org/10.1002/ana.25250
    [172] Lai Z-L, Tseng C-H, Ho HJ, et al. (2018) Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci Rep 8: 1-11. https://doi.org/10.1038/s41598-018-33893-y
    [173] Saiman Y, Shen TCD, Lund PJ, et al. (2021) Global microbiota-dependent histone acetylation patterns are irreversible and independent of short chain fatty acids. Hepatology 74: 3427-3440. https://doi.org/10.1002/hep.32043
    [174] Mell B, Jala VR, Mathew AV, et al. (2015) Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 47: 187-197. https://doi.org/10.1152/physiolgenomics.00136.2014
    [175] Sayin SI, Wahlström A, Felin J, et al. (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17: 225-235. https://doi.org/10.1016/j.cmet.2013.01.003
    [176] Wichmann A, Allahyar A, Greiner TU, et al. (2013) Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14: 582-590. https://doi.org/10.1016/j.chom.2013.09.012
    [177] Fernández-Santoscoy M, Wenzel UA, Yrlid U, et al. (2015) The gut microbiota reduces colonization of the mesenteric lymph nodes and il-12-independent ifn-γ production during salmonella infection. Front Cell Infect Microbiol 5: 93. https://doi.org/10.3389/fcimb.2015.00093
    [178] Kelly CJ, Zheng L, Campbell EL, et al. (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial hif augments tissue barrier function. Cell Host Microbe 17: 662-671. https://doi.org/10.1016/j.chom.2015.03.005
    [179] Gopalakrishnan V, Dozier EA, Glover MS, et al. (2021) Engraftment of bacteria after fecal microbiota transplantation is dependent on both frequency of dosing and duration of preparative antibiotic regimen. Microorganisms 9: 1399. https://doi.org/10.3390/microorganisms9071399
    [180] Barcena C, Valdés-Mas R, Mayoral P, et al. (2019) Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med 25: 1234-1242. https://doi.org/10.1038/s41591-019-0504-5
    [181] Cao H, Liu X, An Y, et al. (2017) Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 7: 1-12. https://doi.org/10.1038/s41598-017-10835-8
    [182] Routy B, Le Chatelier E, Derosa L, et al. (2018) Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359: 91-97. https://doi.org/10.1126/science.aan3706
    [183] Li Y, Ning L, Yin Y, et al. (2020) Age-related shifts in gut microbiota contribute to cognitive decline in aged rats. Aging 12: 7801. https://doi.org/10.18632/aging.103093
    [184] Hughes KR, Schofield Z, Dalby MJ, et al. (2020) The early life microbiota protects neonatal mice from pathological small intestinal epithelial cell shedding. FASEB J 34: 7075-7088. https://doi.org/10.1096/fj.202000042r
    [185] Liu Z, Li N, Fang H, et al. (2019) Enteric dysbiosis is associated with sepsis in patients. The FASEB J 33: 12299-1231. https://doi.org/10.1096/fj.201900398rr
    [186] Kim SG, Becattini S, Moody TU, et al. (2019) Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature 572: 665-669. https://doi.org/10.1038/s41586-019-1501-z
    [187] Xu T, Ge Y, Du H, et al. (2021) Berberis kansuensis extract alleviates type 2 diabetes in rats by regulating gut microbiota composition. J Ethnopharmacol 273: 113995. https://doi.org/10.1016/j.jep.2021.113995
    [188] Le Bastard Q, Ward T, Sidiropoulos D, et al. (2018) Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep 8: 1-11. https://doi.org/10.1038/s41598-018-24342-x
    [189] Staley C, Kaiser T, Beura LK, et al. (2017) Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome 5: 87. https://doi.org/10.1186/s40168-017-0306-2
    [190] Hoyles L, Fernández-Real JM, Federici M, et al. (2018) Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 24: 1070-1080. https://doi.org/10.1038/s41591-018-0061-3
    [191] Kinnebrew MA, Ubeda C, Zenewicz LA, et al. (2010) Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201: 534-543. https://doi.org/10.1086/650203
    [192] Han Q, Wang J, Li W, et al. (2021) Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome 9: 1-16. https://doi.org/10.1186/s40168-021-01046-5
    [193] Zhu Z, Kaiser T, Staley C (2021) Antibiotic conditioning and single gavage allows stable engraftment of human microbiota in mice. The Oral Microbiome.Springer 281-291. https://doi.org/10.1007/978-1-0716-1518-8_17
    [194] Sun X, Winglee K, Gharaibeh RZ, et al. (2018) Microbiota-derived metabolic factors reduce campylobacteriosis in mice. Gastroenterology 154: 1751-1763. https://doi.org/10.1053/j.gastro.2018.01.042
    [195] Guo S, Jiang D, Zhang Q, et al. (2021) Diverse role of gut microbiota on reduction of ascites and intestinal injury in malignant ascites effusion rats treated with Euphorbia kansui stir-fried with vinegar. J Ethnopharmacol 267: 113489. https://doi.org/10.1016/j.jep.2020.113489
    [196] Li Q, He R, Zhang F, et al. (2020) Combination of oligofructose and metformin alters the gut microbiota and improves metabolic profiles, contributing to the potentiated therapeutic effects on diet-induced obese animals. Front Endocrinol 10: 939. https://doi.org/10.3389/fendo.2019.00939
    [197] Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183: 6041-6050. https://doi.org/10.4049/jimmunol.0900747
    [198] Olson CA, Vuong HE, Yano JM, et al. (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173: 1728-1741. e1713. https://doi.org/10.1016/j.cell.2018.04.027
    [199] Le Roy T, Debédat J, Marquet F, et al. (2019) Comparative evaluation of microbiota engraftment following fecal microbiota transfer in mice models: age, kinetic and microbial status matter. Front Microbiol 9: 3289. https://doi.org/10.3389/fmicb.2018.03289
    [200] Grant C, Loman B, Bailey M, et al. (2021) Manipulations of the gut microbiome alter chemotherapy-induced inflammation and behavioral side effects in female mice. Brain Behav Immun 95: 401-412. https://doi.org/10.1016/j.bbi.2021.04.014
    [201] Koester ST, Li N, Lachance DM, et al. (2021) Variability in digestive and respiratory tract Ace2 expression is associated with the microbiome. Plos one 16: e0248730. https://doi.org/10.1371/journal.pone.0248730
    [202] Hill DA, Hoffmann C, Abt MC, et al. (2010) Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 3: 148-158. https://doi.org/10.1038/mi.2009.132
    [203] Brandsma E, Kloosterhuis NJ, Koster M, et al. (2019) A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res 124: 94-100. https://doi.org/10.1161/circresaha.118.313234
    [204] Ganal SC, Sanos SL, Kallfass C, et al. (2012) Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37: 171-186. https://doi.org/10.1016/j.immuni.2012.05.020
    [205] Knoop KA, McDonald KG, McCrate S, et al. (2015) Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol 8: 198-210. https://doi.org/10.1038/mi.2014.58
    [206] Sougiannis A, VanderVeen B, Enos R, et al. (2019) Impact of 5 fluorouracil chemotherapy on gut inflammation, functional parameters, and gut microbiota. Brain Behav Immun 80: 44-55. https://doi.org/10.1016/j.bbi.2019.02.020
    [207] Benakis C, Brea D, Caballero S, et al. (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 22: 516-523. https://doi.org/10.1038/nm.4068
    [208] Kim M, Galan C, Hill AA, et al. (2018) Critical role for the microbiota in CX(3)CR1(+) intestinal mononuclear phagocyte regulation of intestinal t cell responses. Immunity 49: 151-163.e155. https://doi.org/10.1016/j.immuni.2018.05.009
    [209] Blake SJ, James J, Ryan FJ, et al. (2021) The immunotoxicity, but not anti-tumor efficacy, of anti-CD40 and anti-CD137 immunotherapies is dependent on the gut microbiota. Cell Rep Med 2: 100464. https://doi.org/10.1016/j.xcrm.2021.100464
    [210] Brown RL, Sequeira RP, Clarke TB (2017) The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun 8: 1512. https://doi.org/10.1038/s41467-017-01803-x
    [211] Zhang J, Bi JJ, Guo GJ, et al. (2019) Abnormal composition of gut microbiota contributes to delirium-like behaviors after abdominal surgery in mice. CNS Neurosci Ther 25: 685-696. https://doi.org/10.1111/cns.13103
