Review Special Issues

Biofilms: Formation, drug resistance and alternatives to conventional approaches

  • Received: 14 March 2022 Revised: 09 June 2022 Accepted: 09 June 2022 Published: 04 July 2022
  • Biofilms are aggregates of bacteria, in most cases, which are resistant usually to broad-spectrum antibiotics in their typical concentrations or even in higher doses. A trend of increasing multi-drug resistance in biofilms, which are responsible for emerging life-threatening nosocomial infections, is becoming a serious problem. Biofilms, however, are at various sensitivity levels to environmental factors and are versatile in infectivity depending on virulence factors. This review presents the fundamental information about biofilms: formation, antibiotic resistance, impacts on public health and alternatives to conventional approaches. Novel developments in micro-biosystems that help reveal the new treatment tools by sensing and characterization of biofilms will also be discussed. Understanding the formation, structure, physiology and properties of biofilms better helps eliminate them by the usage of appropriate antibiotics or their control by novel therapy approaches, such as anti-biofilm molecules, effective gene editing, drug-delivery systems and probiotics.

    Citation: Ruba Mirghani, Tania Saba, Hebba Khaliq, Jennifer Mitchell, Lan Do, Liz Chambi, Kelly Diaz, Taylor Kennedy, Katia Alkassab, Thuhue Huynh, Mohamed Elmi, Jennifer Martinez, Suad Sawan, Girdhari Rijal. Biofilms: Formation, drug resistance and alternatives to conventional approaches[J]. AIMS Microbiology, 2022, 8(3): 239-277. doi: 10.3934/microbiol.2022019

    Related Papers:

  • Biofilms are aggregates of bacteria, in most cases, which are resistant usually to broad-spectrum antibiotics in their typical concentrations or even in higher doses. A trend of increasing multi-drug resistance in biofilms, which are responsible for emerging life-threatening nosocomial infections, is becoming a serious problem. Biofilms, however, are at various sensitivity levels to environmental factors and are versatile in infectivity depending on virulence factors. This review presents the fundamental information about biofilms: formation, antibiotic resistance, impacts on public health and alternatives to conventional approaches. Novel developments in micro-biosystems that help reveal the new treatment tools by sensing and characterization of biofilms will also be discussed. Understanding the formation, structure, physiology and properties of biofilms better helps eliminate them by the usage of appropriate antibiotics or their control by novel therapy approaches, such as anti-biofilm molecules, effective gene editing, drug-delivery systems and probiotics.



    加载中

    Acknowledgments



    This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

    Contributions



    G.R. conceived the idea of this review article. G.R. took the lead in writing the manuscript and prepared the illustrating figures. R.M, T.S and H.K. contributed to the writing. All other authors provided information related to the manuscript, provided critical feedback and contributed to the final version of the manuscript.

    Ethics declarations



    The authors declare no competing interests.

    [1] Silva VO, Soares LO, Silva Júnior A, et al. (2014) Biofilm formation on biotic and abiotic surfaces in the presence of antimicrobials by Escherichia coli isolates from cases of bovine mastitis. Appl Environ Microbiol 80: 6136-6145. https://doi.org/10.1128/aem.01953-14
    [2] Donlan RM (2002) Biofilms: microbial life on surfaces. Emerging Infect Dis 8: 881-890. https://doi.org/10.3201/eid0809.020063
    [3] Yin W, Wang Y, Liu L, et al. (2019) Biofilms: The microbial “protective clothing” in extreme environments. Int J Mol Sci 20: 3423. https://doi.org/10.3390/ijms20143423
    [4] Koerdt A, Gödeke J, Berger J, et al. (2010) Crenarchaeal biofilm formation under extreme conditions. PLoS One 5: e14104. https://doi.org/10.1371/journal.pone.0014104
    [5] Chen Y, Yan F, Chai Y, et al. (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15: 848-864. https://doi.org/10.1111/j.1462-2920.2012.02860.x
    [6] Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109: 1117-1131. https://doi.org/10.1111/j.1365-2672.2010.04756.x
    [7] Di Martino P (2018) Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 4: 274-288. https://doi.org/10.3934/microbiol.2018.2.274
    [8] Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.00922
    [9] Flemming HC (2016) EPS-Then and Now. Microorganisms 4: 41. https://doi.org/10.3390/microorganisms4040041
    [10] Kragh KN, Hutchison JB, Melaugh G, et al. (2016) Role of multicellular aggregates in biofilm formation. mBio 7: e00237-00216. https://doi.org/10.1128/mBio.00237-16
    [11] Taylor M, Ross K, Bentham R (2009) Legionella, Protozoa and Biofilms: Interactions within complex microbial systems. Microbiol Ecol 58: 538-547. https://doi.org/10.1007/s00248-009-9514-z
    [12] de Alexandre Sebastião F, Pilarski F, Lemos MVF (2013) Composition of extracellular polymeric substances (EPS) produced by flavobacterium columnare isolated from tropical fish in Brazil. Braz J Microbiol 44: 861-864. https://doi.org/10.1590/S1517-83822013005000058
    [13] McSwain BS, Irvine RL, Hausner M, et al. (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71: 1051. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
    [14] López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harbor Perspect Biol 2: a000398. https://doi.org/10.1101/cshperspect.a000398
    [15] Nadell CD, Drescher K, Wingreen NS, et al. (2015) Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J 9: 1700-1709. https://doi.org/10.1038/ismej.2014.246
    [16] Davenport EK, Call DR, Beyenal H (2014) Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob Agents Chemother 58: 4755-4761. https://doi.org/10.1128/AAC.03071-14
    [17] Donlan RM (2001) Biofilm formation: A clinically relevant microbiological process. Clin Infect Dis 33: 1387-1392. https://doi.org/10.1086/322972
    [18] Lewis K (2010) Persister cells. Annu Rev Microbiol 64: 357-372. https://doi.org/10.1146/annurev.micro.112408.134306
    [19] Rumbaugh KP, Sauer K (2020) Biofilm dispersion. Nat Rev Microbiol 18: 571-586. https://doi.org/10.1038/s41579-020-0385-0
    [20] Rice SA, Tan CH, Mikkelsen PJ, et al. (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3: 271-282. https://doi.org/10.1038/ismej.2008.109
    [21] Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18: 1049-1056. https://doi.org/10.1016/j.pnsc.2008.04.001
    [22] Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7: 277-281. https://doi.org/10.3201/eid0702.010226
    [23] Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167-193. https://doi.org/10.1128/cmr.15.2.167-193.2002
    [24] Armbruster CR, Parsek MR (2018) New insight into the early stages of biofilm formation. Proc Natl Acad Sci 115: 4317. https://doi.org/10.1073/pnas.1804084115
    [25] Da Cunda P, Iribarnegaray V, Papa-Ezdra R, et al. (2019) Characterization of the different stages of biofilm formation and antibiotic susceptibility in a clinical acinetobacter baumannii Strain. Microb Drug Resist 26: 569-575. https://doi.org/10.1089/mdr.2019.0145
    [26] Rasamiravaka T, Labtani Q, Duez P, et al. (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015: 759348. https://doi.org/10.1155/2015/759348
    [27] Koczan JM, Lenneman BR, McGrath MJ, et al. (2011) Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora. Appl Environ Microbiol 77: 7031-7039. https://doi.org/10.1128/AEM.05138-11
    [28] Mandlik A, Swierczynski A, Das A, et al. (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16: 33-40. https://doi.org/10.1016/j.tim.2007.10.010
    [29] Berne C, Ducret A, Hardy GG, et al. (2015) Adhesins involved in attachment to abiotic surfaces by Gram-Negative bacteria. Microbiol Spectrum 3: 10. https://doi.org/10.1128/microbiolspec.MB-0018-2015
    [30] Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately?. Clin Microbiol Rev 15: 155-166. https://doi.org/10.1128/cmr.15.2.155-166.2002
    [31] Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36: 347-355. https://doi.org/10.1557/mrs.2011.65
    [32] Hinsa SM, Espinosa-Urgel M, Ramos JL, et al. (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49: 905-918. https://doi.org/10.1046/j.1365-2958.2003.03615.x
    [33] Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol Res 194: 2413-2425. https://doi.org/10.1128/JB.00003-12
    [34] Miller JK, Badawy HT, Clemons C, et al. (2012) Development of the Pseudomonas aeruginosa mushroom morphology and cavity formation by iron-starvation: a mathematical modeling study. J Theor Biol 308: 68-78. https://doi.org/10.1016/j.jtbi.2012.05.029
    [35] Abebe GM (2020) The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol 2020: 1705814. https://doi.org/10.1155/2020/1705814
    [36] Jefferson KK (2004) What drives bacteria to produce a biofilm?. FEMS Microbiol Lett 236: 163-173. https://doi.org/10.1111/j.1574-6968.2004.tb09643.x
    [37] Kurmoo Y, Hook AL, Harvey D, et al. (2020) Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections. Biomater Sci 8: 1464-1477. https://doi.org/10.1039/c9bm00875f
    [38] Salgar-Chaparro SJ, Lepkova K, Pojtanabuntoeng T, et al. (2020) Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Appl Environ Microbiol 86: e02885-02819. https://doi.org/10.1128/AEM.02885-19
    [39] Wilson C, Lukowicz R, Merchant S, et al. (2017) Quantitative and qualitative assessment methods for biofilm growth: A mini-review. Res Rev J Eng Technol 6. Available from: http://www.rroij.com/open-access/quantitative-and-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf
    [40] Haney EF, Trimble MJ, Cheng JT, et al. (2018) Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8: 29. https://doi.org/10.3390/biom8020029
    [41] Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89: 205-218. https://doi.org/10.1177/0022034509359403
    [42] Rabin N, Zheng Y, Opoku-Temeng C, et al. (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7: 493-512. https://doi.org/10.4155/fmc.15.6
    [43] Sharpton TJ, Combrink L, Arnold HK, et al. (2021) Erratum to “Harnessing the gut microbiome in the fight against anthelminthic drug resistance”. Curr Opin Microbiol 53: 26-34. https://doi.org/10.1016/j.mib.2021.01.003
    [44] Seth AK, Geringer MR, Hong SJ, et al. (2012) Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS One 7: e42897. https://doi.org/10.1371/journal.pone.0042897
    [45] Yang L, Liu Y, Wu H, et al. (2011) Current understanding of multi-species biofilms. Int J Oral Sci 3: 74-81. https://doi.org/10.4248/IJOS11027
    [46] Lohse MB, Gulati M, Johnson AD, et al. (2018) Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16: 19-31. https://doi.org/10.1038/nrmicro.2017.107
    [47] Lynch AS, Robertson GT (2008) Bacterial and fungal biofilm infections. Annu Rev Med 59: 415-428. https://doi.org/10.1146/annurev.med.59.110106.132000
    [48] Seneviratne G, Zavahir JS, Bandara WMMS, et al. (2007) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24: 739. https://doi.org/10.1007/s11274-007-9539-8
    [49] Guo YS, Furrer JM, Kadilak AL, et al. (2018) Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Front Environ Sci 6. https://doi.org/10.3389/fenvs.2018.00093
    [50] Wingender J, Neu TR, Flemming HC, et al. (1999) What are bacterial extracellular polymeric substances?. Microbial extracellular polymeric substances: Characterization, structure and function. Berlin: Springer Berlin Heidelberg 1-19. https://doi.org/10.1007/978-3-642-60147-7_1
    [51] Wilking JN, Zaburdaev V, De Volder M, et al. (2013) Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 110: 848-852. https://doi.org/10.1073/pnas.1216376110
    [52] Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9: 1636-1636. https://doi.org/10.3389/fmicb.2018.01636
    [53] Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63: 174. https://doi.org/10.1128/MMBR.63.1.174-229.1999
    [54] Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev: MMBR 64: 847-867. https://doi.org/10.1128/mmbr.64.4.847-867.2000
    [55] Hibiya K, Tsuneda S, Hirata A (2000) Formation and characteristics of nitrifying biofilm on a membrane modified with positively-charged polymer chains. Colloids Surf, B 18: 105-112. https://doi.org/10.1016/S0927-7765(99)00141-1
    [56] Navada S, Knutsen MF, Bakke I, et al. (2020) Nitrifying biofilms deprived of organic carbon show higher functional resilience to increases in carbon supply. Sci Rep 10: 7121. https://doi.org/10.1038/s41598-020-64027-y
    [57] Hunt SM, Werner EM, Huang B, et al. (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70: 7418-7425. https://doi.org/10.1128/AEM.70.12.7418-7425.2004
    [58] Maddela NR, Zhou Z, Yu Z, et al. (2018) Functional determinants of extracellular polymeric substances in membrane biofouling: Experimental evidence from pure-cultured sludge bacteria. Appl Environ Microbiol 84: e00756-00718. https://doi.org/10.1128/AEM.00756-18
    [59] Stoodley P, Sauer K, Davies DG, et al. (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56: 187-209. https://doi.org/10.1146/annurev.micro.56.012302.160705
    [60] Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectrum 3: 10. https://doi.org/10.1128/microbiolspec.MB-0011-2014
    [61] Magana M, Sereti C, Ioannidis A, et al. (2018) Options and limitations in clinical investigation of bacterial biofilms. Clin Microbiol Rev 31: e00084-16. https://doi.org/10.1128/CMR.00084-16
    [62] Denef VJ, Mueller RS, Banfield JF (2010) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 4: 599-610. https://doi.org/10.1038/ismej.2009.158
    [63] Martinez-Gil M, Goh KGK, Rackaityte E, et al. (2017) YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation. Sci Rep 7: 11326. https://doi.org/10.1038/s41598-017-10902-0
    [64] Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbio Immunol 322: 249-289. https://doi.org/10.1007/978-3-540-75418-3_12
    [65] Klemm P, Hjerrild L, Gjermansen M, et al. (2004) Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51: 283-296. https://doi.org/10.1046/j.1365-2958.2003.03833.x
    [66] Müller D, Benz I, Tapadar D, et al. (2005) Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface. Infect Immun 73: 3851-3859. https://doi.org/10.1128/IAI.73.7.3851-3859.2005
    [67] Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60: 131-147. https://doi.org/10.1146/annurev.micro.60.080805.142106
    [68] Tursi SA, Tükel Ç (2018) Curli-Containing enteric biofilms inside and out: Matrix composition, immune recognition, and disease implications. Microbiol Mol Biol Rev 82: e00028-18. https://doi.org/10.1128/MMBR.00028-18
    [69] Hobley L, Harkins C, MacPhee CE, et al. (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39: 649-669. https://doi.org/10.1093/femsre/fuv015
    [70] Chen XD, Zhang CK, Zhou Z, et al. (2017) Stabilizing effects of bacterial biofilms: EPS penetration and redistribution of bed stability down the sediment profile. J Geophys Res: Biogeosci 122: 3113-3125. https://doi.org/10.1002/2017JG004050
    [71] Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE (2017) Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol 8: 1390-1390. https://doi.org/10.3389/fmicb.2017.01390
    [72] Jamal M, Ahmad W, Andleeb S, et al. (2018) Bacterial biofilm and associated infections. J Chin Med Assoc 81: 7-11. https://doi.org/10.1016/j.jcma.2017.07.012
    [73] Toyofuku M, Inaba T, Kiyokawa T, et al. (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80: 7-12. https://doi.org/10.1080/09168451.2015.1058701
    [74] Vu B, Chen M, Crawford RJ, et al. (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules (Basel,Switz) 14: 2535-2554. https://doi.org/10.3390/molecules14072535
    [75] Skariyachan S, Sridhar VS, Packirisamy S, et al. (2018) Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol 63: 413-432. https://doi.org/10.1007/s12223-018-0585-4
    [76] Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36: 893-916. https://doi.org/10.1111/j.1574-6976.2011.00322.x
    [77] Zambrano MM, Kolter R (2005) Mycobacterial biofilms: A greasy way to hold it together. Cell 123: 762-764. https://doi.org/10.1016/j.cell.2005.11.011
    [78] Li YH, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel,Switz) 12: 2519-2538. https://doi.org/10.3390/s120302519
    [79] Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8: 76. https://doi.org/10.1186/s13756-019-0533-3
    [80] Shrout JD, Chopp DL, Just CL, et al. (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62: 1264-1277. https://doi.org/10.1111/j.1365-2958.2006.05421.x
    [81] Saygin H, Baysal A (2020) Biofilm formation of clinically important bacteria on bio-based and conventional micro/submicron-sized plastics. Bull Environ Contam Toxicol 105: 18-25. https://doi.org/10.1007/s00128-020-02876-z
    [82] Fulaz S, Vitale S, Quinn L, et al. (2019) Nanoparticle-Biofilm interactions: The role of the EPS matrix. Trends Microbiol 27: 915-926. https://doi.org/10.1016/j.tim.2019.07.004
    [83] Chakraborty P, Kumar A (2019) The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections?. Microb Cell (Graz,Austria) 6: 105-122. https://doi.org/10.15698/mic2019.02.667
    [84] Yawata Y, Uchiyama H, Nomura N (2010) Visualizing the effects of biofilm structures on the influx of fluorescent material using combined confocal reflection and fluorescent microscopy. Microbes Environ 25: 49-52. https://doi.org/10.1264/jsme2.me09169
    [85] Holman HY, Miles R, Hao Z, et al. (2009) Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy. Anal Chem 81: 8564-8570. https://doi.org/10.1021/ac9015424
    [86] Mattana S, Alunni Cardinali M, Caponi S, et al. (2017) High-contrast brillouin and raman micro-spectroscopy for simultaneous mechanical and chemical investigation of microbial biofilms. Biophys Chem 229: 123-129. https://doi.org/10.1016/j.bpc.2017.06.008
    [87] Abadian PN, Tandogan N, Jamieson JJ, et al. (2014) Using surface plasmon resonance imaging to study bacterial biofilms. Biomicrofluidics 8: 021804. https://doi.org/10.1063/1.4867739
    [88] McGoverin C, Vanholsbeeck F, Dawes JM, et al. (2020) Asia-pacific optical sensors conference: focus issue introduction. Opt Express 28: 21745-21748. https://doi.org/10.1364/OE.401277
    [89] Yuan Y, Guo T, Qiu X, et al. (2016) Electrochemical surface plasmon resonance fiber-optic sensor: In situ detection of electroactive biofilms. Anal Chem 88: 7609-7616. https://doi.org/10.1021/acs.analchem.6b01314
    [90] Subramanian S, Huiszoon RC, Chu S, et al. (2019) Microsystems for biofilm characterization and sensing-A review. Biofilm 2: 100015. https://doi.org/10.1016/j.bioflm.2019.100015
    [91] Stöckl M, Schlegel C, Sydow A, et al. (2016) Membrane separated flow cell for parallelized electrochemical impedance spectroscopy and confocal laser scanning microscopy to characterize electro-active microorganisms. Electrochim Acta 220: 444-452. https://doi.org/10.1016/j.electacta.2016.10.057
    [92] Estrada-Leypon O, Moya A, Guimera A, et al. (2015) Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy. Bioelectrochemistry 105: 56-64. https://doi.org/10.1016/j.bioelechem.2015.05.006
    [93] Huiszoon RC, Subramanian S, Ramiah Rajasekaran P, et al. (2019) Flexible platform for in situ impedimetric detection and bioelectric effect treatment of Escherichia coli biofilms. IEEE Trans Biomed Eng 66: 1337-1345. https://doi.org/10.1109/tbme.2018.2872896
    [94] Bayoudh S, Othmane A, Ponsonnet L, et al. (2008) Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber. Colloids Surf, A 318: 291-300. https://doi.org/10.1016/j.colsurfa.2008.01.005
    [95] Bellin DL, Sakhtah H, Zhang Y, et al. (2016) Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms. Nat Commun 7: 10535. https://doi.org/10.1038/ncomms10535
    [96] Marcus IM, Herzberg M, Walker SL, et al. (2012) Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities. Langmuir 28: 6396-6402. https://doi.org/10.1021/la300333c
    [97] Olsson AL, van der Mei HC, Busscher HJ, et al. (2009) Influence of cell surface appendages on the bacterium-substratum interface measured real-time using QCM-D. Langmuir 25: 1627-1632. https://doi.org/10.1021/la803301q
    [98] Piasecki T, Guła G, Markwitz P, et al. (2016) Autonomous system for in situ assay of antibiotic activity on bacterial biofilms using viscosity and density sensing quartz tuning forks. Procedia Eng 168: 745-748. https://doi.org/10.1016/j.proeng.2016.11.267
    [99] Sfaelou S, Karapanagioti HK, Vakros J (2015) Studying the formation of biofilms on supports with different polarity and their efficiency to treat wastewater. J Chem 2015: 734384. https://doi.org/10.1155/2015/734384
    [100] Khatoon Z, McTiernan CD, Suuronen EJ, et al. (2018) Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4: e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
    [101] Revdiwala S, Rajdev BM, Mulla S (2012) Characterization of bacterial etiologic agents of biofilm formation in medical devices in critical care setup. Crit Care Res Pract 2012: 945805. https://doi.org/10.1155/2012/945805
    [102] Trautner BW, Darouiche RO (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32: 177-183. https://doi.org/10.1016/j.ajic.2003.08.005
    [103] Liu S, Gunawan C, Barraud N, et al. (2016) Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ Sci Technol 50: 8954-8976. https://doi.org/10.1021/acs.est.6b00835
    [104] Maes S, Vackier T, Nguyen Huu S, et al. (2019) Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiol 19: 77. https://doi.org/10.1186/s12866-019-1451-5
    [105] Muhammad MH, Idris AL, Fan X, et al. (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11: 928-928. https://doi.org/10.3389/fmicb.2020.00928
    [106] Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Curr Environ Health Rep 2: 95-106. https://doi.org/10.1007/s40572-014-0037-5
    [107] Archer NK, Mazaitis MJ, Costerton JW, et al. (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2: 445-459. https://doi.org/10.4161/viru.2.5.17724
    [108] Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16: 397-409. https://doi.org/10.1038/s41579-018-0019-y
    [109] Boisvert AA, Cheng MP, Sheppard DC, et al. (2016) Microbial biofilms in pulmonary and critical care diseases. Ann Am Thorac Soc 13: 1615-1623. https://doi.org/10.1513/AnnalsATS.201603-194FR
    [110] Gnanadhas DP, Elango M, Datey A, et al. (2015) Chronic lung infection by Pseudomonas aeruginosa biofilm is cured by L-Methionine in combination with antibiotic therapy. Sci Rep 5: 16043. https://doi.org/10.1038/srep16043
    [111] Minasyan H (2019) Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med 27: 19. https://doi.org/10.1186/s13049-019-0596-4
    [112] VanEpps JS, Younger JG (2016) Implantable device-related infection. Shock (Augusta,Ga) 46: 597-608. https://doi.org/10.1097/SHK.0000000000000692
    [113] Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292: 107-113. https://doi.org/10.1078/1438-4221-00196
    [114] Vestby LK, Grønseth T, Simm R, et al. (2020) Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel,Switz) 9: 59. https://doi.org/10.3390/antibiotics9020059
    [115] González JF, Hahn MM, Gunn JS (2018) Chronic biofilm-based infections: skewing of the immune response. Pathog Dis 76: fty023. https://doi.org/10.1093/femspd/fty023
    [116] Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36: 990-1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x
    [117] Hu X, Kang F, Yang B, et al. (2019) Extracellular polymeric substances acting as a permeable barrier hinder the lateral transfer of antibiotic resistance genes. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00736
    [118] Singh S, Singh SK, Chowdhury I, et al. (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11: 53-62. https://doi.org/10.2174/1874285801711010053
    [119] Roy R, Tiwari M, Donelli G, et al. (2018) Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9: 522-554. https://doi.org/10.1080/21505594.2017.1313372
    [120] Koo H, Allan RN, Howlin RP, et al. (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15: 740-755. https://doi.org/10.1038/nrmicro.2017.99
    [121] Igiri BE, Okoduwa SIR, Idoko GO, et al. (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J Toxicol 2018: 2568038. https://doi.org/10.1155/2018/2568038
    [122] Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14: 389-397. https://doi.org/10.1016/j.tim.2006.07.001
    [123] Bispo PJM, Haas W, Gilmore MS (2015) Biofilms in infections of the eye. Pathogens (Basel,Switz) 4: 111-136. https://doi.org/10.3390/pathogens4010111
    [124] Nickel JC, Costerton JW (1992) Bacterial biofilms and catheters: A key to understanding bacterial strategies in catheter-associated urinary tract infection. Can J Infect Dis 3: 261-267. https://doi.org/10.1155/1992/517456
    [125] Guynn JB, Poretz DM, Duma RJ (1973) Growth of various bacteria in a variety of intravenous fluids. Am J Hosp Pharm 30: 321-325. https://doi.org/10.1093/ajhp/30.4.321
    [126] Ferrières L, Hancock V, Klemm P (2007) Specific selection for virulent urinary tract infectious Escherichia coli strains during catheter-associated biofilm formation. FEMS Immunol Med Microbiol 51: 212-219. https://doi.org/10.1111/j.1574-695X.2007.00296.x
    [127] Delcaru C, Alexandru I, Podgoreanu P, et al. (2016) Microbial biofilms in urinary tract infections and prostatitis: Etiology, pathogenicity, and combating strategies. Pathogens (Basel,Switz) 5: 65. https://doi.org/10.3390/pathogens5040065
    [128] Wiley L, Bridge DR, Wiley LA, et al. (2012) Bacterial biofilm diversity in contact lens-related disease: Emerging role of achromobacter, stenotrophomonas, and delftia. Invest Ophthalmol Visual Sci 53: 3896-3905. https://doi.org/10.1167/iovs.11-8762
    [129] Robertson DM, Parks QM, Young RL, et al. (2011) Disruption of contact lens-associated Pseudomonas aeruginosa biofilms formed in the presence of neutrophils. Invest Ophthalmol Visual Sci 52: 2844-2850. https://doi.org/10.1167/iovs.10-6469
    [130] Litzler PY, Benard L, Barbier-Frebourg N, et al. (2007) Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species. J Thorac Cardiovasc Surg 134: 1025-1032. https://doi.org/10.1016/j.jtcvs.2007.06.013
    [131] Piper C, Körfer R, Horstkotte D (2001) Prosthetic valve endocarditis. Heart 85: 590. https://doi.org/10.1136/heart.85.5.590
    [132] Schaudinn C, Gorur A, Keller D, et al. (2009) Periodontitis: an archetypical biofilm disease. J Am Dent Assoc 140: 978-986. https://doi.org/10.14219/jada.archive.2009.0307
    [133] Naginyte M, Do T, Meade J, et al. (2019) Enrichment of periodontal pathogens from the biofilms of healthy adults. Sci Rep 9: 5491. https://doi.org/10.1038/s41598-019-41882-y
    [134] Chandki R, Banthia P, Banthia R (2011) Biofilms: A microbial home. J Indian Soc Periodontol 15: 111-114. https://doi.org/10.4103/0972-124X.84377
    [135] Brady RA, Leid JG, Calhoun JH, et al. (2008) Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52: 13-22. https://doi.org/10.1111/j.1574-695X.2007.00357.x
    [136] Masters EA, Trombetta RP, de Mesy Bentley KL, et al. (2019) Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res 7: 20. https://doi.org/10.1038/s41413-019-0061-z
    [137] Rochford ETJ, Sabaté Brescó M, Zeiter S, et al. (2016) Monitoring immune responses in a mouse model of fracture fixation with and without Staphylococcus aureus osteomyelitis. Bone 83: 82-92. https://doi.org/10.1016/j.bone.2015.10.014
    [138] Oates A, Bowling FL, Boulton AJM, et al. (2014) The visualization of biofilms in chronic diabetic foot wounds using routine diagnostic microscopy methods. J Diabetes Res 2014: 153586. https://doi.org/10.1155/2014/153586
    [139] Clinton A, Carter T (2015) Chronic wound biofilms: Pathogenesis and potential therapies. Lab Med 46: 277-284. https://doi.org/10.1309/lmbnswkui4jpn7so
    [140] Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS Suppl : 1-51. https://doi.org/10.1111/apm.12099
    [141] Burmølle M, Thomsen TR, Fazli M, et al. (2010) Biofilms in chronic infections-a matter of opportunity-monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 59: 324-336. https://doi.org/10.1111/j.1574-695X.2010.00714.x
    [142] Percival SL, McCarty SM, Lipsky B (2015) Biofilms and wounds: An overview of the evidence. Adv Wound Care 4: 373-381. https://doi.org/10.1089/wound.2014.0557
    [143] Abdel-Nour M, Duncan C, Low DE, et al. (2013) Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci 14: 21660-21675. https://doi.org/10.3390/ijms141121660
    [144] Høiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5: 1663-1674. https://doi.org/10.2217/fmb.10.125
    [145] Moreau-Marquis S, Stanton BA, O'Toole GA (2008) Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 21: 595-599. https://doi.org/10.1016/j.pupt.2007.12.001
    [146] Lalani T, Kanafani ZA, Chu VH, et al. (2006) Prosthetic valve endocarditis due to coagulase-negative staphylococci: findings from the international collaboration on endocarditis merged database. Eur J Clin Microbiol Infect Dis 25: 365-368. https://doi.org/10.1007/s10096-006-0141-z
    [147] van Steenbergen TJM, van Winkelhoff AJ, de Graaff J (1984) Pathogenic synergy: mixed infections in the oral cavity. Antonie van Leeuwenhoek 50: 789-798. https://doi.org/10.1007/BF02386241
    [148] Chen L, Deng H, Cui H, et al. (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204-7218. https://doi.org/10.18632/oncotarget.23208
    [149] Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20: 6008. https://doi.org/10.3390/ijms20236008
    [150] Hall-Stoodley L, Stoodley P, Kathju S, et al. (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65: 127-145. https://doi.org/10.1111/j.1574-695X.2012.00968.x
    [151] Olson ME, Ceri H, Morck DW, et al. (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66: 86-92.
    [152] Mosaddad SA, Tahmasebi E, Yazdanian A, et al. (2019) Oral microbial biofilms: an update. Eur J Clin Microbiol Infect Dis 38: 2005-2019. https://doi.org/10.1007/s10096-019-03641-9
    [153] Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6: 25-64. https://doi.org/10.4137/PMC.S14459
    [154] Hedberg M, Nord CE (1996) Beta-lactam resistance in anaerobic bacteria: a review. J Chemother 8: 3-16. https://doi.org/10.1179/joc.1996.8.1.3
    [155] Macià MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20: 981-990. https://doi.org/10.1111/1469-0691.12651
    [156] Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45: 999. https://doi.org/10.1128/AAC.45.4.999-1007.2001
    [157] Kaplan JB, Mlynek KD, Hettiarachchi H, et al. (2018) Extracellular polymeric substance (EPS)-degrading enzymes reduce Staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS One 13: e0205526. https://doi.org/10.1371/journal.pone.0205526
    [158] Powell LC, Pritchard MF, Ferguson EL, et al. (2018) Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. npj Biofilms Microbiomes 4: 13. https://doi.org/10.1038/s41522-018-0056-3
    [159] Wozniak DJ, Wyckoff TJ, Starkey M, et al. (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100: 7907-7912. https://doi.org/10.1073/pnas.1231792100
    [160] Madsen JS, Burmølle M, Hansen LH, et al. (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65: 183-195. https://doi.org/10.1111/j.1574-695X.2012.00960.x
    [161] Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22: 582-610. https://doi.org/10.1128/CMR.00040-09
    [162] Wilton M, Charron-Mazenod L, Moore R, et al. (2015) Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60: 544-553. https://doi.org/10.1128/AAC.01650-15
    [163] Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4: e1000213. https://doi.org/10.1371/journal.ppat.1000213
    [164] Heilmann C, Hartleib J, Hussain MS, et al. (2005) The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immunol 73: 4793-4802. https://doi.org/10.1128/iai.73.8.4793-4802.2005
    [165] Heilmann C, Hussain M, Peters G, et al. (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24: 1013-1024. https://doi.org/10.1046/j.1365-2958.1997.4101774.x
    [166] Ch'ng JH, Chong KKL, Lam LN, et al. (2019) Biofilm-associated infection by enterococci. Nat Rev Microbiol 17: 82-94. https://doi.org/10.1038/s41579-018-0107-z
    [167] Dale JL, Nilson JL, Barnes AMT, et al. (2017) Restructuring of Enterococcus faecalis biofilm architecture in response to antibiotic-induced stress. npj Biofilms Microbiomes 3: 15. https://doi.org/10.1038/s41522-017-0023-4
    [168] Balaban NQ, Helaine S, Lewis K, et al. (2019) Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol 17: 441-448. https://doi.org/10.1038/s41579-019-0196-3
    [169] Schilcher K, Horswill AR (2020) Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol Mol Biol Rev 84: e00026-19. https://doi.org/doi:10.1128/MMBR.00026-19
    [170] Waters EM, Rowe SE, O'Gara JP, et al. (2016) Convergence of Staphylococcus aureus persister and biofilm research: Can biofilms be defined as communities of adherent persister cells?. PLoS Pathog 12: e1006012. https://doi.org/10.1371/journal.ppat.1006012
    [171] Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4. https://doi.org/10.3389/fcimb.2014.00178
    [172] Vuotto C, Longo F, Balice MP, et al. (2014) Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3: 743-758. https://doi.org/10.3390/pathogens3030743
    [173] Nirwati H, Sinanjung K, Fahrunissa F, et al. (2019) Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc 13: 20. https://doi.org/10.1186/s12919-019-0176-7
    [174] Ramos-Vivas J, Chapartegui-González I, Fernández-Martínez M, et al. (2019) Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci Rep 9: 8928. https://doi.org/10.1038/s41598-019-45060-y
    [175] Yang CH, Su PW, Moi SH, et al. (2019) Biofilm formation in acinetobacter baumannii: genotype-phenotype correlation. Molecules (Basel,Switz) 24: 1849. https://doi.org/10.3390/molecules24101849
    [176] Smani Y, McConnell MJ, Pachón J, et al. (2012) Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS One 7: e33073. https://doi.org/10.1371/journal.pone.0033073
    [177] Gaddy JA, Tomaras AP, Actis LA (2009) The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 77: 3150-3160. https://doi.org/10.1128/iai.00096-09
    [178] Dumaru R, Baral R, Shrestha LB (2019) Study of biofilm formation and antibiotic resistance pattern of gram-negative Bacilli among the clinical isolates at BPKIHS, Dharan. BMC Res Notes 12: 38. https://doi.org/10.1186/s13104-019-4084-8
    [179] Poulsen LK, Ballard G, Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59: 1354-1360. https://doi.org/10.1128/aem.59.5.1354-1360.1993
    [180] Sternberg C, Christensen BB, Johansen T, et al. (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65: 4108-4117. https://doi.org/10.1128/aem.65.9.4108-4117.1999
    [181] Mitchison JM (1969) Enzyme synthesis in synchronous cultures. Science 165: 657-663. https://doi.org/10.1126/science.165.3894.657
    [182] Gilbert P, Maira-Litran T, McBain AJ, et al. (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46: 202-256. https://doi.org/10.1016/S0065-2911(02)46005-5
    [183] Walters MC, Roe F, Bugnicourt A, et al. (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47: 317-323. https://doi.org/10.1128/aac.47.1.317-323.2003
    [184] Tresse O, Jouenne T, Junter GA (1995) The role of oxygen limitation in the resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside and beta-lactam antibiotics. J Antimicrob Chemother 36: 521-526. https://doi.org/10.1093/jac/36.3.521
    [185] Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41: 276-301. https://doi.org/10.1093/femsre/fux010
    [186] Zheng Z, Stewart PS (2004) Growth limitation of Staphylococcus epidermidis in biofilms contributes to rifampin tolerance. Biofilms 1: 31-35. https://doi.org/10.1017/S1479050503001042
    [187] Mah TFC, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9: 34-39. https://doi.org/10.1016/S0966-842X(00)01913-2
    [188] Zhao X, Yu Z, Ding T (2020) Quorum-Sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8: 425. https://doi.org/10.3390/microorganisms8030425
    [189] Shih PC, Huang CT (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49: 309-314. https://doi.org/10.1093/jac/49.2.309
    [190] Algburi A, Comito N, Kashtanov D, et al. (2017) Control of biofilm formation: Antibiotics and beyond. Appl Environ Microbiol 83: e02508-02516. https://doi.org/10.1128/AEM.02508-16
    [191] Jiao Y, Tay FR, Niu Ln, et al. (2019) Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 11: 28. https://doi.org/10.1038/s41368-019-0062-1
    [192] Klemm P, Vejborg RM, Hancock V (2010) Prevention of bacterial adhesion. Appl Microbiol Biotechnol 88: 451-459. https://doi.org/10.1007/s00253-010-2805-y
    [193] Veerachamy S, Yarlagadda T, Manivasagam G, et al. (2014) Bacterial adherence and biofilm formation on medical implants: A review. Proc Inst Mech Eng, Part H 228: 1083-1099. https://doi.org/10.1177/0954411914556137
    [194] Chow JY, Yang Y, Tay SB, et al. (2014) Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob Agents Chemother 58: 1802-1805. https://doi.org/10.1128/AAC.02410-13
    [195] Brown HL, Reuter M, Hanman K, et al. (2015) Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of campylobacter jejuni. PLoS One 10: e0121680. https://doi.org/10.1371/journal.pone.0121680
    [196] Jiang Y, Geng M, Bai L (2020) Targeting biofilms therapy: Current research strategies and development hurdles. Microorganisms 8. https://doi.org/10.3390/microorganisms8081222
    [197] Gil C, Solano C, Burgui S, et al. (2014) Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infect Immun 82: 1017-1029. https://doi.org/10.1128/IAI.01419-13
    [198] Jiang Q, Jin Z, Sun B (2018) MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons in Staphylococcus aureus. Appl Environ Microbiol 84. https://doi.org/10.1128/aem.01008-18
    [199] Fleming D, Rumbaugh KP (2017) Approaches to dispersing medical biofilms. Microorganisms 5: 15. https://doi.org/10.3390/microorganisms5020015
    [200] Gallant CV, Daniels C, Leung JM, et al. (2005) Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58: 1012-1024. https://doi.org/10.1111/j.1365-2958.2005.04892.x
    [201] Reza A, Sutton JM, Rahman KM (2019) Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in Gram-Negative (ESKAPEE) bacteria. Antibiotics (Basel,Switz) 8: 229. https://doi.org/10.3390/antibiotics8040229
    [202] Ciofu O, Rojo-Molinero E, Macià MD, et al. (2017) Antibiotic treatment of biofilm infections. APMIS 125: 304-319. https://doi.org/10.1111/apm.12673
    [203] Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44: 640-646. https://doi.org/10.1128/aac.44.3.640-646.2000
    [204] Danese PN (2002) Antibiofilm Approaches: Prevention of Catheter Colonization. Chem Biol 9: 873-880. https://doi.org/10.1016/S1074-5521(02)00192-8
    [205] Flemming HC, Ridgway H (2009) Biofilm control: Conventional and alternative approaches. Marine and Industrial Biofouling. Heidelberg: Springer Berlin Heidelberg 103-117. https://doi.org/10.1007/978-3-540-69796-1_5
    [206] Sambanthamoorthy K, Gokhale AA, Lao W, et al. (2011) Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother 55: 4369. https://doi.org/10.1128/AAC.00583-11
    [207] Dinicola S, De Grazia S, Carlomagno G, et al. (2014) N-acetylcysteine as powerful molecule to destroy bacterial biofilms. A systematic review. Eur Rev Med Pharmacol Sci 18: 2942-2948. Available from: https://europepmc.org/article/MED/25339490
    [208] Abraham NM, Lamlertthon S, Fowler VG, et al. (2012) Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B. J Med Microbiol 61: 1062-1070. https://doi.org/10.1099/jmm.0.040758-0
    [209] Antoci V, Adams CS, Parvizi J, et al. (2008) The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 29: 4684-4690. https://doi.org/10.1016/j.biomaterials.2008.08.016
    [210] Ma Y, Chen M, Jones JE, et al. (2012) Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob Agents Chemother 56: 5923-5937. https://doi.org/10.1128/aac.01739-12
    [211] Sanyasi S, Majhi RK, Kumar S, et al. (2016) Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6: 24929. https://doi.org/10.1038/srep24929
    [212] AshaRani PV, Low Kah Mun G, Hande MP, et al. (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3: 279-290. https://doi.org/10.1021/nn800596w
    [213] Raie DS, Mhatre E, Thiele M, et al. (2017) Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. Mater Sci Eng, C 70: 753-762. https://doi.org/10.1016/j.msec.2016.09.038
    [214] Hume EB, Baveja J, Muir B, et al. (2004) The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials 25: 5023-5030. https://doi.org/10.1016/j.biomaterials.2004.01.048
    [215] Li H, Bao H, Bok KX, et al. (2016) High durability and low toxicity antimicrobial coatings fabricated by quaternary ammonium silane copolymers. Biomater Sci 4: 299-309. https://doi.org/10.1039/C5BM00353A
    [216] Trentin DS, Silva DB, Frasson AP, et al. (2015) Natural green coating inhibits adhesion of clinically important bacteria. Sci Rep 5: 8287. https://doi.org/10.1038/srep08287
    [217] Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14: 18488-18501. https://doi.org/10.3390/ijms140918488
    [218] Tran PL, Lowry N, Campbell T, et al. (2012) An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob Agents Chemother 56: 972-978. https://doi.org/10.1128/aac.05680-11
    [219] Zhao X, Zhao F, Wang J, et al. (2017) Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv 7: 36670-36683. https://doi.org/10.1039/C7RA02497E
    [220] de Sousa DG, Harvey LA, Dorsch S, et al. (2018) Interventions involving repetitive practice improve strength after stroke: a systematic review. J Physiother 64: 210-221. https://doi.org/10.1016/j.jphys.2018.08.004
    [221] Chappell TC, Nair NU (2020) Engineered lactobacilli display anti-biofilm and growth suppressing activities against Pseudomonas aeruginosa. npj Biofilms Microbiomes 6: 48. https://doi.org/10.1038/s41522-020-00156-6
    [222] Lu L, Hu W, Tian Z, et al. (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14: 11. https://doi.org/10.1186/s13020-019-0232-2
    [223] Bendaoud M, Vinogradov E, Balashova NV, et al. (2011) Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide. J Bacteriol Res 193: 3879-3886. https://doi.org/10.1128/JB.00311-11
    [224] Mi L, Licina GA, Jiang S (2014) Nonantibiotic-Based Pseudomonas aeruginosa biofilm inhibition with osmoprotectant analogues. ACS Sustainable Chem Eng 2: 2448-2453. https://doi.org/10.1021/sc500468a
    [225] Kuang X, Chen V, Xu X (2018) Novel approaches to the control of oral microbial biofilms. BioMed Res Int 2018: 6498932. https://doi.org/10.1155/2018/6498932
    [226] Chen H, Zhang B, Weir MD, et al. (2020) S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent 93: 103278. https://doi.org/10.1016/j.jdent.2020.103278
    [227] Pires DP, Melo LDR, Vilas Boas D, et al. (2017) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39: 48-56. https://doi.org/10.1016/j.mib.2017.09.004
    [228] Dickey J, Perrot V (2019) Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One 14: e0209390. https://doi.org/10.1371/journal.pone.0209390
    [229] Pires DP, Vilas Boas D, Sillankorva S, et al. (2015) Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol 89: 7449-7456. https://doi.org/10.1128/jvi.00385-15
    [230] Fu W, Forster T, Mayer O, et al. (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54: 397-404. https://doi.org/10.1128/aac.00669-09
    [231] Paluch E, Rewak-Soroczyńska J, Jędrusik I, et al. (2020) Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 104: 1871-1881. https://doi.org/10.1007/s00253-020-10349-w
    [232] Singh VK, Mishra A, Jha B (2017) Anti-quorum sensing and anti-biofilm activity of delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 7. https://doi.org/10.3389/fcimb.2017.00337
    [233] Brackman G, Defoirdt T, Miyamoto C, et al. (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8: 149. https://doi.org/10.1186/1471-2180-8-149
    [234] Kalaiarasan E, Thirumalaswamy K, Harish BN, et al. (2017) Inhibition of quorum sensing-controlled biofilm formation in Pseudomonas aeruginosa by quorum-sensing inhibitors. Microb Pathog 111: 99-107. https://doi.org/10.1016/j.micpath.2017.08.017
    [235] Bulman ZP, Ly NS, Lenhard JR, et al. (2017) Influence of rhlR and lasR on polymyxin pharmacodynamics in Pseudomonas aeruginosa and implications for quorum sensing inhibition with azithromycin. Antimicrob Agents Chemother 61. https://doi.org/10.1128/aac.00096-16
    [236] Maura D, Rahme LG (2017) Pharmacological inhibition of the Pseudomonas aeruginosa MvfR quorum-sensing system interferes with biofilm formation and potentiates antibiotic-mediated biofilm disruption. Antimicrob Agents Chemother 61. https://doi.org/10.1128/aac.01362-17
    [237] Stenvang M, Dueholm MS, Vad BS, et al. (2016) Epigallocatechin gallate remodels overexpressed functional amyloids in Pseudomonas aeruginosa and increases biofilm susceptibility to antibiotic treatment*. J Biol Chem 291: 26540-26553. https://doi.org/10.1074/jbc.M116.739953
    [238] Guo Q, Wei Y, Xia B, et al. (2016) Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa. Sci Rep 6: 19141. https://doi.org/10.1038/srep19141
    [239] Freire MO, Devaraj A, Young A, et al. (2017) A bacterial-biofilm-induced oral osteolytic infection can be successfully treated by immuno-targeting an extracellular nucleoid-associated protein. Mol Oral Microbiol 32: 74-88. https://doi.org/10.1111/omi.12155
    [240] Sun D, Accavitti MA, Bryers JD (2005) Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin Diagn Lab Immunol 12: 93-100. https://doi.org/10.1128/CDLI.12.1.93-100.2005
    [241] Estellés A, Woischnig AK, Liu K, et al. (2016) A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob Agents Chemother 60: 2292-2301. https://doi.org/10.1128/aac.02588-15
    [242] Hall AE, Domanski PJ, Patel PR, et al. (2003) Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect Immun 71: 6864-6870. https://doi.org/10.1128/iai.71.12.6864-6870.2003
    [243] Visai L, Xu Y, Casolini F, et al. (2000) Monoclonal antibodies to CNA, a collagen-binding microbial surface component recognizing adhesive matrix molecules, detach Staphylococcus aureus from a collagen substrate. J Biol Chem 275: 39837-39845. https://doi.org/10.1074/jbc.M005297200
    [244] Rennermalm A, Li YH, Bohaufs L, et al. (2001) Antibodies against a truncated Staphylococcus aureus fibronectin-binding protein protect against dissemination of infection in the rat. Vaccine 19: 3376-3383. https://doi.org/10.1016/s0264-410x(01)00080-9
    [245] Belyi Y, Rybolovlev I, Polyakov N, et al. (2018) Staphylococcus aureus surface protein G is an immunodominant protein and a possible target in an anti-biofilm drug development. Open Microbiol J 12: 94-106. https://doi.org/10.2174/1874285801812010094
    [246] Haghighat S, Siadat SD, Sorkhabadi SM, et al. (2017) Cloning, expression and purification of autolysin from methicillin-resistant Staphylococcus aureus: potency and challenge study in Balb/c mice. Mol Immunol 82: 10-18. https://doi.org/10.1016/j.molimm.2016.12.013
    [247] Nair N, Vinod V, Suresh MK, et al. (2015) Amidase, a cell wall hydrolase, elicits protective immunity against Staphylococcus aureus and S. epidermidis. Int J Biol Macromol 77: 314-321. https://doi.org/10.1016/j.ijbiomac.2015.03.047
    [248] Varrone JJ, de Mesy Bentley KL, Bello-Irizarry SN, et al. (2014) Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of Staphylococcus aureus megaclusters. J Orthop Res 32: 1389-1396. https://doi.org/10.1002/jor.22672
    [249] van den Berg S, Bonarius HP, van Kessel KP, et al. (2015) A human monoclonal antibody targeting the conserved Staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia. Int J Med Microbiol 305: 55-64. https://doi.org/10.1016/j.ijmm.2014.11.002
    [250] Liu B, Park S, Thompson CD, et al. (2017) Antibodies to Staphylococcus aureus capsular polysaccharides 5 and 8 perform similarly in vitro but are functionally distinct in vivo. Virulence 8: 859-874. https://doi.org/10.1080/21505594.2016.1270494
    [251] Weisman LE (2007) Antibody for the prevention of neonatal noscocomial Staphylococcal infection: a review of the literature. Arch Pediatr 14 Suppl 1: S31-34. https://doi.org/10.1016/s0929-693x(07)80008-x
    [252] Raafat D, Otto M, Reppschläger K, et al. (2019) Fighting Staphylococcus aureus biofilms with monoclonal antibodies. Trends Microbiol 27: 303-322. https://doi.org/10.1016/j.tim.2018.12.009
    [253] Freire-Moran L, Aronsson B, Manz C, et al. (2011) Critical shortage of new antibiotics in development against multidrug-resistant bacteria-time to react is now. Drug Resist Updat 14: 118-124. https://doi.org/10.1016/j.drup.2011.02.003
    [254] Banerjee M, Moulick S, Bhattacharya KK, et al. (2017) Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microb Pathog 113: 85-93. https://doi.org/10.1016/j.micpath.2017.10.023
    [255] Zhang L, Bao M, Liu B, et al. (2020) Effect of andrographolide and its analogs on bacterial infection: A review. Pharmacology 105: 123-134. https://doi.org/10.1159/000503410
    [256] Rasool U, SP, Parveen A, et al. (2018) Efficacy of andrographis paniculata against extended spectrum β-lactamase (ESBL) producing E. coli. BMC Complementary Altern Med 18: 244-244. https://doi.org/10.1186/s12906-018-2312-8
    [257] Carrol DH, Chassagne F, Dettweiler M, et al. (2020) Antibacterial activity of plant species used for oral health against Porphyromonas gingivalis. PLoS One 15: e0239316. https://doi.org/10.1371/journal.pone.0239316
    [258] Gerits E, Verstraeten N, Michiels J (2017) New approaches to combat Porphyromonas gingivalis biofilms. J Oral Microbiol 9: 1300366. https://doi.org/10.1080/20002297.2017.1300366
    [259] Liu G, Xiang H, Tang X, et al. (2011) Transcriptional and functional analysis shows sodium houttuyfonate-mediated inhibition of autolysis in Staphylococcus aureus. Molecules (Basel,Switz) 16: 8848-8865. https://doi.org/10.3390/molecules16108848
    [260] Zhou J, Bi S, Chen H, et al. (2017) Anti-Biofilm and antivirulence activities of metabolites from plectosphaerella cucumerina against Pseudomonas aeruginosa. Front Microbiol 8: 769. https://doi.org/10.3389/fmicb.2017.00769
    [261] Rabin N, Zheng Y, Opoku-Temeng C, et al. (2015) Agents that inhibit bacterial biofilm formation. Future Med Chem 7: 647-671. https://doi.org/10.4155/fmc.15.7
    [262] Xiang H, Cao F, Ming D, et al. (2017) Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development. Appl Microbiol Biotechnol 101: 6671-6681. https://doi.org/10.1007/s00253-017-8403-5
    [263] Jakobsen TH, van Gennip M, Phipps RK, et al. (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56: 2314-2325. https://doi.org/10.1128/AAC.05919-11
    [264] Balcázar JL, Vendrell D, de Blas I, et al. (2008) Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 278: 188-191. https://doi.org/10.1016/j.aquaculture.2008.03.014
    [265] Didinen BI, Onuk EE, Metin S, et al. (2018) Identification and characterization of lactic acid bacteria isolated from rainbow trout (Oncorhynchus mykiss, Walbaum 1792), with inhibitory activity against Vagococcus salmoninarum and Lactococcus garvieae. Aquacult Nutr 24: 400-407. https://doi.org/10.1111/anu.12571
    [266] Ben Taheur F, Kouidhi B, Fdhila K, et al. (2016) Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microb Pathog 97: 213-220. https://doi.org/10.1016/j.micpath.2016.06.018
    [267] Lee DK, Park SY, An HM, et al. (2011) Antimicrobial activity of Bifidobacterium spp. isolated from healthy adult Koreans against cariogenic microflora. Arch Oral Biol 56: 1047-1054. https://doi.org/10.1016/j.archoralbio.2011.03.002
    [268] Schwendicke F, Horb K, Kneist S, et al. (2014) Effects of heat-inactivated Bifidobacterium BB12 on cariogenicity of Streptococcus mutans in vitro. Arch Oral Biol 59: 1384-1390. https://doi.org/10.1016/j.archoralbio.2014.08.012
    [269] Suzuki N, Yoneda M, Hatano Y, et al. (2011) Enterococcus faecium WB2000 inhibits biofilm formation by oral cariogenic Streptococci. Int J Dent 2011: 834151. https://doi.org/10.1155/2011/834151
    [270] Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J immunol 194: 4081-4087. https://doi.org/10.4049/jimmunol.1403169
    [271] Tuomola EM, Ouwehand AC, Salminen SJ (1999) The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol Med Microbiol 26: 137-142. https://doi.org/10.1111/j.1574-695X.1999.tb01381.x
    [272] Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27: 496-501. https://doi.org/10.1097/MOG.0b013e32834baa4d
    [273] Hegarty JW, Guinane CM, Ross RP, et al. (2016) Bacteriocin production: a relatively unharnessed probiotic trait?. F1000Res 5: 2587. https://doi.org/10.12688/f1000research.9615.1
    [274] Corcoran BM, Stanton C, Fitzgerald GF, et al. (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71: 3060-3067. https://doi.org/10.1128/AEM.71.6.3060-3067.2005
    [275] Vuotto C, Longo F, Donelli G (2014) Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci 6: 189-194. https://doi.org/10.1038/ijos.2014.52
    [276] Fang K, Jin X, Hong SH (2018) Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep 8: 4939. https://doi.org/10.1038/s41598-018-23180-1
    [277] Jaffar N, Ishikawa Y, Mizuno K, et al. (2016) Mature biofilm degradation by potential probiotics: Aggregatibacter actinomycetemcomitans versus LactoBacillus spp. PLoS One 11: e0159466. https://doi.org/10.1371/journal.pone.0159466
    [278] Mathur H, Field D, Rea MC, et al. (2018) Fighting biofilms with lantibiotics and other groups of bacteriocins. npj Biofilms Microbiomes 4: 9. https://doi.org/10.1038/s41522-018-0053-6
    [279] Hertzberger R, Arents J, Dekker Henk L, et al. (2014) H2O2 production in species of the LactoBacillus acidophilus group: a central role for a novel NADH-Dependent flavin reductase. Appl Environ Microbiol 80: 2229-2239. https://doi.org/10.1128/AEM.04272-13
    [280] Salas-Jara MJ, Ilabaca A, Vega M, et al. (2016) Biofilm forming LactoBacillus: New challenges for the development of probiotics. Microorganisms 4: 35. https://doi.org/10.3390/microorganisms4030035
    [281] Jones SE, Versalovic J (2009) Probiotic LactoBacillus reuteribiofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9: 35. https://doi.org/10.1186/1471-2180-9-35
    [282] Barzegari A, Kheyrolahzadeh K, Hosseiniyan Khatibi SM, et al. (2020) The battle of probiotics and their derivatives against biofilms. Infect Drug Resist 13: 659-672. https://doi.org/10.2147/IDR.S232982
    [283] Miquel S, Lagrafeuille R, Souweine B, et al. (2016) Anti-biofilm activity as a health issue. Front Microbiol 7: 592-592. https://doi.org/10.3389/fmicb.2016.00592
    [284] Tan L, Fu J, Feng F, et al. (2020) Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci Adv 6: eaba5723. https://doi.org/10.1126/sciadv.aba5723
    [285] Carvalho FM, Teixeira-Santos R, Mergulhão FJM, et al. (2020) The use of probiotics to fight biofilms in medical devices: A systematic review and meta-analysis. Microorganisms 9. https://doi.org/10.3390/microorganisms9010027
    [286] Gholizadeh P, Aghazadeh M, Asgharzadeh M, et al. (2017) Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis 36: 2043-2051. https://doi.org/10.1007/s10096-017-3036-2
    [287] Yao R, Liu D, Jia X, et al. (2018) CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 3: 135-149. https://doi.org/10.1016/j.synbio.2018.09.004
    [288] Jiang W, Bikard D, Cox D, et al. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31: 233-239. https://doi.org/10.1038/nbt.2508
    [289] Goren M, Yosef I, Qimron U (2017) Sensitizing pathogens to antibiotics using the CRISPR-Cas system. Drug Resist Updat 30: 1-6. https://doi.org/10.1016/j.drup.2016.11.001
    [290] Touchon M, Charpentier S, Pognard D, et al. (2012) Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology (Reading) 158: 2997-3004. https://doi.org/10.1099/mic.0.060814-0
    [291] Hale CR, Majumdar S, Elmore J, et al. (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45: 292-302. https://doi.org/10.1016/j.molcel.2011.10.023
    [292] Bikard D, Euler CW, Jiang W, et al. (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32: 1146-1150. https://doi.org/10.1038/nbt.3043
    [293] Vercoe RB, Chang JT, Dy RL, et al. (2013) Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9: e1003454. https://doi.org/10.1371/journal.pgen.1003454
    [294] Gholizadeh P, Köse Ş, Dao S, et al. (2020) How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect Drug Resist 13: 1111-1121. https://doi.org/10.2147/IDR.S247271
    [295] Zuberi A, Misba L, Khan AU (2017) CRISPR interference (CRISPRi) inhibition of luxS gene expression in E. coli: An approach to inhibit biofilm. Front Cell Infect Microbiol 7. https://doi.org/10.3389/fcimb.2017.00214
    [296] Gong T, Tang B, Zhou X, et al. (2018) Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol Oral Microbiol 33: 440-449. https://doi.org/10.1111/omi.12247
    [297] Garrido V, Piñero-Lambea C, Rodriguez-Arce I, et al. (2021) Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol Syst Biol 17: e10145. https://doi.org/10.15252/msb.202010145
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4588) PDF downloads(486) Cited by(5)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog