The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
Citation: Luis P. Villarreal, Guenther Witzany. Social Networking of Quasi-Species Consortia drive Virolution via Persistence[J]. AIMS Microbiology, 2021, 7(2): 138-162. doi: 10.3934/microbiol.2021010
The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
[1] | Lehman N (2015) The RNA World: 4,000,000,050 years old. Life 5: 1583-1586. doi: 10.3390/life5041583 |
[2] | Díaz Arenas C, Lehman N (2010) Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube. BMC Evol Biol 10: 80. doi: 10.1186/1471-2148-10-80 |
[3] | Yeates JAM, Lehman N (2016) RNA networks at the origins of life. Biochemist 38: 8-12. doi: 10.1042/BIO03802008 |
[4] | Di Mauro E, Saladino R, Trifonov EN (2014) The path to life's origins. Remaining hurdles. J Biomol Struct Dyn 32: 512-522. doi: 10.1080/07391102.2013.783509 |
[5] | Adamski P, Eleveld M, Sood A, et al. (2020) From self-replication to replicator systems en route to de novo life. Nat Rev Chem 4: 386-403. doi: 10.1038/s41570-020-0196-x |
[6] | Vaidya N, Walker SI, Lehman N (2013) Recycling of informational units leads to selection of replicators in a prebiotic soup. Chem Biol 20: 241-252. doi: 10.1016/j.chembiol.2013.01.007 |
[7] | French RK, Holmes EC (2020) An ecosystems perspective on virus evolution and emergence. Trends Microbiol 28: 165-175. doi: 10.1016/j.tim.2019.10.010 |
[8] | Villarreal LP, Witzany G (2013) Rethinking quasispecies theory: From fittest type to cooperative consortia. World J Biol Chem 4: 79-90. doi: 10.4331/wjbc.v4.i4.79 |
[9] | Janzen E, Blanco C, Peng H, et al. (2020) Promiscuous ribozymes and their proposed role in prebiotic evolution. Chem Rev 120: 4879-4897. doi: 10.1021/acs.chemrev.9b00620 |
[10] | Furubayashi T, Ueda K, Bansho Y, et al. (2020) Emergence and diversification of a host-parasite RNA ecosystem through Darwinian evolution. Elife 9: e56038. doi: 10.7554/eLife.56038 |
[11] | Witzany G (2011) The agents of natural genome editing. J Mol Cell Biol 3: 181-189. doi: 10.1093/jmcb/mjr005 |
[12] | Witzany G (2019) Communication as the Main Characteristic of Life. Handbook of Astrobiology Boka Raton: CrC Press, 91-105. |
[13] | Villarreal LP, Witzany G (2019) That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann NY Acad Sci 1447: 5-20. doi: 10.1111/nyas.14040 |
[14] | Harish A, Caetano-Anollés G (2012) Ribosomal history reveals origins of modern protein synthesis. PLoS One 7: e32776. doi: 10.1371/journal.pone.0032776 |
[15] | Root-Bernstein M, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367: 130-158. doi: 10.1016/j.jtbi.2014.11.025 |
[16] | Pak D, Root-Bernstein R, Burton ZF (2017) tRNA structure and evolution and standardization to the three nucleotide genetic code. Transcription 8: 205-219. doi: 10.1080/21541264.2017.1318811 |
[17] | Mizuno CM, Guyomar C, Roux S, et al. (2019) Numerous cultivated and uncultivated viruses encode ribosomal proteins. Nat Commun 10: 752. doi: 10.1038/s41467-019-08672-6 |
[18] | Villarreal LP (2009) Origin of Group Identity: Viruses, Addiction and Cooperation New York: Springer. |
[19] | Villarreal LP, Witzany G (2015) When competing viruses unify: evolution, conservation, and plasticity of genetic identities. J Mol Evol 80: 305-318. doi: 10.1007/s00239-015-9683-y |
[20] | Hayden EJ, Lehman N, Unrau P (2019) Transitions. RNA and Ribozymes in the Development of Life. Handbook of Astrobiology Boka Raton: CrC Press, 379-394. |
[21] | Villarreal LP (2004) Can Viruses Make Us Human? Proc Am Phl Soc 148: 296-323. |
[22] | Villarreal LP (2015) Can Virolution Help Us Understand Recent Human Evolution? Astrobiology. An Evolutionary Approach Boca Raton: CRC Press, 441-472. |
[23] | Gemmell P, Hein J, Katzourakis A (2019) The exaptation of HERV-H: evolutionary analyses reveal the genomic features of highly transcribed elements. Front Immunol 10: 1339. doi: 10.3389/fimmu.2019.01339 |
[24] | Larouche JD, Trofimov A, Hesnard L, et al. (2020) Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues. Genome Med 12: 40. doi: 10.1186/s13073-020-00740-7 |
[25] | Witzany G (2006) Natural genome-editing competences of viruses. Acta Biotheor 54: 235-253. doi: 10.1007/s10441-006-9000-7 |
[26] | Witzany G (2009) Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Ann NY Acad Sci 1178: 244-267. doi: 10.1111/j.1749-6632.2009.04989.x |
[27] | Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262: 698-710. doi: 10.1016/j.jtbi.2009.10.014 |
[28] | Manrubia SC, Briones C (2007) Modular evolution and increase of functional complexity in replicating RNA molecules. RNA 13: 97-107. doi: 10.1261/rna.203006 |
[29] | Villarreal LP (2005) Viruses and The Evolution of Life Washington: ASM Press. doi: 10.1128/9781555817626 |
[30] | Villarreal LP (2009) Persistence pays: how viruses promote host group survival. Curr Opin Microbiol 12: 467-472. doi: 10.1016/j.mib.2009.06.014 |
[31] | Gómez J, Ariza-Mateos A, Cacho I (2015) Virus is a Signal for the Host Cell. Biosemiotics 8: 483-491. doi: 10.1007/s12304-015-9245-0 |
[32] | Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9: 397-405. doi: 10.1038/nrg2337 |
[33] | Moelling K, Broecker F (2019) Viruses and Evolution - Viruses First? A Personal Perspective. Front Microbiol 10: 523. doi: 10.3389/fmicb.2019.00523 |
[34] | Ryan F (2009) Virolution London: William Collins. |
[35] | Villarreal LP (2006) Virus-host symbiosis mediated by persistence. Symbiosis 44: 1-9. |
[36] | Villarreal LP (2008) The Widespread Evolutionary Significance of Viruses. Origin and Evolution of Viruses New York: Academic Press, 477-516. doi: 10.1016/B978-0-12-374153-0.00021-7 |
[37] | Villareal LP, Ryan F (2011) Viruses in host evolution: General principles and future extrapolations. Curr Top Virol 9: 79-90. |
[38] | Pereira L, Rodrigues T, Carrapiço F (2012) A Symbiogenic Way in the Origin of Life. In The Beginning: Precursors of Life, Chemical Models and Early Biological Evolution, Cellular Origin, Life in Extreme Habitats and Astrobiology Dordrecht: Springer, 723-742. doi: 10.1007/978-94-007-2941-4_36 |
[39] | Villarreal LP, Witzany G (2018) Editorial: Genome Invading RNA-Networks. Frontiers Microbiol 9: 581. doi: 10.3389/fmicb.2018.00581 |
[40] | Domingo E, Sheldon J, Perales C (2012) Viral quasispecies evolution. Microbiol Mol Biol Rev 76: 159-216. doi: 10.1128/MMBR.05023-11 |
[41] | Vaidya N, Manapat ML, Chen IA, et al. (2012) Spontaneous network formation among cooperative RNA replicators. Nature 491: 72-77. doi: 10.1038/nature11549 |
[42] | Higgs PG, Lehman N (2015) The RNA World: molecular cooperation at the origins of life. Nat Rev Genet 16: 7-17. doi: 10.1038/nrg3841 |
[43] | Nelson JW, Breaker RR (2017) The lost language of the RNA World. Sci Signal 10: eaam8812. doi: 10.1126/scisignal.aam8812 |
[44] | Villarreal LP (2015) Force for ancient and recent life: viral and stemloop RNA consortia promote life. Ann NY Acad Sci 1341: 25-34. doi: 10.1111/nyas.12565 |
[45] | Krupovic M, Bamford DH (2009) Does the evolution of viral polymerases reflect the origin and evolution of viruses? Nat Rev Microbiol 7: 250. doi: 10.1038/nrmicro2030-c1 |
[46] | Forterre P, Prangishvili D (2013) The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 3: 558-565. doi: 10.1016/j.coviro.2013.06.013 |
[47] | Wolf YI, Kazlauskas D, Iranzo J, et al. (2018) Origins and evolution of the Global RNA virome. mBio 9: e02329-18. |
[48] | Feschotte C, Gilbert C (2012) Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 13: 283-296. doi: 10.1038/nrg3199 |
[49] | Vignuzzi M, López CB (2019) Defective viral genomes are key drivers of the virus-host interaction. Nat Microbiol 4: 1075-1087. doi: 10.1038/s41564-019-0465-y |
[50] | Koonin EV, Dolja VV, Krupovic M (2015) Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 479–480: 2-25. doi: 10.1016/j.virol.2015.02.039 |
[51] | Briones C, Stich M, Manrubia SC (2009) The dawn of the RNA world: toward functional complexity through ligation of random RNA oligomers. RNA 15: 743-749. doi: 10.1261/rna.1488609 |