    [212] Du HX, Liu Y, Zhang LG, et al. (2020) Abnormal gut microbiota composition is associated with experimental autoimmune prostatitis-induced depressive-like behaviors in mice. Prostate 80: 663-673. https://doi.org/10.1002/pros.23978
    [213] Wong SH, Zhao L, Zhang X, et al. (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153: 1621-1633. e1626. https://doi.org/10.1053/j.gastro.2017.08.022
    [214] King K, Josefsdottir K, Baldridge M (2016) Antibiotics impair murine hematopoiesis by depleting intestinal microbiota.Oxford University Press. https://doi.org/10.1182/blood-2016-03-708594
    [215] Li N, Wang Q, Wang Y, et al. (2019) Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 22: 592-602. https://doi.org/10.1080/10253890.2019.1617267
    [216] Lendrum J, Seebach B, Klein B, et al. (2017) Sleep and the gut microbiome: antibiotic-induced depletion of the gut microbiota reduces nocturnal sleep in mice. bioRxiv : 199075. https://doi.org/10.1101/199075
    [217] Zhang Y, Xie B, Chen X, et al. (2021) A key role of gut microbiota-vagus nerve/spleen axis in sleep deprivation-mediated aggravation of systemic inflammation after LPS administration. Life Sci 265: 118736. https://doi.org/10.1016/j.lfs.2020.118736
    [218] Wang M, Cao J, Gong C, et al. (2021) Exploring the microbiota-Alzheimer's disease linkage using short-term antibiotic treatment followed by fecal microbiota transplantation. Brain Behav Immun 96: 227-238. https://doi.org/10.1016/j.bbi.2021.06.003
    [219] Kim J, Kirkland R, Lee S, et al. (2020) Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway. Physiol Behav 225: 113082. https://doi.org/10.1016/j.physbeh.2020.113082
    [220] Wang Q, Wang X, Lv Y, et al. (2021) Changes in Rats' gut microbiota composition caused by induced chronic myocardial infarction lead to depression-like behavior. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.641084
    [221] Shute A, Callejas BE, Li S, et al. (2021) Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. Microbiome 9: 1-18. https://doi.org/10.1186/s40168-021-01146-2
    [222] LaGamma EF, Hu F, Cruz FP, et al. (2021) Bacteria-derived short chain fatty acids restore sympathoadrenal responsiveness to hypoglycemia after antibiotic-induced gut microbiota depletion. Neurobiol Stress 15: 100376. https://doi.org/10.1016/j.ynstr.2021.100376
    [223] Burrello C, Garavaglia F, Cribiù FM, et al. (2018) Short-term oral antibiotics treatment promotes inflammatory activation of colonic invariant natural killer t and conventional CD4(+) T cells. Front Med 5: 21. https://doi.org/10.3389/fmed.2018.00021
    [224] Hägerbrand K, Westlund J, Yrlid U, et al. (2015) MyD88 signaling regulates steady-state migration of intestinal CD103+ dendritic cells independently of TNF-α and the gut microbiota. J Immunol 195: 2888-2899. https://doi.org/10.4049/jimmunol.1500210
    [225] Hashiguchi M, Kashiwakura Y, Kojima H, et al. (2015) Peyer's patch innate lymphoid cells regulate commensal bacteria expansion. Immunol Lett 165: 1-9. https://doi.org/10.1016/j.imlet.2015.03.002
    [226] Thackray LB, Handley SA, Gorman MJ, et al. (2018) Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep 22: 3440-3453.e3446. https://doi.org/10.1016/j.celrep.2018.03.001
    [227] Zhan G, Yang N, Li S, et al. (2018) Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging 10: 1257-1267. https://doi.org/10.18632/aging.101464
    [228] Emal D, Rampanelli E, Stroo I, et al. (2017) Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 28: 1450-1461. https://doi.org/10.1681/asn.2016030255
    [229] Guirro M, Costa A, Gual-Grau A, et al. (2019) Effects from diet-induced gut microbiota dysbiosis and obesity can be ameliorated by fecal microbiota transplantation: A multiomics approach. PLoS One 14: e0218143. https://doi.org/10.1371/journal.pone.0218143
    [230] Yang C, Fang X, Zhan G, et al. (2019) Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Transl Psychiatry 9: 57. https://doi.org/10.1038/s41398-019-0379-8
    [231] Brandl K, Plitas G, Mihu CN, et al. (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455: 804-807. https://doi.org/10.1038/nature07250
    [232] Medel-Matus JS, Shin D, Dorfman E, et al. (2018) Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 3: 290-294. https://doi.org/10.1002/epi4.12114
    [233] Steed AL, Christophi GP, Kaiko GE, et al. (2017) The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357: 498-502. https://doi.org/10.1126/science.aam5336
    [234] Yin A, Luo Y, Chen W, et al. (2019) FAM96A protects mice from dextran sulfate sodium (DSS)-induced colitis by preventing microbial dysbiosis. Front Cell Infect Microbiol 9: 381. https://doi.org/10.3389/fcimb.2019.00381
    [235] Zhao M, Xiong X, Ren K, et al. (2018) Deficiency in intestinal epithelial O-GlcNAcylation predisposes to gut inflammation. EMBO Mol Med 10: e8736. https://doi.org/10.15252/emmm.201708736
    [236] Ward NL, Phillips CD, Nguyen DD, et al. (2016) Antibiotic treatment induces long-lasting changes in the fecal microbiota that protect against colitis. Inflammatory Bowel Dis 22: 2328-2340. https://doi.org/10.1097/mib.0000000000000914
    [237] Riquelme E, Zhang Y, Zhang L, et al. (2019) Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178: 795-806. https://doi.org/10.1016/j.cell.2019.07.008
    [238] Kuss SK, Best GT, Etheredge CA, et al. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249-252. https://doi.org/10.1126/science.1211057
    [239] Hintze KJ, Cox JE, Rompato G, et al. (2014) Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes 5: 183-191. https://doi.org/10.4161/gmic.28403
    [240] Goulding DR, Myers PH, Dickerson AB, et al. (2021) Comparative efficacy of two types of antibiotic mixtures in gut flora depletion in female C57BL/6 mice. Comp Med 71: 203-209. https://doi.org/10.30802/aalas-cm-21-000023
    [241] Vétizou M, Pitt JM, Daillère R, et al. (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350: 1079-1084. https://doi.org/10.1126/science.aad1329
    [242] Jacobson A, Lam L, Rajendram M, et al. (2018) A Gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell Host Microbe 24: 296-307.e297. https://doi.org/10.1016/j.chom.2018.07.002
    [243] Corbitt N, Kimura S, Isse K, et al. (2013) Gut bacteria drive Kupffer cell expansion via MAMP-mediated ICAM-1 induction on sinusoidal endothelium and influence preservation-reperfusion injury after orthotopic liver transplantation. Am J Pathol 182: 180-191. https://doi.org/10.1016/j.ajpath.2012.09.010
    [244] Liang W, Zhao L, Zhang J, et al. (2020) Colonization potential to reconstitute a microbe community in pseudo germ-free mice after fecal microbe transplant from equol producer. Front Microbiol 11: 1221. https://doi.org/10.3389/fmicb.2020.01221
    [245] Bashir ME, Louie S, Shi HN, et al. (2004) Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 172: 6978-6987. https://doi.org/10.4049/jimmunol.172.11.6978
    [246] Walsh J, Olavarria-Ramirez L, Lach G, et al. (2020) Impact of host and environmental factors on β-glucuronidase enzymatic activity: implications for gastrointestinal serotonin. Am J Physiol Gastrointest Liver Physiol 318: G816-G826. https://doi.org/10.1152/ajpgi.00026.2020
    [247] Shi Z, Zou J, Zhang Z, et al. (2019) Segmented filamentous bacteria prevent and cure rotavirus infection. Cell 179: 644-658.e613. https://doi.org/10.1016/j.cell.2019.09.028
    [248] Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia (2016)65: 575-583. https://doi.org/10.1136/gutjnl-2015-309728
    [249] Gury-BenAri M, Thaiss CA, Serafini N, et al. (2016) The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166: 1231-1246.e1213. https://doi.org/10.1016/j.cell.2016.07.043
    [250] Yang K, Hou Y, Zhang Y, et al. (2021) Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation. J Exp Med 218. https://doi.org/10.1084/jem.20201915
    [251] Johansson ME, Jakobsson HE, Holmén-Larsson J, et al. (2015) Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18: 582-592. https://doi.org/10.1016/j.chom.2015.10.007
    [252] Ye Z, Zhang N, Wu C, et al. (2018) A metagenomic study of the gut microbiome in Behcet's disease. Microbiome 6: 135. https://doi.org/10.1186/s40168-018-0520-6
    [253] Chen L, He Z, Iuga AC, et al. (2018) Diet modifies colonic microbiota and CD4+ T-cell repertoire to induce flares of colitis in mice with myeloid-cell expression of interleukin 23. Gastroenterology 155: 1177-1191. e1116. https://doi.org/10.1053/j.gastro.2018.06.034
    [254] Stefka AT, Feehley T, Tripathi P, et al. (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111: 13145-13150. https://doi.org/10.1073/pnas.1412008111
    [255] Zhao W, Hu Y, Li C, et al. (2020) Transplantation of fecal microbiota from patients with alcoholism induces anxiety/depression behaviors and decreases brain mGluR1/PKC ϵ levels in mouse. Biofactors 46: 38-54. https://doi.org/10.1002/biof.1567
    [256] Toubai T, Fujiwara H, Rossi C, et al. (2019) Host NLRP6 exacerbates graft-versus-host disease independent of gut microbial composition. Nat Microbiol 4: 800-812. https://doi.org/10.1038/s41564-019-0373-1
    [257] Mortha A, Chudnovskiy A, Hashimoto D, et al. (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343: 1249288. https://doi.org/10.1126/science.1249288
    [258] Oh JZ, Ravindran R, Chassaing B, et al. (2014) TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41: 478-492. https://doi.org/10.1016/j.immuni.2014.08.009
    [259] Wu X, Sun R, Chen Y, et al. (2015) Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology 62: 253-264. https://doi.org/10.1002/hep.27791
    [260] Cervantes-Barragan L, Chai JN (2017) Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8αα(+) T cells. Science 357: 806-810. https://doi.org/10.1126/science.aah5825
    [261] Ge X, Ding C, Zhao W, et al. (2017) Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med 15: 13. https://doi.org/10.1186/s12967-016-1105-4
    [262] Li F, Hao X, Chen Y, et al. (2017) The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 8: 1-15. https://doi.org/10.1038/ncomms13839
    [263] Durand A, Audemard-Verger A, Guichard V, et al. (2018) Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota. Nat Commun 9: 68. https://doi.org/10.1038/s41467-017-02458-4
    [264] Adami AJ, Bracken SJ, Guernsey LA, et al. (2018) Early-life antibiotics attenuate regulatory T cell generation and increase the severity of murine house dust mite-induced asthma. Pediatr Res 84: 426-434. https://doi.org/10.1038/s41390-018-0031-y
    [265] Heiss CN, Mannerås-Holm L, Lee YS, et al. (2021) The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Rep 35: 109163. https://doi.org/10.1016/j.celrep.2021.109163
    [266] Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229-241. https://doi.org/10.1016/j.cell.2004.07.002
    [267] Ivanov II, Frutos Rde L, Manel N, et al. (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4: 337-349. https://doi.org/10.1016/j.chom.2008.09.009
    [268] Kim SH, Cho BH, Kiyono H, et al. (2017) Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer's patches. Sci Rep 7: 3980. https://doi.org/10.1038/s41598-017-02729-6
    [269] Diehl GE, Longman RS, Zhang JX, et al. (2013) Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells. Nature 494: 116-120. https://doi.org/10.1038/nature11809
    [270] Balmer ML, Schürch CM, Saito Y, et al. (2014) Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 193: 5273-5283. https://doi.org/10.4049/jimmunol.1400762
    [271] Park JH, Kotani T, Konno T, et al. (2016) Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS One 11: e0156334. https://doi.org/10.1371/journal.pone.0156334
    [272] Vaishnava S, Behrendt CL, Ismail AS, et al. (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105: 20858-20863. https://doi.org/10.1073/pnas.0808723105
    [273] Ichinohe T, Pang IK, Kumamoto Y, et al. (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 108: 5354-5359. https://doi.org/10.1073/pnas.1019378108
    [274] Ismail AS, Severson KM, Vaishnava S, et al. (2011) Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci USA 108: 8743-8748. https://doi.org/10.1073/pnas.1019574108
    [275] Schnepf D, Hernandez P, Mahlakõiv T, et al. (2021) Rotavirus susceptibility of antibiotic-treated mice ascribed to diminished expression of interleukin-22. PloS One 16: e0247738. https://doi.org/10.1371/journal.pone.0247738
    [276] Yoshiya K, Lapchak PH, Thai T-H, et al. (2011) Depletion of gut commensal bacteria attenuates intestinal ischemia/reperfusion injury. Am J Physiol Gastrointest Liver Physiol 301: G1020-G1030. https://doi.org/10.1152/ajpgi.00239.2011
    [277] Yan J, Herzog JW, Tsang K, et al. (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci USA 113: E7554-e7563. https://doi.org/10.1073/pnas.1607235113
    [278] Sui H, Zhang L, Gu K, et al. (2020) YYFZBJS ameliorates colorectal cancer progression in Apc Min/+ mice by remodeling gut microbiota and inhibiting regulatory T-cell generation. Cell Commun Signaling 18: 1-17. https://doi.org/10.1186/s12964-020-00596-9
    [279] Platt DJ, Lawrence D, Rodgers R, et al. (2021) Transferrable protection by gut microbes against STING-associated lung disease. Cell Rep 35: 109113. https://doi.org/10.1016/j.celrep.2021.109113
    [280] Khosravi A, Yáñez A, Price JG, et al. (2014) Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15: 374-381. https://doi.org/10.1016/j.chom.2014.02.006
    [281] Zhang D, Chen G, Manwani D, et al. (2015) Neutrophil ageing is regulated by the microbiome. Nature 525: 528-532. https://doi.org/10.1038/nature15367
    [282] Naik S, Bouladoux N, Wilhelm C, et al. (2012) Compartmentalized control of skin immunity by resident commensals. Science 337: 1115-1119. https://doi.org/10.1126/science.1225152
    [283] Sun Z, Li J, Dai Y, et al. (2020) Indigo naturalis alleviates dextran sulfate sodium-induced colitis in rats via altering gut microbiota. Front Microbiol 11: 731. https://doi.org/10.3389/fmicb.2020.00731
    [284] Zákostelská Z, Málková J, Klimešová K, et al. (2016) Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS One 11: e0159539. https://doi.org/10.1371/journal.pone.0159539
    [285] Wang S, Huang M, You X, et al. (2018) Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Sci Rep 8: 1-14. https://doi.org/10.1038/s41598-018-31353-1
    [286] de la Visitacion N, Robles-Vera I, Toral M, et al. (2021) Gut microbiota contributes to the development of hypertension in a genetic mouse model of systemic lupus erythematosus. Bri J Pharmacol 178: 3708-3729. https://doi.org/10.1111/bph.15512
    [287] Sawa S, Lochner M, Satoh-Takayama N, et al. (2011) RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12: 320-326. https://doi.org/10.1038/ni.2002
    [288] Zhang Y, Huang R, Cheng M, et al. (2019) Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome 7: 116. https://doi.org/10.1186/s40168-019-0733-3
    [289] Atarashi K, Nishimura J, Shima T, et al. (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455: 808-812. https://doi.org/10.1038/nature07240
    [290] Levy M, Thaiss CA, Zeevi D, et al. (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163: 1428-1443. https://doi.org/10.1016/j.cell.2015.10.048
    [291] Kernbauer E, Ding Y, Cadwell K (2014) An enteric virus can replace the beneficial function of commensal bacteria. Nature 516: 94-98. https://doi.org/10.1038/nature13960
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2000) PDF downloads(209) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog