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Abstract: The necessity of modeling the dynamics of infectious disease spread is driven by the 

imperative to accurately predict epidemics and assess the efficacy of control measures, such as 

isolation and quarantine. Conventional compartmental SIR and SEIR models have been widely used 

for predicting the course of epidemics, but they have limitations due to their inability to account for 

dynamic isolation. Research frequently recognizes the assumptions underlying these models but rarely 

provides justification for their validity within the specific contexts where they are applied. In this paper, 

we propose a novel approach based on the concept of a working set, which we utilize as a subset of 

agents actively involved in social contact and potential transmission. Our adapted working set model 

incorporates isolation states for susceptible and infected agents, enabling dynamic adjustment of the 

transmission rate according to the current size of the Working Set. The incorporation of a time window 

parameter enables the identification of current contacts and the identification of superspreaders, an 

important component for the optimization of epidemiological measures. Experimental results and 

comparative analysis showed that, compared to the SIR and SEIR models, the adapted working set 

model provides a more detailed and realistic tool for analyzing the spread of infection under dynamic 

control measures. Our model accounts for contact heterogeneity and allows a better assessment of the 

impact of isolation. The presented approach integrates resource management principles from computer 

systems with epidemiological models, providing a flexible and realistic tool for evaluating and 

optimizing infectious disease control measures. In addition, a practical analysis of established models 

reveals fundamental modeling principles that can be adapted to different scenarios. 
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1. Introduction  

Compartmental models, such as susceptible-infected-recovered (SIR), susceptible–exposed–infected-

recovered (SEIR), and SEIR-V, have been widely used to study infectious disease outbreaks [1]. These 

models are successive mathematical extensions, each adding new aspects to more accurately model and 

analyze the spread of infectious diseases. They divide populations into groups (compartments) based on 

disease status and use differential equations to describe the transitions between them. The SIR model 

proposed in Kermack and McKendrick [2] is a seminal work in the field of infectious disease modeling. 

In [2], Kermack and McKendrick introduced a foundational epidemiological model that segments the 

population into three compartments: susceptible (S), infected (I), and recovered (R). This model is widely 

known as the SIR model. Notably, as a special case of their general framework, the authors proposed a 

simple system of ordinary differential equations (ODEs) to describe the time evolution of population 

proportions in each compartment of the SIR model. However, the classical SIR model is not entirely 

realistic because it assumes that individuals immediately become infectious upon exposure, while most 

infectious or transmissible diseases have an incubation period. The incubation period can be incorporated 

into the SIR framework by adding an additional compartment, resulting in the SEIR system, which 

accounts for exposed or incubating individuals [3,4]. Although the SIR model is mathematically simpler 

and sometimes more convenient to analyze, it lacks epidemiological and biological realism [5,6]. An 

extended version of SEIR is the SEIR-V model, which adds the vaccinated category V to account for the 

effect of vaccination on the spread of infection [7,8]. For greater accuracy, compartmental models are 

often combined with agent-based models to account for individual differences in behavior and social 

networks [9−11]. However, the SIR, SEIR, and SEIR-V models have limitations, especially in the 

context of dynamic control measures such as isolation or quarantine. The main limitation of these models 

is that they assume all susceptible and infected agents interact freely with each other—that is, everyone 

has an equal chance of getting infected by anyone else [12,13]. This is known as the homogeneous 

mixing assumption. In reality, when measures like isolation of infected individuals are implemented, 

interactions between groups are significantly reduced, and such behavior cannot be adequately 

modeled by classical models without additional modifications.  

Isolation and quarantine are important measures for preventing the spread of infection during 

epidemics, as shown in [14,15]. They are important tools during epidemics because they prevent the 

spread of disease, protect vulnerable groups, allow time for monitoring and treatment, reduce the 

burden on health systems, facilitate contact tracing, and have proven historical effectiveness. Despite 

the potential social and economic costs, their benefits in controlling epidemics are significant, making 

them an integral part of public health strategies. To analyze epidemic dynamics and to evaluate the 

effectiveness of control measures such as isolation, we propose an adapted working set (WS) model 

originally developed in computer science, namely in memory management systems. The adaptive WS 

model includes isolation as a central element, where agents can be removed from the working set, 

thereby reducing the transmission potential.  

The working set model, proposed by Denning [16,17], describes the set of memory pages that are 

actively used by a process at a given time, and the unloading of infrequently used pages. It is used to 
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minimize page faults and improve system performance. The WS of a process is defined as the set of 

memory pages used during a given time interval. It is formally written as 𝑊(𝑡, 𝜏), where 𝑡 is the 

current time, and 𝜏 is the length of the time window. If a page is used frequently during 𝜏, it is not 

excluded from the working set. Our primary aim is to demonstrate the application of a working set 

model to an epidemiological context.  

We define a working set as a subset of agents in contact with each other, among which there may 

be agents actively involved in contact transmission. In our adapted WS model, agents actively involved 

in transmission are excluded from the WS, i.e., are isolated from the group. Thus, the algorithm of the 

WS model is used as a way to identify superspreaders [18] that transmit the infection to a large number 

of susceptible agents through frequent contact, communication, or inter-agent contact. Unlike classical 

models such as SIR or SEIR, our adaptive WS model accounts for dynamic isolation and varying 

transmission rates depending on the size of the working set. Therefore, this paper proposes an 

adaptation of the WS model to an epidemiological context in order to model the dynamics of infectious 

disease spread under various control measures. While the WS model introduces dynamic isolation and 

adjusts transmission rates based on the size of the active working set, it still assumes a simplified 

contact structure. In contrast, network-based models explicitly represent contact heterogeneity through 

graph structures, where nodes represent individuals and edges represent interactions. Notable examples 

include the framework presented in [19, 20], which analyzes epidemic processes in complex networks, 

and the SEI model with backward bifurcations in heterogeneous populations. These models capture 

clustering, degree distributions, and community structures that influence epidemic thresholds and 

dynamics. Although our model does not explicitly construct a contact network, it approximates 

heterogeneity by dynamically adjusting the working set based on recent contact activity. Future work 

will explore hybrid approaches that integrate WS dynamics with network-based representations to 

better capture real-world contact structures. 

2. Materials and methods 

We first review the basic SIR model of Kermack and McKendrick, where the proportions of agents 

in susceptible, infected, and removed compartments satisfy the following system of ODEs: 
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where 𝛽 is the disease transmission rate, representing the average number of contacts per agent per 

unit time multiplied by the probability of transmission; 𝛾 is the recovery rate, representing the average 

rate at which infected individuals recover; 𝑁 = 𝑆 + 𝐼 +  𝑅  is the total population size 𝑁  held 

constant in the base model.  

The key parameter is the base reproductive rate 𝑅0, calculated as 𝑅0 = 𝛽/𝛾. Here, 𝑅0 is the 

average number of secondary infections caused by an infected individual in a fully susceptible 

population. If 𝑅0 > 1, the disease spreads; if 𝑅0 < 1, it dies out.  

SEIR (with incubation period): 
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where 𝜎  is the 𝐸  to 𝐼  transition coefficient, i.e., the rate at which exposed individuals become 

infectious (1/𝜎 is the average duration of the latency period); 𝛽 and 𝛾 are similar to the SIR model. 

2.1. Details of the model 

We now examine some key assumptions of the WS model adapted to epidemiology. Key elements 

of the original WS model are redefined as follows: Population: The complete set of agents in a system, 

analogous to the set of all memory pages in a computer model. Working set: A subset of the population 

that includes agents that are not currently isolated and may be involved in transmission. Isolation: The 

process of excluding agents from the working set, equivalent to unloading pages from RAM. Isolated 

agents are temporarily not involved in the spread of infection. Superspreader: An infected agent (in 

state 𝐼) that transmits infection to an unusually large number of susceptible agents (state 𝑆). Unlike 

the average infected agent, a superspreader causes significantly more infections due to high contact 

frequency or other factors. 

2.2. Definition of states in the model 

The adapted model introduces the following states that reflect the epidemiologic status of the 

agents: Susceptible (𝑆): agents that can become infected through contact with infected agents. Infected 

(𝐼): agents capable of transmitting infection to others. Recovered (𝑅): agents who have developed 

immunity and are no longer involved in transmission. Isolated (𝑍): these are infected agents or, in rare 

cases, susceptible agents that are physically separated from the rest to prevent further spread of the 

disease. The adaptive WS model is described by a system of ODEs: 
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where 𝑍𝑆  is the isolated susceptible; 𝑍𝐼  is the isolated infected; 𝑍𝑅  is the isolated recovered 

(transferred from 𝑍𝐼 after recovery); 𝛽(𝑡) is the dynamic infection rate; 𝑁𝑊𝑆 is the current working 

set size (sum of agents in states 𝑆 and 𝐼) at time t; 𝛿𝑆 is the isolation rate for 𝑆; 𝛿𝐼 is the isolation 

rate for 𝐼; 𝜂𝑆 is the isolation release rate for 𝑆; 𝜂𝐼 is the isolation release rate for 𝐼; and 𝛾 is the 

rate of recovery.  

This system accounts for all key processes: infection, recovery, isolation, and release. The total 

population in the model is defined as follows: 

𝑁 = 𝑆(𝑡) + 𝐼(𝑡) +  𝑅(𝑡) + 𝑍𝑆(𝑡) + 𝑍𝐼(𝑡) + 𝑍𝑅(𝑡) (4) 

The size of the working set is determined by the formula 𝑁𝑊𝑆(𝑡) = 𝑆(𝑡) + 𝐼(𝑡). 

2.3. Dynamics of transitions between states 

The dynamics of infection spread in the model are determined by the following processes: 

1) Infection: Transition of agents from state 𝑆 to 𝐼 by contact with infected agents. The speed 

of this process depends on the frequency of contact and the probability of transmission: 

  𝛽(𝑡) =
𝑆(𝑡)𝐼(𝑡)

𝑁𝑊𝑆(𝑡)
                                        (5) 

2) Recovery: Transition from 𝐼 to 𝑅 as infected agents recover. Rate of transition from 𝐼 to 𝑅 

will be 𝛾𝐼(𝑡).  

3) Isolation: The transfer of agents from 𝐼 or 𝑆 to 𝑍 as a result of control measures such as 

contact tracing or isolation. Then, the coefficient from 𝐼 to 𝑍𝐼 will be 𝛿𝐼𝐼(𝑡), and from 𝑆 to 𝑍𝑆 

will be 𝛿𝑆𝑆(𝑡). 

4) Release from isolation: Return of agents from 𝑍𝑆 to 𝑆 (if they remain susceptible) or to 𝑅 (if 

recovered) after completion of the isolation period or confirmation of status by calculating 𝜂𝑆𝑍𝑆(𝑡). 

From 𝑍𝐼 to 𝑍𝑅 (recovery in isolation): 𝛾𝑍𝐼(𝑡). From 𝑍𝑅 to 𝑅: 𝜂𝐼𝑍𝑅(𝑡). 

2.4. Impact on the rate of transmission of infection 

In contrast to traditional models such as SIR, where the infection rate 𝛽 is assumed to be constant 

and the population is assumed to be homogeneously mixed, in the adapted WS model, the value of 𝛽 

becomes a dynamic variable depending on the size of the working set: 

𝛽(𝑡) = 𝛽0 ×
𝑁𝑊𝑆(𝑡)

𝑁
                                      (6) 

where 𝛽0 is the basic transmission rate under full population conditions.  

In computer systems, the working set defines a subset of active resources that minimizes delays. 

Similarly, in an epidemiological context,  𝑁𝑊𝑆 reflects a group of agents involved in the transmission 

of infection. The reduction of  𝑁𝑊𝑆 through isolation reduces the frequency of contacts, which is a 

key factor in 𝛽𝑡 . The linear dependence here is the first approximation corresponding to the 

homogeneous mixing of the population. The linear approximation reflects the average reduction of 

contacts during isolation. As the number of isolated agents increases, the size of the WS decreases, 

which reduces 𝛽(𝑡) and slows the spread of infection. This approach allows us to model the effect of 

isolation and other control measures on epidemic dynamics. 
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Human populations are heterogeneous in many aspects: social connections among agents display 

clustered community patterns [21−23], susceptibility and infectiousness potential vary widely due to 

age, health, or behavioral differences, and geographic regions often implement distinct epidemic 

containment strategies. The long-standing assumption of uniform, well-mixed populations has been 

rigorously tested through heterogeneous modeling frameworks [24−28]. To summarize the effects of 

uneven transmission likelihoods, vulnerability distributions, and interaction patterns, we use a simple 

class of models in which the population is partitioned into multiple groups of agents [29−31]. These 

adaptations aim to demonstrate that population diversity can significantly alter both the progression 

and total reach of an epidemic and, critically, broaden the range of viable intervention strategies.  

Let us consider a multi-agent system (MAS) with n agents distributed over p groups and exposed 

to the risk of infection through contact with each other. In our understanding, MAS consists of a finite 

number of agents and an environment that hosts agents in which agents act and react to other agents. 

Let us specify the agents’ distribution into groups, and each agent group number can be easily 

determined by the Boolean matrix 𝑥 = (𝑥𝑟𝑖)𝑝×𝑛, where the element is 𝑥𝑟𝑖 = 1, if the agent with the 

number 𝑖 is located in the group with the number r and 𝑥𝑟𝑖 = 0, otherwise. The matrix 𝑥 must satisfy 

constraints (a), (b), and (c). Whatever the distribution of agents over groups, we assume that each agent 

of the system belongs to only one of the groups (condition, (a)): 

∑ 𝑥𝑟𝑖

𝑝

𝑟=1

= 1, 𝑖 = 1,2, … , 𝑛.                                  (𝑎) 

Each agent of the system is assigned a weight, the linear size of its living space, within which the 

agent can perform its set of operations assigned to it. In this case, the agents interacting with each other 

are exposed to infection risk through contact. Each group is also assigned a weight, a living space 

within which the group's agents are located. The total weight of agents in any group should not exceed 

the weight of the group (condition (b)):  

∑ 𝑙𝑖

𝑛

𝑖=1

⋅ 𝑥𝑟𝑖 ≤ 𝑣𝑟, 𝑟 = 1,2, … , 𝑝.                         (𝑏) 

Here, 𝑙𝑖 is the weight of the agent 𝑖, 𝑖 = 1,2, … , 𝑛, and 𝑣𝑟 is the weight of the group with number 

r, r=1, 2, ... , p. Let us determine the number of a group that contains an agent, for example 𝑖, with a 

given matrix 𝑥 ∈ X, denoting this number by 𝑟𝑖(𝑥) and taking into account the constraints (𝑎), (𝑏), 

and we write: 

𝑟𝑖(𝑥) = ∑ 𝑥𝑟𝑖

𝑝

𝑟=1

∙ 𝑟, 𝑖 = 1,2, … , 𝑛.                           (𝑐) 

3. Modeling and results 

A WS in an epidemiological context is a dynamic group of agents that participate in social 

interactions and are not subject to isolation. Its size and composition depend on the following factors: 

Isolation policy: when an infected agent from 𝐼 is identified, its contacts from 𝑆 in the last 𝜏 days 

are relegated to the state 𝑍. This shortens the WS and reduces the likelihood of new infections. At the 

end of the isolation period, agents from 𝑍 are tested: susceptible agents return to 𝑆, recovered agents 

to 𝑅. An alternative scenario is high-coverage isolation, in which a large fraction of the population is 
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isolated. Time window (𝜏): similar to the original WS model, a parameter 𝜏 is introduced to define the 

period of “relevance” of contacts. Agents who have been in contact with infected agents in the last 𝜏 

time units are considered candidates for isolation. There may also be superspreaders among these 

agents. Their identification is important for epidemic control because the isolation of such agents can 

significantly slow the spread of the disease. In the WS model, the 𝜏 parameter specifies the time 

window during which contacts are considered relevant.  

3.1. Numerical simulations 

To assess the dynamics of infection spread and evaluate the impact of isolation measures, focusing 

on the isolation period and the effectiveness of the various scenarios, we created three different scenarios 

of isolation rates. 1) Basic scenario: no isolation (𝛿𝑆 = 0, 𝛿𝐼 = 0); 2) moderate isolation: low isolation 

parameters (𝛿𝑆 = 0.05 , 𝛿𝐼 = 0.1 ); 3) high-coverage isolation: high isolation parameters (𝛿𝑆 = 0.2 , 

𝛿𝐼 = 0.3). The SIR and SEIR models do not take insulation into account, so only the basic scenario is 

considered. Table 1 shows the values of parameters and descriptions used for numerical simulations. 

These parameters were generated from an extensive literature review [32−36] of COVID-19 and 

epidemic modeling. In contrast to agent-based models [37−40], which are tailored to specific countries 

or regions, our model is designed for a generalized small-city population. This abstraction enables 

flexible adaptation and does not require detailed prior knowledge of regional parameters.  

Table 1. Model parameters and descriptions. 

Variable Default value Explanation 

𝑁 10.000 Total number of agents in the population 

𝑆0 9.970 Initial number of susceptible agents 

𝐼0 30 Initial number of infected agents 

𝑅0 0 Initial number of recovered agents 

𝐸0 0 Initial number of exposed agents (for SEIR model) 

𝑍𝑆0
 0 Initial number of isolated susceptible agents 

𝑍𝐼0
 0 Initial number of isolated infected agents 

𝛽 0.3 Infection rate; probability of disease transmission per contact between susceptible and 

infected agents 

𝛽0 0.3 Base infection rate for the working set 

𝜎 0.2 Incubation rate; rate at which exposed agents become infectious (for SEIR model) 

𝛾 0.1 Recovery rate; proportion of infected agents recovering per unit time 

𝜂𝑆 0.1 Isolation release rate for susceptible agents; 

𝜂𝐼 0.1 Isolation release rate for infected agents. 

We used an agent-based model that allows us to model different strategies in a virtual population 

and compare these strategies to get an idea of their optimal parameters. This approach is particularly 

advantageous because agent-based models capture the heterogeneity of individual agents and their 

interactions, which are often oversimplified or neglected in classical analytical methods. Unlike 

aggregate mathematical models, they enable the simulation of emergent behaviors that arise from local 

rules and micro-level dynamics. Such models also provide flexibility in testing a wide range of 

scenarios and policy interventions under varying assumptions [41,42]. As shown in Figure 1, we 
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performed a sensitivity analysis to evaluate the WS model's robustness to changes in key parameters. 

We varied 𝛽 from 0.2 to 0.5, 𝛾 from 0.05 to 0.15, and 𝛿𝑆 and 𝛿𝐼 from 0.0 to 0.3. 

 

Figure 1. Sensitivity analysis of WS model: a) Final epidemic size as a function of 𝛽 and 

𝛾.  Epidemic coverage is highest when 𝛽  is high and 𝛾  is low. b) Peak number of 

infections also occurs at high 𝛽 and low 𝛾. This is important for assessing the burden on 

the healthcare system and resource planning. 

By modeling the spread of an infection, we are able to trace a typical epidemiological dynamic 

that progresses through several key stages. Figure 2 illustrates the dynamics of the epidemic spread 

process, including spatial distribution, formation of infection clusters, the role of superspreaders, and 

the impact of isolation measures on the spread of infection. As illustrated in Figure 2(a), the initial 

stage of the epidemic is characterized by a population consisting predominantly of susceptible agents, 

with an infection rate that is just beginning to manifest due to a limited number (0.3%) of infected 

agents. As shown in Figure 2(b), as the epidemic progresses, the proportion of infected agents increases 

to 2.4%, the first isolated agents appear, the amount of which is 0.08%, and superspreaders emerge at 

0.18% in 10 days. These superspreaders play a critical role by rapidly infecting the surrounding 

community and forming the first foci of infection; in this case, clusters of agents. In the early stages 

of an outbreak, local foci of infection emerge around each superspreader, as illustrated by the red 

circles. We define a superspreader as an infected agent who has had contact with more than 𝜃 agents 

within the time window 𝜏. In our simulations, we set 𝜃 = 20, based on the upper 5% quantile of the 

contact distribution observed in the basic scenario. As illustrated in Figure 2(c), the proportion of infected 

agents increases to 18%, the number of isolated agents rises to 11%, and the proportion of superspreaders 

increases to 13%. As the epidemic progresses, small foci coalesce into a “cluster network”, and 

transmission “bridges” between groups of agents emerge, thereby accelerating the spread of the infection. 

As illustrated in Figure 2(d), the initial recovered agents that were released following the isolation period 

are represented by the gray squares. The number of susceptible agents experiences a substantial 

decrease. At the peak of the epidemic, as shown in Figure 2(e), the proportion of susceptible agents 

constitutes –0.2% of the total population. The proportion of infected agents reaches –12%, the 

superspreaders –51%, isolated agents –26%, and recovered agents –10.8% on day 59.  
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Figure 2. Epidemic dynamics in an agent-based population for 100 days, considering five 

types of agents with a total population of 10,000 agents: blue, susceptible agents; orange, 

infected agents; red, superspreaders; black, isolated agents; gray, recovered agents. 
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The implementation of more stringent isolation protocols at this point emerges as a pivotal 

factor in the mitigation of the propagation of infection. The proportion of isolated agents stands at 

38%, thereby impeding further dissemination of the infection. In Figure 2(g), the proportion of 

infected agents is approximately 5%, superspreaders account for 41%, and isolated individuals 

comprise about 21%. The proportion of recovered agents is 32%. As illustrated in Figure 2(h), the 

final stage of the infection virtually disappears, and all agents are recovered within 100 days. The 

simulations underscore the pivotal function of superspreaders in expediting the propagation of the 

epidemic and the paramount importance of prompt isolation measures in its control, a phenomenon 

that is vividly illustrated by the dynamics depicted in the figures.  

Figure 3(a) shows a comparison of the dynamics of infected agents in the basic scenario for 

SIR, SEIR, and working set (without isolation). The SIR model shows a rapid increase in infections 

with a peak of 3049 on day 26, followed by a sharp decline. SIR shows the fastest and most intense 

epidemic due to the lack of delay in infection. In the SEIR model, the peak is lower at around 2000, 

and later, around day 51, due to the incubation period. SEIR slows the spread by exposing, lowering, 

and delaying the peak. The WS model results are consistent with SIR because there is no isolation. 

This confirms the correctness of the WS implementation in the absence of isolation, on par with SIR.  

 

Figure 3. Comparative dynamics of epidemic progression in SIR, SEIR, and WS models: 

effects of incubation and isolation on infection peaks and epidemic size. (a) Comparison 

of infected agent dynamics in the basic scenario without isolation for the SIR, SEIR, and 

WS models. (b) Infection curves under three WS scenarios. (c) Evolution of all 

epidemiological states in the WS model under moderate isolation. (d) Comparison of the 

final number of recovered agents (R) across the models. 
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Figure 3(b) shows the dynamics of infected agents in the WS model for the three isolation 

scenarios. Without isolation, the peak of infected agents is 3050 on day 26. With moderate isolation, 

the peak drops to 755 and shifts to day 59. With high-coverage isolation, the peak shows 100 at the 

beginning, and then gradually decreases. The results show that isolation effectively “flattens the curve”, 

reducing the peak of infection and slowing the epidemic. The high-coverage isolation with parameters 

𝛿𝑆 = 0.2, 𝛿𝐼 = 0.3 is most effective, reducing the peak by a factor of three and allowing more time 

for preparation. Figure 3(c) shows the evolution of all states of the WS model with moderate isolation. 

The value of S decreases more slowly than in SIR due to the isolation. The peak of infected agents is 

about 2400 on day 20 and then declines steadily. This means that detection and isolation of 

superspreaders play a key role in controlling peak infections. As shown in Figure 3(d), the number of 

recovered (R) for the WS is much lower than SIR and SEIR. This is because the number of infected 

was lower due to isolation, and consequently, the number of cured is also lower. Isolation in the WS 

reduces the final size of the epidemic by preventing part of the population from being infected, while 

the SIR and SEIR models show larger epidemics due to the lack of isolation. 

 

Figure 4. Sensitivity analysis of the working set model: heatmaps of epidemic outcomes 

under varying infection, recovery, and isolation parameters. 

In Figure 4, epidemic sensitivity heatmaps of the working set model are shown. Figure 4(a) shows the 

final recovery rate as a function of the infection rate and recovery rate parameters; Figure 4(b) shows the 

analysis of the parameters of isolation of infected people, which is more effective in reducing the peak. But 

at the same time, strong isolation can significantly reduce the burden on the health system [43−46] or 

economy [47]. Figure 4(c) shows the rate of isolation release for the WS. A fast release from isolation 
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increases the size of the epidemic as people return to the active population. A slow release keeps the 

epidemic under control but requires more resources. 

To evaluate the efficiency of the adapted WS model, we compare it with the classical SIR and 

SEIR models. Comparing the SIR, SEIR, and WS models, we can say that WS is flexible due to 

isolation, which makes it more realistic for modeling control measures. 

Table 2. Comparison results of models. 

Aspect SIR/SEIR Adapted WS 

Isolation Not directly accounted, expansion 

required 

Included as centerpiece, dynamic adjustment 

Transmission rate Fixed or dependent on S and I Dynamically adjusted based on active set 

Contact 

heterogeneity 

Requires extensions (e.g., network) Modeled through agent grouping and dynamic 

subsets  

Behavioral solutions Not modeled May be enabled via agent rules 

Superspreader 

identification 

Not explicitly modeled Identified based on contact frequency within a time 

window 

Intervention 

applicability 

Limited without modifications Easy to model isolation 

Scalability High (ODE-based), but limited realism Moderate: more resource-intensive, but scalable 

via aggregation 

Data requirements Low: only aggregate parameters needed Medium: requires contact data or distribution 

assumptions 

Implementation 

simplicity 

Simple to implement using differential 

equations 

Moderate complexity, especially in agent-based 

implementations 

Adaptability Low without structural changes High: easily adaptable to various scenarios and 

control strategies 

The proposed adapted WS model has several advantages, like accounting for contact heterogeneity 

and the ability to quantify the impact of isolation, contact tracing, and other strategies. Also, similar to 

memory management in computer science, the model allows us to explore the effectiveness of epidemic 

control. These analyses demonstrate how an adapted WS model can be useful in investigating epidemic 

dynamics, providing valuable insights for infectious disease management. Further investigation of the 

model might be useful for health planning and evaluating measures such as isolation and social distancing. 

4. Discussion 

Although this paper primarily compares the classical SIR and SEIR models, it is important to note 

that several modern models also consider isolation and quarantine. For example, K-SEIR-Sim is a software 

based on a modified SEIR model that allows users to model the spread of infections while accounting for 

isolation, quarantine, and other containment measures. However, unlike the WS model, K-SEIR-Sim uses 

fixed parameters and does not dynamically update the agent workgroup based on current contacts. In 

contrast, the WS model allows for the adaptive exclusion of agents from active interactions, making it more 

flexible in the face of changing containment strategies. Additionally, there are network models, such as 

SIQR and extended graph-based SIR models, which allow us to consider the structure of social contacts 
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and introduce isolation at the level of network nodes. These models are well-suited for analyzing local 

outbreaks and optimizing quarantine measures. However, they require accurate network structure 

information and are often difficult to calibrate. In the future, it is planned to expand the scope of the 

current study to include a comparative analysis of the working set model with other state-of-the-art 

models supporting isolation mechanisms. In particular, approaches such as the K-SEIR-Sim software 

platform, which implements advanced quarantine scenarios, and network models of infection spread, 

which take into account the structure of social contacts and local containment measures, are of interest. 

A comparison with these models will allow for a more objective assessment of the advantages and 

limitations of the WS-model in the context of dynamic isolation and adaptive epidemic management. 

Consequently, such research will contribute to the further development of flexible and realistic tools 

for epidemiological modeling and response planning. 

Agent-based implementation of the WS-model requires tracking contacts and states of a large number 

of agents. This can be resource intensive when modeling populations of tens or hundreds of thousands of 

people. However, unlike network models, WS does not require explicitly constructing a contact graph, 

which reduces memory and runtime requirements. Also, the model can be customized to fit the available 

resources. For example, aggregated workgroups can be used instead of individual agents, which allows the 

WS approach to be applied even in systems with limited computing power. 

5. Conclusions 

Epidemic modeling is a useful tool for understanding and controlling the spread of infectious diseases. 

The proposed working set model, adapted to the epidemiological context, offers a new approach to 

modeling the spread of infectious diseases and shows potential to improve the realism and responsiveness 

of epidemiological modeling, especially in the context of dynamic control measures such as isolation and 

quarantine. Unlike classical SIR and SEIR models, our model allows us to identify an active subset of 

agents as a “working set” that are directly involved in the transmission of infection. This approach allows 

us to account for heterogeneity in social contacts and to identify superspreaders, which is important for 

slowing epidemic growth. The introduction of dynamic isolation mechanisms allows more accurate 

modeling of the impact of control measures on the rate of disease spread. Despite some advantages, the 

WS model has certain limitations, including the complexity of the mathematical apparatus, the need for 

accurate empirical data, and detailed parameter calibration. Nevertheless, this approach, which combines 

resource management principles from computer science with epidemiological problems, offers prospects 

for the development of optimal epidemic control strategies.  

Thus, the adapted working set model is a promising tool for analyzing and managing the spread of 

infectious diseases. Its use can facilitate a more accurate assessment of the impact of control measures, the 

development of optimal isolation strategies, and a timely response to epidemic threats. This study could 

help in the modeling of other similar diseases. Further research in this area will improve the model and 

integrate it with other approaches to improve public health planning in a rapidly changing epidemiological 

environment. 
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