[52] | Tjhung KF, Shokhirev MN, Horning DP, et al. (2020) An RNA polymerase ribozyme that synthesizes its own ancestor. Proc Natl Acad Sci USA 117: 2906-2913. doi: 10.1073/pnas.1914282117 |
[53] | Petrov AS, Bernier CR, Hsiao C, et al. (2014) Evolution of the ribosome at atomic resolution. Proc Natl Acad Sci USA 111: 10251-10256. doi: 10.1073/pnas.1407205111 |
[54] | Villarreal LP, Witzany G (2013) The DNA Habitat and its RNA Inhabitants: At the Dawn of RNA Sociology. Genomics Ins 6: 1-12. |
[55] | Bertalanffy L, Laviolette PA (1981) A Systems View of Man New York: Routledge. |
[56] | Schudoma C, Larhlimi A, Walther D (2011) The influence of the local sequence environment on RNA loop structures. RNA 17: 1247-1257. doi: 10.1261/rna.2550211 |
[57] | Witzany G (2020) What is Life? Front Astron Space Sci 7: 7. doi: 10.3389/fspas.2020.00007 |
[58] | Root-Bernstein RS, Merrill SJ (1997) The necessity of cofactors in the pathogenesis of AIDS: a mathematical model. J Theor Biol 187: 135-146. doi: 10.1006/jtbi.1997.0449 |
[59] | Witzany G (2014) RNA sociology: group behavioral motifs of RNA consortia. Life 4: 800-818. doi: 10.3390/life4040800 |
[60] | Witzany G (2014) Pragmatic turn in biology: From biological molecules to genetic content operators. World J Biol Chem 5: 279-285. doi: 10.4331/wjbc.v5.i3.279 |
[61] | Schudoma C (2011) It's a loop world—single strands in RNA as structural and functional elements. Biomol Conc 2: 171-181. doi: 10.1515/bmc.2011.016 |
[62] | Bergthaler A, Menche J (2017) The immune system as a social network. Nat Immunol 18: 481-482. doi: 10.1038/ni.3727 |
[63] | Witzany G (2016) Crucial steps to life: From chemical reactions to code using agents. Biosystems 140: 49-57. doi: 10.1016/j.biosystems.2015.12.007 |
[64] | Koonin EV (2016) Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 371: 20150442. doi: 10.1098/rstb.2015.0442 |
[65] | Sullivan MB, Weitz JS, Wilhelm S (2017) Viral ecology comes of age. Environ Microbiol Rep 9: 33-35. doi: 10.1111/1758-2229.12504 |
[66] | Bushman FD (2003) Targeting survival: Integration site selection by retroviruses and LTR-retrotransposons. Cell 115: 135-138. doi: 10.1016/S0092-8674(03)00760-8 |
[67] | Hayden EJ, Lehman N (2006) Self-assembly of a group I intron from inactive oligonucleotide fragments. Chem Biol 13: 909-918. doi: 10.1016/j.chembiol.2006.06.014 |
[68] | Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233. doi: 10.1016/j.cell.2009.01.002 |
[69] | Belfort M, Curcio MJ, Lue NF (2011) Telomerase and retrotransposons: reverse transcriptases that shaped genomes. Proc Natl Acad Sci USA 108: 20304-20310. doi: 10.1073/pnas.1100269109 |
[70] | Pyle AM (2016) Group II Intron Self-Splicing. Annu Rev Biophys 45: 183-205. doi: 10.1146/annurev-biophys-062215-011149 |
[71] | Villarreal LP (2011) Viruses and host evolution: virus-mediated self identity. Adv Exp Med Biol 738: 185-217. doi: 10.1007/978-1-4614-1680-7_12 |
[72] | Villarreal LP (2012) The addiction module as a social force. Viruses: Essential Agents of Life Dordrecht: Springer Science + Business Media, 107-146. doi: 10.1007/978-94-007-4899-6_6 |
[73] | Villarreal LP (2016) Persistent virus and addiction modules: an engine of symbiosis. Curr Opin Microbiol 31: 70-79. doi: 10.1016/j.mib.2016.03.005 |
[74] | Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29: 3742-3756. doi: 10.1093/nar/29.18.3742 |
[75] | Mruk I, Kobayashi I (2014) To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res 42: 70-86. doi: 10.1093/nar/gkt711 |
[76] | Gerdes K, Wagner EG (2007) RNA antitoxins. Curr Opin Microbiol 10: 117-124. doi: 10.1016/j.mib.2007.03.003 |
[77] | Witzany G (2020) Evolution of Genetic Information without Error Replication. Theoretical Information Studies: Information in the World Singapore: World Scientific, 295-320. doi: 10.1142/9789813277496_0014 |
[78] | Schuster P (2011) Mathematical modeling of evolution. Solved and open problems. Theory Biosci 130: 71-89. doi: 10.1007/s12064-010-0110-z |
[79] | Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58: 465-523. doi: 10.1007/BF00623322 |
[80] | Koonin EV (2009) On the origin of cells and viruses: primordial virus world scenario. Ann N Y Acad Sci 1178: 47-64. doi: 10.1111/j.1749-6632.2009.04992.x |
[81] | Comeau AM, Hatfull GF, Krisch HM, et al. (2008) Exploring the prokaryotic virosphere. Res Microbiol 159: 306-313. doi: 10.1016/j.resmic.2008.05.001 |
[82] | Zhang YZ, Chen YM, Wang W, et al. (2019) Expanding the RNA Virosphere by Unbiased Metagenomics. Annu Rev Virol 6: 119-139. doi: 10.1146/annurev-virology-092818-015851 |
[83] | Moelling K (2013) What contemporary viruses tell us about evolution: a personal view. Arch Virol 158: 1833-1848. doi: 10.1007/s00705-013-1679-6 |
[84] | Stedman KM (2015) Deep recombination: RNA and ssDNA virus genes in DNA virus and host genomes. Annu Rev Virol 2: 203-217. doi: 10.1146/annurev-virology-100114-055127 |
[85] | Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604-607. doi: 10.1038/284604a0 |
[86] | Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601-603. doi: 10.1038/284601a0 |
[87] | Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28: 913-922. doi: 10.1002/bies.20452 |
[88] | Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443: 521-524. doi: 10.1038/443521a |
[89] | Ryan F (2006) Genomic creativity and natural selection: a modern synthesis. Biol J Linn Soc 88: 655-672. doi: 10.1111/j.1095-8312.2006.00650.x |
[90] | Root-Bernstein RS, Dillon PF (1997) Molecular complementarity I: the complementarity theory of the origin and evolution of life. J Theor Biol 188: 447-749. doi: 10.1006/jtbi.1997.0476 |
[91] | Stadler PF, Schuster P (1992) Mutation in autocatalytic reaction networks. An analysis based on perturbation theory. J Math Biol 30: 597-631. doi: 10.1007/BF00948894 |
[92] | Naville M, Volff JN (2016) Endogenous Retroviruses in Fish Genomes: From Relics of Past Infections to Evolutionary Innovations? Front Microbiol 7: 1197. doi: 10.3389/fmicb.2016.01197 |
[93] | Broecker F, Moelling K (2019) Evolution of Immune Systems. From Viruses and Transposable Elements. Front Microbiol 10: 51. doi: 10.3389/fmicb.2019.00051 |
[94] | Naville M, Warren IA, Haftek-Terreau Z, et al. (2016) Not so bad after all: retroviruses and long terminal repeat retrotransposons as a source of new genes in vertebrates. Clin Microbiol Infect 22: 312-323. doi: 10.1016/j.cmi.2016.02.001 |
[95] | Cech TR (2012) The RNA worlds in context. Cold Spring Harb Perspect Biol 4: a006742. |
[96] | Eigen M, Schuster P (1977) A principle of natural self-organization. Naturwissenschaften 64: 541-565. doi: 10.1007/BF00450633 |
[97] | Szathmáry E (1993) Coding coenzyme handles: a hypothesis for the origin of the genetic code. Proc Natl Acad Sci USA 90: 9916-9920. doi: 10.1073/pnas.90.21.9916 |
[98] | Domingo E, Schuster P (2016) Quasispecies: From Theory to Experimental Systems Cham: Springer. doi: 10.1007/978-3-319-23898-2 |
[99] | Domingo E, Grande-Pérez A, Martín V (2008) Future prospects for the treatment of rapidly evolving viral pathogens: insights from evolutionary biology. Expert Opin Biol Ther 8: 1455-1460. doi: 10.1517/14712598.8.10.1455 |
[100] | Villarreal LP (2016) Viruses and the placenta: the essential virus first view. APMIS 124: 20-30. doi: 10.1111/apm.12485 |
[101] | Chaudhari N, Hahn WE (1983) Genetic expression in the developing brain. Science 220: 924-928. doi: 10.1126/science.6189184 |
[102] | Khaitovich P, Muetzel B, She X, et al. (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14: 1462-1473. doi: 10.1101/gr.2538704 |
[103] | Watanabe H, Fujiyama A, Hattori M, et al. (2004) DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429: 382-388. doi: 10.1038/nature02564 |
[104] | Wetterbom A, Sevov M, Cavelier L (2006) Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution. J Mol Evol 63: 682-690. doi: 10.1007/s00239-006-0045-7 |
[105] | Mills RE, Luttig CT, Larkins CE, et al. (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16: 1182-1190. doi: 10.1101/gr.4565806 |
[106] | Mager DL, Stoye JP (2014) Mammalian endogenous retroviruses. Microbiol Spectrum 3: MDNA3-0009-2014. |
[107] | Sakate R, Suto Y, Imanishi T, et al. (2007) Mapping of chimpanzee full-length cDNAs onto the human genome unveils large potential divergence of the transcriptome. Gene 399: 1-10. doi: 10.1016/j.gene.2007.04.013 |
[108] | Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 31: 715-726. doi: 10.1002/bies.200900026 |
[109] | Keightley PD, Lercher MJ, Eyre-Walker A (2005) Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol 3: e42. doi: 10.1371/journal.pbio.0030042 |
[110] | Keightley PD, Lercher MJ, Eyre-Walker A (2006) Understanding the degradation of hominid gene control. PLoS Comput Biol 2: e19. doi: 10.1371/journal.pcbi.0020019 |
[111] | Toder R, Grützner F, Haaf T, et al. (2001) Species-specific evolution of repeated DNA sequences in great apes. Chromosome Res 9: 431-435. doi: 10.1023/A:1011605824530 |
[112] | Bird CP, Stranger BE, Liu M, et al. (2007) Fast-evolving noncoding sequences in the human genome. Genome Biol 8: R118. doi: 10.1186/gb-2007-8-6-r118 |
[113] | Bejerano G, Haussler D, Blanchette M (2004) Into the heart of darkness: large-scale clustering of human non-coding DNA. Bioinformatics 20: i40-48. doi: 10.1093/bioinformatics/bth946 |
[114] | Bush EC, Lahn BT (2005) Selective constraint on noncoding regions of hominid genomes. PLoS Comput Biol 1: e73. doi: 10.1371/journal.pcbi.0010073 |
[115] | Barry G, Mattick JS (2012) The role of regulatory RNA in cognitive evolution. Trends Cogn Sci 16: 497-503. doi: 10.1016/j.tics.2012.08.007 |
[116] | Mattick JS (2009) Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann N Y Acad Sci 1178: 29-46. doi: 10.1111/j.1749-6632.2009.04991.x |
[117] | Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585: 1600-1616. doi: 10.1016/j.febslet.2011.05.001 |
[118] | Mattick JS (2005) The functional genomics of noncoding RNA. Science 309: 1527-1528. doi: 10.1126/science.1117806 |
[119] | Mattick JS, Taft RJ, Faulkner GJ (2010) A global view of genomic information--moving beyond the gene and the master regulator. Trends Genet 26: 21-28. doi: 10.1016/j.tig.2009.11.002 |
[120] | Claverie JM (2005) Fewer genes, more noncoding RNA. Science 309: 1529-1530. doi: 10.1126/science.1116800 |
[121] | Khalil AM, Guttman M, Huarte M, et al. (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106: 11667-11672. doi: 10.1073/pnas.0904715106 |
[122] | Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87: 799-823. doi: 10.1152/physrev.00036.2006 |
[123] | Mattick JS, Mehler MF (2008) RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31: 227-233. doi: 10.1016/j.tins.2008.02.003 |
[124] | Mercer TR, Dinger ME, Mariani J, et al. (2008) Noncoding RNAs in Long-Term Memory Formation. Neuroscientist 14: 434-445. doi: 10.1177/1073858408319187 |
[125] | Nghe P, Hordijk W, Kauffman SA, et al. (2015) Prebiotic network evolution: six key parameters. Mol Biosyst 11: 3206-3217. doi: 10.1039/C5MB00593K |
[126] | Kaliatsi EG, Giarimoglou N, Stathopoulos C, et al. (2020) Non-Coding RNA-Driven Regulation of rRNA Biogenesis. Int J Mol Sci 21: 9738. doi: 10.3390/ijms21249738 |
[127] | Shepherd JD (2018) Arc-An endogenous neuronal retrovirus? Semin Cell Dev Biol 77: 73-78. doi: 10.1016/j.semcdb.2017.09.029 |
[128] | Pastuzyn ED, Day CE, Kearns RB, et al. (2018) The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell 172: 275-288. doi: 10.1016/j.cell.2017.12.024 |
[129] | Vignuzzi M, Stone JK, Arnold JJ, et al. (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344-348. doi: 10.1038/nature04388 |
[130] | Korboukh VK, Lee CA, Acevedo A, et al. (2014) RNA virus population diversity, an optimum for maximal fitness and virulence. J Biol Chem 289: 29531-29544. doi: 10.1074/jbc.M114.592303 |
[131] | Briones C, de Vicente A, Molina-París C, et al. (2006) Minority memory genomes can influence the evolution of HIV-1 quasispecies in vivo. Gene 384: 129-138. doi: 10.1016/j.gene.2006.07.037 |
[132] | Briones C, Domingo E (2008) Minority report: hidden memory genomes in HIV-1 quasispecies and possible clinical implications. AIDS Rev 10: 93-109. |
[133] | Bordería AV, Stapleford KA, Vignuzzi M (2011) RNA virus population diversity: implications for inter-species transmission. Curr Opin Virol 1: 643-648. doi: 10.1016/j.coviro.2011.09.012 |
[134] | Grande-Pérez A, Lázaro E, Lowenstein P, et al. (2005) Suppression of viral infectivity through lethal defection. Proc Natl Acad Sci USA 102: 4448-4452. doi: 10.1073/pnas.0408871102 |
[135] | Domingo E, Gomez J (2007) Quasispecies and its impact on viral hepatitis. Virus Res 127: 131-150. doi: 10.1016/j.virusres.2007.02.001 |
[136] | Ojosnegros S, Perales C, Mas A, et al. (2011) Quasispecies as a matter of fact: viruses and beyond. Virus Res 162: 203-215. doi: 10.1016/j.virusres.2011.09.018 |
[137] | Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6: e1001005. doi: 10.1371/journal.ppat.1001005 |
[138] | Arbiza J, Mirazo S, Fort H (2010) Viral quasispecies profiles as the result of the interplay of competition and cooperation. BMC Evol Biol 10: 137. doi: 10.1186/1471-2148-10-137 |
[139] | Brooks K, Jones BR, Dilernia DA, et al. (2020) HIV-1 variants are archived throughout infection and persist in the reservoir. PLoS Pathog 16: e1008378. doi: 10.1371/journal.ppat.1008378 |
[140] | Levin SR, Gandon S, West SA (2020) The social coevolution hypothesis for the origin of enzymatic cooperation. Nat Ecol Evol 4: 132-137. doi: 10.1038/s41559-019-1039-3 |
[141] | Atkins JF, Loughran G, Bhatt PR, et al. (2016) Ribosomal frameshifting and transcriptional slippage: From genetic steganog- raphy and cryptography to adventitious use. Nucleic Acids Res 44: 7007-7078. |
[142] | Urtel GC, Rind T, Braun D (2017) Reversible Switching of Cooperating Replicators. Phys Rev Lett 118: 078102. doi: 10.1103/PhysRevLett.118.078102 |
[143] | Bastet L, Turcotte P, Wade JT, et al. (2018) Maestro of regulation: Riboswitches orchestrate gene expression at the levels of translation, transcription and mRNA decay. RNA Biol 15: 679-682. |
[144] | Gesteland RF, Cech TR, Atkins JF (2005) The RNA World New York: Cold Spring Harbor Laboratory Press. |
[145] | Altman S Rna008-BioTheory (2013) .Available from: http://tbio.molpit.ru/main-results/rna-world/rna008. |
[146] | Holmes EC (2013) What can we predict about viral evolution and emergence? Curr Opin Virol 3: 180-184. doi: 10.1016/j.coviro.2012.12.003 |
[147] | Wildschutte JH, Williams ZH, Montesion M, et al. (2016) Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci USA 113: E2326-2334. doi: 10.1073/pnas.1602336113 |
[148] | Randau L, Söll D (2008) Transfer RNA genes in pieces. EMBO Rep 9: 623-628. doi: 10.1038/embor.2008.101 |
[149] | Tamura K (2015) Origins and early evolution of the tRNA molecule. Life 5: 1687-1699. doi: 10.3390/life5041687 |
[150] | DeFarias ST, Rêgo TG, José MV (2019) Origin of the 16S ribosomal molecule from ancestor tRNAs. Sciences 1: 8. |
[151] | Daly T, Chen XS, Penny D (2011) How old are RNA networks? Adv Exp Med Biol 722: 255-273. doi: 10.1007/978-1-4614-0332-6_17 |
[152] | Frenkel-Pinter M, Haynes JW, Mohyeldin AM, et al. (2020) Mutually stabilizing interactions between proto-peptides and RNA. Nat Commun 11: 3137. doi: 10.1038/s41467-020-16891-5 |
[153] | Yarus M (2011) The meaning of a minuscule ribozyme. Philos Trans R Soc Lond B Biol Sci 366: 2902-2909. doi: 10.1098/rstb.2011.0139 |
[154] | Martin LL, Unrau PJ, Müller UF (2015) RNA synthesis by in vitro selected ribozymes for recreating an RNA world. Life 5: 247-268. doi: 10.3390/life5010247 |
[155] | Smit S, Yarus M, Knight R (2006) Natural selection is not required to explain universal compositional patterns in rRNA secondary structure categories. RNA 12: 1-14. doi: 10.1261/rna.2183806 |
[156] | Yarus M (2011) Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb Perspect Biol 3: a003590. doi: 10.1101/cshperspect.a003590 |
[157] | Vitas M, Dobovišek A (2018) In the Beginning was a Mutualism - On the Origin of Translation. Orig Life Evol Biosph 48: 223-243. doi: 10.1007/s11084-018-9557-6 |
[158] | Müller S, Appel B, Krellenberg T, et al. (2012) The many faces of the hairpin ribozyme: structural and functional variants of a small catalytic RNA. IUBMB Life 64: 36-47. doi: 10.1002/iub.575 |
[159] | Cheng LK, Unrau PJ (2010) Closing the circle: replicating RNA with RNA. Cold Spring Harb Perspect Biol 2: a002204. doi: 10.1101/cshperspect.a002204 |
[160] | Gwiazda S, Salomon K, Appel B, et al. (2012) RNA self-ligation: from oligonucleotides to full length ribozymes. Biochimie 94: 1457-1463. doi: 10.1016/j.biochi.2012.03.015 |
[161] | Behrouzi R, Roh JH, Kilburn D, et al. (2012) Cooperative tertiary interaction network guides RNA folding. Cell 149: 348-357. doi: 10.1016/j.cell.2012.01.057 |
[162] | Ferré-D'Amaré AR, Scott WG (2010) Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol 2: a003574. |
[163] | Breaker RR (2018) Riboswitches and Translation Control. Cold Spring Harb Perspect Biol 10: a032797. doi: 10.1101/cshperspect.a032797 |
[164] | Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15: 394-408. doi: 10.1038/nrg3683 |
[165] | Perreault J, Weinberg Z, Roth A, et al. (2011) Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 7: e1002031. doi: 10.1371/journal.pcbi.1002031 |
[166] | Kumar RM, Joyce GF (2003) A modular, bifunctional RNA that integrates itself into a target RNA. Proc Natl Acad Sci USA 100: 9738-9743. doi: 10.1073/pnas.1334190100 |
[167] | Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91: 6729-6734. doi: 10.1073/pnas.91.15.6729 |
[168] | de Farias ST, José MV (2020) Transfer RNA: The molecular demiurge in the origin of biological systems. Prog Biophys Mol Biol 53: 28-34. doi: 10.1016/j.pbiomolbio.2020.02.006 |
[169] | Demongeot J, Seligmann H (2019) More pieces of ancient than recent theoretical minimal proto-tRNA-like RNA rings in genes coding for tRNA synthetases. J Mol Evol 87: 152-174. doi: 10.1007/s00239-019-09892-6 |
[170] | Root-Bernstein R (2012) A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res 45: 2169-2177. doi: 10.1021/ar200209k |
[171] | Dick TP, Schamel WA (1995) Molecular evolution of transfer RNA from two precursor hairpins: implications for the origin of protein synthesis. J Mol Evol 41: 1-9. |
[172] | Belfort M, Weiner A (1997) Another bridge between kingdoms: tRNA splicing in archaea and eukaryotes. Cell 89: 1003-1006. doi: 10.1016/S0092-8674(00)80287-1 |
[173] | Lambowitz AM, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3: a003616. doi: 10.1101/cshperspect.a003616 |
[174] | Fujishima K, Kanai A (2014) tRNA gene diversity in the three domains of life. Front Genet 5: 142. doi: 10.3389/fgene.2014.00142 |
[175] | Rodin AS, Szathmáry E, Rodin SN (2011) On origin of genetic code and tRNA before translation. Biol Direct 6: 14. doi: 10.1186/1745-6150-6-14 |
[176] | Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2: 14. doi: 10.1186/1745-6150-2-14 |
[177] | Sun FJ, Caetano-Anollés G (2008) Transfer RNA and the origins of diversified life. Sci Prog 91: 265-284. doi: 10.3184/003685008X360650 |
[178] | Petrov AS, Gulen B, Norris AM, et al. (2015) History of the ribosome and the origin of translation. Proc Natl Acad Sci USA 112: 15396-15401. doi: 10.1073/pnas.1509761112 |
[179] | Di Giulio M (2013) A polyphyletic model for the origin of tRNAs has more support than a monophyletic model. J Theor Biol 318: 124-128. doi: 10.1016/j.jtbi.2012.11.012 |
[180] | Liow LH, Van Valen L, Stenseth NC (2011) Red Queen: from populations to taxa and communities. Trends Ecol Evol 26: 349-358. doi: 10.1016/j.tree.2011.03.016 |
[181] | Hayne CK, Schmidt CA, Haque MI, et al. (2020) Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage. Nucleic Acids Res 48: 7609-7622. doi: 10.1093/nar/gkaa438 |
[182] | Bowman JC, Petrov AS, Frenkel-Pinter M, et al. (2020) Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 120: 4848-4878. doi: 10.1021/acs.chemrev.9b00742 |
[183] | Root-Bernstein R, Root-Bernstein M (2019) The Ribosome as a Missing Link in Prebiotic Evolution III: Over-Representation of tRNA- and rRNA-Like Sequences and Plieofunctionality of Ribosome-Related Molecules Argues for the Evolution of Primitive Genomes from Ribosomal RNA Modules. Int J Mol Sci 20: 140. doi: 10.3390/ijms20010140 |
[184] | Arenas CD, Lehman N (2010) The continuous evolution in vitro technique. Curr Protoc Nucleic Acid Chem Chapter 9: 9.7.1-9.7.17. |
[185] | Dadon Z, Samiappan M, Wagner N, et al. (2012) Chemical and light triggering of peptide networks under partial thermodynamic control. Chem Commun (Camb) 48: 1419-1421. doi: 10.1039/C1CC14301H |
[186] | Ameta S, Arsène S, Foulon S, et al. (2019) Darwinian properties and their trade-offs in autocatalytic RNA reaction networks. bioRxiv Available from: https://doi.org/10.1101/726497. |
[187] | Hordijk W, Steel M (2012) Predicting template-based catalysis rates in a simple catalytic reaction model. J Theor Biol 295: 132-138. doi: 10.1016/j.jtbi.2011.11.024 |
[188] | Jalasvuori M, Bamford JK (2008) Structural co-evolution of viruses and cells in the primordial world. Orig Life Evol Biosph 38: 165-181. doi: 10.1007/s11084-008-9121-x |
[189] | Kun Á, Szilágyi A, Könnyű B, et al. (2015) The dynamics of the RNA world: insights and challenges. Ann NY Acad Sci 1341: 75-95. doi: 10.1111/nyas.12700 |
[190] | Rieckmann JC, Geiger R, Hornburg D, et al. (2017) Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol 18: 583-593. doi: 10.1038/ni.3693 |
[191] | Caetano-Anollés G, Sun FJ (2014) The natural history of transfer RNA and its interactions with the ribosome. Front Genet 5: 127. |
[192] | Thornlow BP, Armstrong J, Holmes AD, et al. (2020) Predicting transfer RNA gene activity from sequence and genome context. Genome Res 30: 85-94. doi: 10.1101/gr.256164.119 |
[193] | Withers M, Wernisch L, dos Reis M (2006) Archaeology and evolution of transfer RNA genes in the Escherichia coli genome. RNA 12: 933-942. doi: 10.1261/rna.2272306 |
[194] | Ariza-Mateos A, Briones C, Perales C, et al. (2019) The archaeology of coding RNA. Ann NY Acad Sci 1447: 119-134. doi: 10.1111/nyas.14173 |
[195] | Stevenson DS (2002) Co-evolution of the genetic code and ribozyme replication. J Theor Biol 217: 235-253. doi: 10.1006/jtbi.2002.3013 |
[196] | Witzany G (2012) From Molecular Entities to Competent Agents: Viral Infection-Derived Consortia Act as Natural Genetic Engineers. Viruses: Essential Agents of Life Dordrecht: Springer, 407-419. doi: 10.1007/978-94-007-4899-6_20 |
[197] | Hesselberth JR (2013) Lives that introns lead after splicing. Wiley Interdiscip Rev RNA 4: 677-691. doi: 10.1002/wrna.1187 |
[198] | Belfort M (2017) Mobile self-splicing introns and inteins as environmental sensors. Curr Opin Microbiol 38: 51-58. doi: 10.1016/j.mib.2017.04.003 |
[199] | Lennon CW, Belfort M (2017) Inteins. Curr Biol 27: 204-206. doi: 10.1016/j.cub.2017.01.016 |
[200] | Villareal LP (2015) Virolution Can Help Us Understand the Origin of Life. Astrobiology. An Evolutionary Approach Boca Raton: CRC Press, 421-440. |
[201] | Villarreal LP, Witzany G (2021) Infectious thoughts: discovering biology as a social science. PrePrint . |
[202] | Vandevenne M, Delmarcelle M, Galleni M (2019) RNA Regulatory Networks as a Control of Stochasticity in Biological Systems. Front Genet 10: 403. doi: 10.3389/fgene.2019.00403 |
[203] | Lozada-Chávez I, Stadler PF, Prohaska SJ (2011) Hypothesis for the modern RNA world: a pervasive non-coding RNA-based genetic regulation is a prerequisite for the emergence of multicellular complexity. Orig Life Evol Biosph 41: 587-607. doi: 10.1007/s11084-011-9262-1 |