Research article

Working Set: adapted model to the epidemiological context

  • Received: 07 May 2025 Revised: 10 July 2025 Accepted: 22 July 2025 Published: 24 September 2025
  • The necessity of modeling the dynamics of infectious disease spread is driven by the imperative to accurately predict epidemics and assess the efficacy of control measures, such as isolation and quarantine. Conventional compartmental SIR and SEIR models have been widely used for predicting the course of epidemics, but they have limitations due to their inability to account for dynamic isolation. Research frequently recognizes the assumptions underlying these models but rarely provides justification for their validity within the specific contexts where they are applied. In this paper, we propose a novel approach based on the concept of a working set, which we utilize as a subset of agents actively involved in social contact and potential transmission. Our adapted working set model incorporates isolation states for susceptible and infected agents, enabling dynamic adjustment of the transmission rate according to the current size of the Working Set. The incorporation of a time window parameter enables the identification of current contacts and the identification of superspreaders, an important component for the optimization of epidemiological measures. Experimental results and comparative analysis showed that, compared to the SIR and SEIR models, the adapted working set model provides a more detailed and realistic tool for analyzing the spread of infection under dynamic control measures. Our model accounts for contact heterogeneity and allows a better assessment of the impact of isolation. The presented approach integrates resource management principles from computer systems with epidemiological models, providing a flexible and realistic tool for evaluating and optimizing infectious disease control measures. In addition, a practical analysis of established models reveals fundamental modeling principles that can be adapted to different scenarios.

    Citation: Aslanbek Murzakhmetov, Gaukhar Borankulova, Aigul Tungatarova, Saltanat Dulatbayeva, Nurgul Zhoranova, Zhazira Taszhurekova. Working Set: adapted model to the epidemiological context[J]. Mathematical Biosciences and Engineering, 2025, 22(12): 2988-3004. doi: 10.3934/mbe.2025110

    Related Papers:

  • The necessity of modeling the dynamics of infectious disease spread is driven by the imperative to accurately predict epidemics and assess the efficacy of control measures, such as isolation and quarantine. Conventional compartmental SIR and SEIR models have been widely used for predicting the course of epidemics, but they have limitations due to their inability to account for dynamic isolation. Research frequently recognizes the assumptions underlying these models but rarely provides justification for their validity within the specific contexts where they are applied. In this paper, we propose a novel approach based on the concept of a working set, which we utilize as a subset of agents actively involved in social contact and potential transmission. Our adapted working set model incorporates isolation states for susceptible and infected agents, enabling dynamic adjustment of the transmission rate according to the current size of the Working Set. The incorporation of a time window parameter enables the identification of current contacts and the identification of superspreaders, an important component for the optimization of epidemiological measures. Experimental results and comparative analysis showed that, compared to the SIR and SEIR models, the adapted working set model provides a more detailed and realistic tool for analyzing the spread of infection under dynamic control measures. Our model accounts for contact heterogeneity and allows a better assessment of the impact of isolation. The presented approach integrates resource management principles from computer systems with epidemiological models, providing a flexible and realistic tool for evaluating and optimizing infectious disease control measures. In addition, a practical analysis of established models reveals fundamental modeling principles that can be adapted to different scenarios.



    加载中


    [1] A. F. Siegenfeld, P. K. Kollepara, Y. Bar-Yam, Modeling complex systems: A case study of compartmental models in epidemiology, Complexity, 2022 (2022), 3007864. https://doi.org/10.1155/2022/3007864 doi: 10.1155/2022/3007864
    [2] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [3] W. R. Khuda Bukhsh, G. A. Rempała, How to correctly fit an SIR model to data from an SEIR model?, Math. Biosci., 375 (2024), 109265. https://doi.org/10.1016/j.mbs.2024.109265 doi: 10.1016/j.mbs.2024.109265
    [4] A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Bio., 71 (2009), 75–83. https://doi.org/10.1007/s11538-008-9352-z doi: 10.1007/s11538-008-9352-z
    [5] E. Lara-Tuprio, C. S. Estadilla, T. Y. Teng, J. Uyheng, M. E. Estuar, E. K. E. Espina, et. al., Mathematical analysis of a COVID-19 compartmental model with interventions, in Proceedings of the International Conference on Mathematical Sciences and Technology, 2423 (2021), 020025. https://doi.org/10.1063/5.0075333
    [6] A. B. Gumel, E. A. Iboi, C. N. Ngonghala, E. H. Elbasha, A primer on using mathematics to understand COVID-19 dynamics: Modeling, analysis and simulations, Infect. Dis. Modell., 6 (2021), 148–168. https://doi.org/10.1016/j.idm.2020.11.005 doi: 10.1016/j.idm.2020.11.005
    [7] J. A. Marques, F. N. Gois, J. Xavier-Neto, S. J. Fong, Epidemiology compartmental models—SIR, SEIR, and SEIR with intervention, in Predictive Models for Decision Support in the COVID-19 Crisis, Springer, (2021), 15–39. https://doi.org/10.1007/978-3-030-61913-8_2
    [8] A. Safarishahrbijari, T. Lawrence, R. Lomotey, J. Liu, C. Waldner, N. Osgood, Particle filtering in a SEIRV simulation model of H1N1 influenza, in Proceedings of the Winter Simulation Conference, (2015), 1240–1251. https://doi.org/10.1109/WSC.2015.7408249
    [9] X. Meng, Z. Cai, S. Si, D. Duan, Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game, Appl. Math. Comput., 403 (2021), 126172. https://doi.org/10.1016/j.amc.2021.126172 doi: 10.1016/j.amc.2021.126172
    [10] K. R. Bissett, J. Cadena, M. Khan, C. J. Kuhlman, Agent-based computational epidemiological modeling, J. Indian Inst. Sci., 101 (2021), 303–327. https://doi.org/10.1007/s41745-021-00260-2 doi: 10.1007/s41745-021-00260-2
    [11] F. A. Salem, U. F. Moreno, A multi-agent-based simulation model for the spreading of diseases through social interactions during pandemics, J. Control Autom. Electr. Syst., 33 (2022), 1161–1176. https://doi.org/10.1007/s40313-022-00920-3 doi: 10.1007/s40313-022-00920-3
    [12] O. Givan, N. Schwartz, A. Cygelberg, L. Stone, Predicting epidemic thresholds on complex networks: Limitations of mean-field approaches, J. Theor. Biol., 288 (2011), 21–28. https://doi.org/10.1016/j.jtbi.2011.07.015 doi: 10.1016/j.jtbi.2011.07.015
    [13] M. Roberts, V. Andreasen, A. Lloyd, L. Pellis, Nine challenges for deterministic epidemic models, Epidemics, 10 (2015), 49–53. https://doi.org/10.1016/j.epidem.2014.09.006 doi: 10.1016/j.epidem.2014.09.006
    [14] A. Džiugys, M. Bieliūnas, G. Skarbalius, E. Misiulis, R. Navakas, Simplified model of Covid-19 epidemic prognosis under quarantine and estimation of quarantine effectiveness, Chaos Solitons Fractals, 140 (2020), 110162. https://doi.org/10.1016/j.chaos.2020.110162 doi: 10.1016/j.chaos.2020.110162
    [15] A. James, M. J. Plank, S. Hendy, R. Binny, A. Lustig, N. Steyn, et al., Successful contact tracing systems for COVID-19 rely on effective quarantine and isolation, PLoS One, 16 (2021), e0252499. https://doi.org/10.1371/journal.pone.0252499 doi: 10.1371/journal.pone.0252499
    [16] P. J. Denning, The working set model for program behavior, in Proceedings of the ACM symposium on Operating System Principles, (1967), 1–12. https://doi.org/10.1145/800001.811670
    [17] P. J. Denning, Working set analytics, ACM Comput. Surv., 53 (2021), 1–36. https://doi.org/10.1145/3399709 doi: 10.1145/3399709
    [18] J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, W. M. Getz, Superspreading and the effect of individual variation on disease emergence, Nature, 438 (2005), 355–359. https://doi.org/10.1038/nature04153 doi: 10.1038/nature04153
    [19] W. Li, Y. Wang, J. Cao, M. Abdel-Aty, Dynamics and backward bifurcations of SEI tuberculosis models in homogeneous and heterogeneous populations, J. Math. Anal. Appl., 543 (2025), 128924, https://doi.org/10.1016/j.jmaa.2024.128924 doi: 10.1016/j.jmaa.2024.128924
    [20] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), 925–979. https://doi.org/10.1103/RevModPhys.87.925 doi: 10.1103/RevModPhys.87.925
    [21] M. Girvan, M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci., 99 (2002), 7821–7826. https://doi.org/10.1073/pnas.122653799 doi: 10.1073/pnas.122653799
    [22] A. Arenas, L. Danon, A. Diaz-Guilera, P. M. Gleiser, R. Guimer, Community analysis in social networks, Eur. Phys. J. B, 38 (2004), 373–380. https://doi.org/10.1140/epjb/e2004-00130-1 doi: 10.1140/epjb/e2004-00130-1
    [23] L. Hedayatifar, R. A. Rigg, Y. Bar-Yam, A. J. Morales, US social fragmentation at multiple scales, J. R. Soc. Interface, 16 (2019), 20190509. https://doi.org/10.1098/rsif.2019.0509 doi: 10.1098/rsif.2019.0509
    [24] T. Britton, F. Ball, P. Trapman, A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2, Science, 369 (2020), 846–849. https://doi.org/10.1126/science.abc6810 doi: 10.1126/science.abc6810
    [25] W. Gou, Z. Jin, How heterogeneous susceptibility and recovery rates affect the spread of epidemics on networks, Infect. Dis. Modell., 2 (2017), 353–367. https://doi.org/10.1016/j.idm.2017.07.001 doi: 10.1016/j.idm.2017.07.001
    [26] R. I. Hickson, M. G. Roberts, How population heterogeneity in susceptibility and infectivity influences epidemic dynamics, J. Theor. Biol., 350 (2014), 70–80. https://doi.org/10.1016/j.jtbi.2014.01.014 doi: 10.1016/j.jtbi.2014.01.014
    [27] A. Gerasimov, G. Lebedev, M. Lebedev, I. Semenycheva, COVID-19 dynamics: A heterogeneous model, Front. Publ. Health, 8 (2021), 558368. https://doi.org/10.3389/fpubh.2020.558368 doi: 10.3389/fpubh.2020.558368
    [28] J. Dolbeault, G. Turinici, Social heterogeneity and the COVID-19 lockdown in a multi-group SEIR model, Comput. Math. Biophys., 9 (2021), 14–21. https://doi.org/10.1515/cmb-2020-0115 doi: 10.1515/cmb-2020-0115
    [29] P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [30] L. Hébert-Dufresne, B. M. Althouse, S. V. Scarpino, A. Allard, Beyond R0: Heterogeneity in secondary infections and probabilistic epidemic forecasting, J. R. Soc. Interface, 17 (2020), 20200393. https://doi.org/10.1098/rsif.2020.0393 doi: 10.1098/rsif.2020.0393
    [31] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [32] S. I. Kabanikhin, O. I. Krivorotko, Mathematical modeling of the Wuhan COVID-2019 epidemic and inverse problems, Comput. Math. and Math. Phys., 60 (2020), 1889–1899. https://doi.org/10.1134/S0965542520110068 doi: 10.1134/S0965542520110068
    [33] B. Lieberthal, A. M. Gardner, Connectivity, reproduction number, and mobility interact to determine communities' epidemiological superspreader potential in a metapopulation network, PLoS Comput. Biol., 17 (2021), e1008674. https://doi.org/10.1371/journal.pcbi.1008674 doi: 10.1371/journal.pcbi.1008674
    [34] J. Chen, Y. Zhang, Y. Xu, C. Xia, J. Tanimoto, An epidemic spread model with nonlinear recovery rates on meta-population networks, Nonlinear Dyn., 113 (2025), 3943–3957. https://doi.org/10.1007/s11071-024-10388-2 doi: 10.1007/s11071-024-10388-2
    [35] M. Horii, A. Gould, Z. Yun, J. Ray, C. Safta, T. Zohdi, Calibration verification for stochastic agent-based disease spread models, PLoS One, 19 (2024), e0315429. https://doi.org/10.1371/journal.pone.0315429 doi: 10.1371/journal.pone.0315429
    [36] E. Taghizadeh, A. Mohammad-Djafari, SEIR modeling, simulation, parameter estimation, and their application for COVID-19 epidemic prediction, Phys. Sci. Forum, 5 (2022), 18. https://doi.org/10.3390/psf2022005018 doi: 10.3390/psf2022005018
    [37] K. Chen, X. Jiang, Y. Li, R. Zhou, A stochastic agent-based model to evaluate COVID-19 transmission influenced by human mobility, Nonlinear Dyn, 111 (2023), 12639–12655. https://doi.org/10.1007/s11071-023-08489-5 doi: 10.1007/s11071-023-08489-5
    [38] Q. Fan, Q. Li, Y. Chen, J. Tang, Modeling COVID-19 spread using multi-agent simulation with small-world network approach, BMC Public Health, 24 (2024), 672. https://doi.org/10.1186/s12889-024-18157-x doi: 10.1186/s12889-024-18157-x
    [39] A. D. Wood, K. Berry, COVID-19 transmission in a resource dependent community with heterogeneous populations: An agent-based modeling approach, Econom. Hum. Biol., 52 (2024), 101314. https://doi.org/10.1016/j.ehb.2023.101314 doi: 10.1016/j.ehb.2023.101314
    [40] K. Gallagher, I. Bouros, N. Fan, E. Hayman, L. Heirene, P. Lamirande, et al., Epidemiological agent-based modelling software (Epiabm), J. Open Res. Soft., 12 (2024), 3. https://doi.org/10.5334/jors.449 doi: 10.5334/jors.449
    [41] A. Topîrceanu, On the impact of quarantine policies and recurrence rate in epidemic spreading using a spatial agent-based model, Mathematics, 11 (2023), 1336. https://doi.org/10.3390/math11061336 doi: 10.3390/math11061336
    [42] Y. Tatsukawa, M. R. Arefin, K. Kuga, J. Tanimoto, An agent-based nested model integrating within-host and between-host mechanisms to predict an epidemic, PLoS One, 18 (2023), e0295954. https://doi.org/10.1371/journal.pone.0295954 doi: 10.1371/journal.pone.0295954
    [43] C. Nitzsche, S. Simm, Agent-based modeling to estimate the impact of lockdown scenarios and events on a pandemic exemplified on SARS-CoV-2, Sci. Rep., 14 (2024), 13391. https://doi.org/10.1038/s41598-024-63795-1 doi: 10.1038/s41598-024-63795-1
    [44] P. J. Schluter, M. Genereux, E. Landaverde, E. Y. Chan, K. C. Hung, R. Law, et al., An eight-country cross-sectional study of the psychosocial effects of COVID-19 induced quarantine and/or isolation during the pandemic, Sci. Rep., 12 (2022), 13175. https://doi.org/10.1038/s41598-022-16254-8 doi: 10.1038/s41598-022-16254-8
    [45] Y. Lin, L. Wu, H. Ouyang, J. Zhan, J. Wang, W. Liu, et al., Behavioral intentions and perceived stress under isolated environment, Brain Behav., 14 (2024), e3347. https://doi.org/10.1002/brb3.3347 doi: 10.1002/brb3.3347
    [46] U. Panchal, G. Pablo, M. Franco, C. Moreno, M. Parellada, C. Arango, et al., The impact of COVID-19 lockdown on child and adolescent mental health: systematic review, Eur. Child Adolesc. Psychiatry, 32 (2023), 1151–1177. https://doi.org/10.1007/s00787-021-01856-w doi: 10.1007/s00787-021-01856-w
    [47] W. Yamaka, S. Lomwanawong, D. Magel, P. Maneejuk, Analysis of the lockdown effects on the economy, environment, and COVID-19 spread: Lesson learnt from a global pandemic in 2020, Int. J. Environ. Res. Public. Health, 19 (2022), 12868. https://doi.org/10.3390/ijerph191912868 doi: 10.3390/ijerph191912868
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(534) PDF downloads(54) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog