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Abstract: The necessity of modeling the dynamics of infectious disease spread is driven by the
imperative to accurately predict epidemics and assess the efficacy of control measures, such as
isolation and quarantine. Conventional compartmental SIR and SEIR models have been widely used
for predicting the course of epidemics, but they have limitations due to their inability to account for
dynamic isolation. Research frequently recognizes the assumptions underlying these models but rarely
provides justification for their validity within the specific contexts where they are applied. In this paper,
we propose a novel approach based on the concept of a working set, which we utilize as a subset of
agents actively involved in social contact and potential transmission. Our adapted working set model
incorporates isolation states for susceptible and infected agents, enabling dynamic adjustment of the
transmission rate according to the current size of the Working Set. The incorporation of a time window
parameter enables the identification of current contacts and the identification of superspreaders, an
important component for the optimization of epidemiological measures. Experimental results and
comparative analysis showed that, compared to the SIR and SEIR models, the adapted working set
model provides a more detailed and realistic tool for analyzing the spread of infection under dynamic
control measures. Our model accounts for contact heterogeneity and allows a better assessment of the
impact of isolation. The presented approach integrates resource management principles from computer
systems with epidemiological models, providing a flexible and realistic tool for evaluating and
optimizing infectious disease control measures. In addition, a practical analysis of established models
reveals fundamental modeling principles that can be adapted to different scenarios.
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1. Introduction

Compartmental models, such as susceptible-infected-recovered (SIR), susceptible—exposed—infected-
recovered (SEIR), and SEIR-V, have been widely used to study infectious disease outbreaks [1]. These
models are successive mathematical extensions, each adding new aspects to more accurately model and
analyze the spread of infectious diseases. They divide populations into groups (compartments) based on
disease status and use differential equations to describe the transitions between them. The SIR model
proposed in Kermack and McKendrick [2] is a seminal work in the field of infectious disease modeling.
In [2], Kermack and McKendrick introduced a foundational epidemiological model that segments the
population into three compartments: susceptible (S), infected (7), and recovered (R). This model is widely
known as the SIR model. Notably, as a special case of their general framework, the authors proposed a
simple system of ordinary differential equations (ODEs) to describe the time evolution of population
proportions in each compartment of the SIR model. However, the classical SIR model is not entirely
realistic because it assumes that individuals immediately become infectious upon exposure, while most
infectious or transmissible diseases have an incubation period. The incubation period can be incorporated
into the SIR framework by adding an additional compartment, resulting in the SEIR system, which
accounts for exposed or incubating individuals [3,4]. Although the SIR model is mathematically simpler
and sometimes more convenient to analyze, it lacks epidemiological and biological realism [5,6]. An
extended version of SEIR is the SEIR-V model, which adds the vaccinated category V to account for the
effect of vaccination on the spread of infection [7,8]. For greater accuracy, compartmental models are
often combined with agent-based models to account for individual differences in behavior and social
networks [9—11]. However, the SIR, SEIR, and SEIR-V models have limitations, especially in the
context of dynamic control measures such as isolation or quarantine. The main limitation of these models
is that they assume all susceptible and infected agents interact freely with each other—that is, everyone
has an equal chance of getting infected by anyone else [12,13]. This is known as the homogeneous
mixing assumption. In reality, when measures like isolation of infected individuals are implemented,
interactions between groups are significantly reduced, and such behavior cannot be adequately
modeled by classical models without additional modifications.

Isolation and quarantine are important measures for preventing the spread of infection during
epidemics, as shown in [14,15]. They are important tools during epidemics because they prevent the
spread of disease, protect vulnerable groups, allow time for monitoring and treatment, reduce the
burden on health systems, facilitate contact tracing, and have proven historical effectiveness. Despite
the potential social and economic costs, their benefits in controlling epidemics are significant, making
them an integral part of public health strategies. To analyze epidemic dynamics and to evaluate the
effectiveness of control measures such as isolation, we propose an adapted working set (WS) model
originally developed in computer science, namely in memory management systems. The adaptive WS
model includes isolation as a central element, where agents can be removed from the working set,
thereby reducing the transmission potential.

The working set model, proposed by Denning [16,17], describes the set of memory pages that are
actively used by a process at a given time, and the unloading of infrequently used pages. It is used to
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minimize page faults and improve system performance. The WS of a process is defined as the set of
memory pages used during a given time interval. It is formally written as W (t, ), where t is the
current time, and 7 is the length of the time window. If a page is used frequently during 7, it is not
excluded from the working set. Our primary aim is to demonstrate the application of a working set
model to an epidemiological context.

We define a working set as a subset of agents in contact with each other, among which there may
be agents actively involved in contact transmission. In our adapted WS model, agents actively involved
in transmission are excluded from the WS, i.e., are isolated from the group. Thus, the algorithm of the
WS model is used as a way to identify superspreaders [ 18] that transmit the infection to a large number
of susceptible agents through frequent contact, communication, or inter-agent contact. Unlike classical
models such as SIR or SEIR, our adaptive WS model accounts for dynamic isolation and varying
transmission rates depending on the size of the working set. Therefore, this paper proposes an
adaptation of the WS model to an epidemiological context in order to model the dynamics of infectious
disease spread under various control measures. While the WS model introduces dynamic isolation and
adjusts transmission rates based on the size of the active working set, it still assumes a simplified
contact structure. In contrast, network-based models explicitly represent contact heterogeneity through
graph structures, where nodes represent individuals and edges represent interactions. Notable examples
include the framework presented in [19, 20], which analyzes epidemic processes in complex networks,
and the SEI model with backward bifurcations in heterogeneous populations. These models capture
clustering, degree distributions, and community structures that influence epidemic thresholds and
dynamics. Although our model does not explicitly construct a contact network, it approximates
heterogeneity by dynamically adjusting the working set based on recent contact activity. Future work
will explore hybrid approaches that integrate WS dynamics with network-based representations to
better capture real-world contact structures.

2. Materials and methods

We first review the basic SIR model of Kermack and McKendrick, where the proportions of agents
in susceptible, infected, and removed compartments satisfy the following system of ODEs:

das S7

dr 'BN

dl  _SI

gy 1
7 ﬂN 14 (h
dR
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a7

where [ is the disease transmission rate, representing the average number of contacts per agent per
unit time multiplied by the probability of transmission; y is the recovery rate, representing the average
rate at which infected individuals recover; N =S + 1+ R is the total population size N held
constant in the base model.

The key parameter is the base reproductive rate R, calculated as R, = /y. Here, R, is the
average number of secondary infections caused by an infected individual in a fully susceptible
population. If Ry > 1, the disease spreads; if Ry < 1, it dies out.

SEIR (with incubation period):
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where o is the E to [ transition coefficient, i.e., the rate at which exposed individuals become
infectious (1/0 1is the average duration of the latency period); f and y are similar to the SIR model.

2.1. Details of the model

We now examine some key assumptions of the WS model adapted to epidemiology. Key elements
of the original WS model are redefined as follows: Population: The complete set of agents in a system,
analogous to the set of all memory pages in a computer model. Working set: A subset of the population
that includes agents that are not currently isolated and may be involved in transmission. Isolation: The
process of excluding agents from the working set, equivalent to unloading pages from RAM. Isolated
agents are temporarily not involved in the spread of infection. Superspreader: An infected agent (in
state [) that transmits infection to an unusually large number of susceptible agents (state S). Unlike
the average infected agent, a superspreader causes significantly more infections due to high contact
frequency or other factors.

2.2. Definition of states in the model

The adapted model introduces the following states that reflect the epidemiologic status of the
agents: Susceptible (S): agents that can become infected through contact with infected agents. Infected
(I): agents capable of transmitting infection to others. Recovered (R): agents who have developed
immunity and are no longer involved in transmission. Isolated (Z): these are infected agents or, in rare
cases, susceptible agents that are physically separated from the rest to prevent further spread of the
disease. The adaptive WS model is described by a system of ODEs:

2 _ﬁ(I)NS_; ~ 6,8 +71,7

PO r=ol

® 1z, 3)
djts =08 =152

djt’* =yZ,—n,Z,
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where Zs is the isolated susceptible; Z; is the isolated infected; Zp is the isolated recovered
(transferred from Z; afterrecovery); B(t) isthe dynamic infectionrate; Ny, isthe current working
set size (sum of agents in states S and I) at time #; §s 1is the isolation rate for S; §; is the isolation
rate for I; ng is the isolation release rate for S; 7; is the isolation release rate for I; and y is the
rate of recovery.

This system accounts for all key processes: infection, recovery, isolation, and release. The total
population in the model is defined as follows:

N =S(t) +1(t) + R(t) + Zs(t) + Z;(t) + Zg(¢) (4)
The size of the working set is determined by the formula Ny, s(t) = S(t) + I1(t).
2.3. Dynamics of transitions between states
The dynamics of infection spread in the model are determined by the following processes:

1) Infection: Transition of agents from state S to I by contact with infected agents. The speed
of this process depends on the frequency of contact and the probability of transmission:

_ S®I®)
B = s 5)

2) Recovery: Transition from I to R as infected agents recover. Rate of transition from I to R
will be yI(t).

3) Isolation: The transfer of agents from [ or § to Z as a result of control measures such as
contact tracing or isolation. Then, the coefficient from I to Z; will be §;I(t), and from S to Zg
will be 8¢S(t).

4) Release from isolation: Return of agents from Zs to S (if they remain susceptible) or to R (if
recovered) after completion of the isolation period or confirmation of status by calculating nsZs(t).
From Z; to Zy (recovery in isolation): yZ,(t). From Zy to R: n;Zg(t).

2.4. Impact on the rate of transmission of infection

In contrast to traditional models such as SIR, where the infection rate [ is assumed to be constant
and the population is assumed to be homogeneously mixed, in the adapted WS model, the value of
becomes a dynamic variable depending on the size of the working set:

B(t) = o x 25 (6)
where f3, is the basic transmission rate under full population conditions.

In computer systems, the working set defines a subset of active resources that minimizes delays.
Similarly, in an epidemiological context, Ny, s reflects a group of agents involved in the transmission
of infection. The reduction of Ny, s through isolation reduces the frequency of contacts, which is a
key factor in fB;. The linear dependence here is the first approximation corresponding to the
homogeneous mixing of the population. The linear approximation reflects the average reduction of
contacts during isolation. As the number of isolated agents increases, the size of the WS decreases,
which reduces S(t) and slows the spread of infection. This approach allows us to model the effect of
isolation and other control measures on epidemic dynamics.
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Human populations are heterogeneous in many aspects: social connections among agents display
clustered community patterns [21-23], susceptibility and infectiousness potential vary widely due to
age, health, or behavioral differences, and geographic regions often implement distinct epidemic
containment strategies. The long-standing assumption of uniform, well-mixed populations has been
rigorously tested through heterogeneous modeling frameworks [24—28]. To summarize the effects of
uneven transmission likelihoods, vulnerability distributions, and interaction patterns, we use a simple
class of models in which the population is partitioned into multiple groups of agents [29—31]. These
adaptations aim to demonstrate that population diversity can significantly alter both the progression
and total reach of an epidemic and, critically, broaden the range of viable intervention strategies.

Let us consider a multi-agent system (MAS) with n agents distributed over p groups and exposed
to the risk of infection through contact with each other. In our understanding, MAS consists of a finite
number of agents and an environment that hosts agents in which agents act and react to other agents.
Let us specify the agents’ distribution into groups, and each agent group number can be easily
determined by the Boolean matrix x = (x,;)pxn, Where the element is x,; = 1, if the agent with the
number i is located in the group with the number  and x,; = 0, otherwise. The matrix x must satisfy
constraints (a), (b), and (c). Whatever the distribution of agents over groups, we assume that each agent
of the system belongs to only one of the groups (condition, (a)):

p

an- =1, i=12,..,n. (a)

r=1

Each agent of the system is assigned a weight, the linear size of its living space, within which the
agent can perform its set of operations assigned to it. In this case, the agents interacting with each other
are exposed to infection risk through contact. Each group is also assigned a weight, a living space
within which the group's agents are located. The total weight of agents in any group should not exceed
the weight of the group (condition (b)):

n
L - xpi < vy, r=12,..,p. (b)
i=1
Here, [; is the weight ofthe agent i, i = 1,2, ...,n, and v, is the weight of the group with number
r,1=1,2, ..., p. Let us determine the number of a group that contains an agent, for example i, with a
given matrix x € X, denoting this number by r;(x) and taking into account the constraints (a), (b),
and we write:

p

ri(x) = Z Xpi " T i=12,..,n (©

r=1

3. Modeling and results

A WS in an epidemiological context is a dynamic group of agents that participate in social
interactions and are not subject to isolation. Its size and composition depend on the following factors:
Isolation policy: when an infected agent from [ is identified, its contacts from S in the last 7 days
are relegated to the state Z. This shortens the WS and reduces the likelihood of new infections. At the
end of the isolation period, agents from Z are tested: susceptible agents return to S, recovered agents
to R. An alternative scenario is high-coverage isolation, in which a large fraction of the population is
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isolated. Time window (t): similar to the original WS model, a parameter 7 is introduced to define the
period of “relevance” of contacts. Agents who have been in contact with infected agents in the last
time units are considered candidates for isolation. There may also be superspreaders among these
agents. Their identification is important for epidemic control because the isolation of such agents can
significantly slow the spread of the disease. In the WS model, the t parameter specifies the time
window during which contacts are considered relevant.

3.1. Numerical simulations

To assess the dynamics of infection spread and evaluate the impact of isolation measures, focusing
on the isolation period and the effectiveness of the various scenarios, we created three different scenarios
of isolation rates. 1) Basic scenario: no isolation (6 = 0, §; = 0); 2) moderate isolation: low isolation
parameters (6 = 0.05, &; = 0.1); 3) high-coverage isolation: high isolation parameters (65 = 0.2,
6; = 0.3). The SIR and SEIR models do not take insulation into account, so only the basic scenario is
considered. Table 1 shows the values of parameters and descriptions used for numerical simulations.
These parameters were generated from an extensive literature review [32—36] of COVID-19 and
epidemic modeling. In contrast to agent-based models [37—40], which are tailored to specific countries
or regions, our model is designed for a generalized small-city population. This abstraction enables
flexible adaptation and does not require detailed prior knowledge of regional parameters.

Table 1. Model parameters and descriptions.

Variable Default value Explanation

N 10.000 Total number of agents in the population

So 9.970 Initial number of susceptible agents

Iy 30 Initial number of infected agents

Ry 0 Initial number of recovered agents

E, 0 Initial number of exposed agents (for SEIR model)

Zs, Initial number of isolated susceptible agents

Z, Initial number of isolated infected agents

B 0.3 Infection rate; probability of disease transmission per contact between susceptible and

infected agents

Bo 0.3 Base infection rate for the working set
0.2 Incubation rate; rate at which exposed agents become infectious (for SEIR model)
0.1 Recovery rate; proportion of infected agents recovering per unit time

Ns 0.1 Isolation release rate for susceptible agents;

i 0.1 Isolation release rate for infected agents.

We used an agent-based model that allows us to model different strategies in a virtual population
and compare these strategies to get an idea of their optimal parameters. This approach is particularly
advantageous because agent-based models capture the heterogeneity of individual agents and their
interactions, which are often oversimplified or neglected in classical analytical methods. Unlike
aggregate mathematical models, they enable the simulation of emergent behaviors that arise from local
rules and micro-level dynamics. Such models also provide flexibility in testing a wide range of
scenarios and policy interventions under varying assumptions [41,42]. As shown in Figure 1, we
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performed a sensitivity analysis to evaluate the WS model's robustness to changes in key parameters.
We varied f from 0.2 to 0.5, y from 0.05 to 0.15, and 8¢ and §; from 0.0 to 0.3.

Final Epidemic Size vs B and y

Peak Infections vs B and y

— 0.480
0.14 0.14
a8 0.435
0.84
- (00 0.390
& 0.12 G s 012
s -]
& 0.76 5 0.345
> 0.10 > 0.10
H 0.72 : 0.300
b v
o 0.68 o
0.64
0.210
0.06 0.60 0.06
- : - - { 0.56 - 0.165
020 025 0.30 0.35 0.40 0.45 0.50 ; 0.25 0.30 0.35 040 045 0.50
Infection Rate (B) Infection Rate (B)
(a) (b)

Figure 1. Sensitivity analysis of WS model: a) Final epidemic size as a function of f and
y. Epidemic coverage is highest when [ is high and y is low. b) Peak number of
infections also occurs at high  and low y. This is important for assessing the burden on
the healthcare system and resource planning.

By modeling the spread of an infection, we are able to trace a typical epidemiological dynamic
that progresses through several key stages. Figure 2 illustrates the dynamics of the epidemic spread
process, including spatial distribution, formation of infection clusters, the role of superspreaders, and
the impact of isolation measures on the spread of infection. As illustrated in Figure 2(a), the initial
stage of the epidemic is characterized by a population consisting predominantly of susceptible agents,
with an infection rate that is just beginning to manifest due to a limited number (0.3%) of infected
agents. As shown in Figure 2(b), as the epidemic progresses, the proportion of infected agents increases
to 2.4%, the first isolated agents appear, the amount of which is 0.08%, and superspreaders emerge at
0.18% in 10 days. These superspreaders play a critical role by rapidly infecting the surrounding
community and forming the first foci of infection; in this case, clusters of agents. In the early stages
of an outbreak, local foci of infection emerge around each superspreader, as illustrated by the red
circles. We define a superspreader as an infected agent who has had contact with more than 6 agents
within the time window 7. In our simulations, we set 8 = 20, based on the upper 5% quantile of the
contact distribution observed in the basic scenario. As illustrated in Figure 2(c), the proportion of infected
agents increases to 18%, the number of isolated agents rises to 11%, and the proportion of superspreaders
increases to 13%. As the epidemic progresses, small foci coalesce into a “cluster network”, and
transmission “bridges” between groups of agents emerge, thereby accelerating the spread of the infection.
As illustrated in Figure 2(d), the initial recovered agents that were released following the isolation period
are represented by the gray squares. The number of susceptible agents experiences a substantial
decrease. At the peak of the epidemic, as shown in Figure 2(e), the proportion of susceptible agents
constitutes —0.2% of the total population. The proportion of infected agents reaches —12%, the
superspreaders —51%, isolated agents —26%, and recovered agents —10.8% on day 59.
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Figure 2. Epidemic dynamics in an agent-based population for 100 days, considering five
types of agents with a total population of 10,000 agents: blue, susceptible agents; orange,
infected agents; red, superspreaders; black, isolated agents; gray, recovered agents.
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The implementation of more stringent isolation protocols at this point emerges as a pivotal
factor in the mitigation of the propagation of infection. The proportion of isolated agents stands at
38%, thereby impeding further dissemination of the infection. In Figure 2(g), the proportion of
infected agents is approximately 5%, superspreaders account for 41%, and isolated individuals
comprise about 21%. The proportion of recovered agents is 32%. As illustrated in Figure 2(h), the
final stage of the infection virtually disappears, and all agents are recovered within 100 days. The
simulations underscore the pivotal function of superspreaders in expediting the propagation of the
epidemic and the paramount importance of prompt isolation measures in its control, a phenomenon
that is vividly illustrated by the dynamics depicted in the figures.

Figure 3(a) shows a comparison of the dynamics of infected agents in the basic scenario for
SIR, SEIR, and working set (without isolation). The SIR model shows a rapid increase in infections
with a peak of 3049 on day 26, followed by a sharp decline. SIR shows the fastest and most intense
epidemic due to the lack of delay in infection. In the SEIR model, the peak is lower at around 2000,
and later, around day 51, due to the incubation period. SEIR slows the spread by exposing, lowering,
and delaying the peak. The WS model results are consistent with SIR because there is no isolation.
This confirms the correctness of the WS implementation in the absence of isolation, on par with SIR.

Infected Dr ics C: ison (Basic i Working Set Model: Impact of Isolation Measures
Peak: 3049 at day 26 — Peak: 3049 atday 26
-+ SER

== Working Set (no isalation}

3000
(5_5=0,05, 5_I=0.1)
n (5_S=0.2, 5_1=0.3)

2500
2000

**"peai.1991 at day 51
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Number of Infected
Number of Infected
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0 20 a0 “ 0 100 B

2 60 S
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Figure 3. Comparative dynamics of epidemic progression in SIR, SEIR, and WS models:
effects of incubation and isolation on infection peaks and epidemic size. (a) Comparison
of infected agent dynamics in the basic scenario without isolation for the SIR, SEIR, and
WS models. (b) Infection curves under three WS scenarios. (c) Evolution of all
epidemiological states in the WS model under moderate isolation. (d) Comparison of the
final number of recovered agents (R) across the models.
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Figure 3(b) shows the dynamics of infected agents in the WS model for the three isolation
scenarios. Without isolation, the peak of infected agents is 3050 on day 26. With moderate isolation,
the peak drops to 755 and shifts to day 59. With high-coverage isolation, the peak shows 100 at the
beginning, and then gradually decreases. The results show that isolation effectively “flattens the curve”
reducing the peak of infection and slowing the epidemic. The high-coverage isolation with parameters
65 = 0.2, &; = 0.3 is most effective, reducing the peak by a factor of three and allowing more time
for preparation. Figure 3(c) shows the evolution of all states of the WS model with moderate isolation.
The value of S decreases more slowly than in SIR due to the isolation. The peak of infected agents is
about 2400 on day 20 and then declines steadily. This means that detection and isolation of
superspreaders play a key role in controlling peak infections. As shown in Figure 3(d), the number of
recovered (R) for the WS is much lower than SIR and SEIR. This is because the number of infected
was lower due to isolation, and consequently, the number of cured is also lower. Isolation in the WS
reduces the final size of the epidemic by preventing part of the population from being infected, while
the SIR and SEIR models show larger epidemics due to the lack of isolation.
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Figure 4. Sensitivity analysis of the working set model: heatmaps of epidemic outcomes
under varying infection, recovery, and isolation parameters.

In Figure 4, epidemic sensitivity heatmaps of the working set model are shown. Figure 4(a) shows the
final recovery rate as a function of the infection rate and recovery rate parameters; Figure 4(b) shows the
analysis of the parameters of isolation of infected people, which is more effective in reducing the peak. But
at the same time, strong isolation can significantly reduce the burden on the health system [43—46] or
economy [47]. Figure 4(c) shows the rate of isolation release for the WS. A fast release from isolation

Mathematical Biosciences and Engineering Volume 22, Issue 11, 2988-3004.



2999

increases the size of the epidemic as people return to the active population. A slow release keeps the
epidemic under control but requires more resources.

To evaluate the efficiency of the adapted WS model, we compare it with the classical SIR and
SEIR models. Comparing the SIR, SEIR, and WS models, we can say that WS is flexible due to
isolation, which makes it more realistic for modeling control measures.

Table 2. Comparison results of models.

Aspect

SIR/SEIR

Adapted WS

Isolation

Transmission rate

Not directly accounted, expansion
required

Fixed or dependent on S and /

Included as centerpiece, dynamic adjustment

Dynamically adjusted based on active set

Contact Requires extensions (e.g., network) Modeled through agent grouping and dynamic
heterogeneity subsets

Behavioral solutions ~ Not modeled May be enabled via agent rules

Superspreader Not explicitly modeled Identified based on contact frequency within a time
identification window

Intervention Limited without modifications Easy to model isolation

applicability

Scalability High (ODE-based), but limited realism Moderate: more resource-intensive, but scalable

Data requirements

Low: only aggregate parameters needed

via aggregation

Medium: requires contact data or distribution

assumptions
Implementation Simple to implement using differential Moderate complexity, especially in agent-based
simplicity equations implementations
Adaptability Low without structural changes High: easily adaptable to various scenarios and

control strategies

The proposed adapted WS model has several advantages, like accounting for contact heterogeneity
and the ability to quantify the impact of isolation, contact tracing, and other strategies. Also, similar to
memory management in computer science, the model allows us to explore the effectiveness of epidemic
control. These analyses demonstrate how an adapted WS model can be useful in investigating epidemic
dynamics, providing valuable insights for infectious disease management. Further investigation of the
model might be useful for health planning and evaluating measures such as isolation and social distancing.

4. Discussion

Although this paper primarily compares the classical SIR and SEIR models, it is important to note
that several modern models also consider isolation and quarantine. For example, K-SEIR-Sim is a software
based on a modified SEIR model that allows users to model the spread of infections while accounting for
isolation, quarantine, and other containment measures. However, unlike the WS model, K-SEIR-Sim uses
fixed parameters and does not dynamically update the agent workgroup based on current contacts. In
contrast, the WS model allows for the adaptive exclusion of agents from active interactions, making it more
flexible in the face of changing containment strategies. Additionally, there are network models, such as
SIQR and extended graph-based SIR models, which allow us to consider the structure of social contacts
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and introduce isolation at the level of network nodes. These models are well-suited for analyzing local
outbreaks and optimizing quarantine measures. However, they require accurate network structure
information and are often difficult to calibrate. In the future, it is planned to expand the scope of the
current study to include a comparative analysis of the working set model with other state-of-the-art
models supporting isolation mechanisms. In particular, approaches such as the K-SEIR-Sim software
platform, which implements advanced quarantine scenarios, and network models of infection spread,
which take into account the structure of social contacts and local containment measures, are of interest.
A comparison with these models will allow for a more objective assessment of the advantages and
limitations of the WS-model in the context of dynamic isolation and adaptive epidemic management.
Consequently, such research will contribute to the further development of flexible and realistic tools
for epidemiological modeling and response planning.

Agent-based implementation of the WS-model requires tracking contacts and states of a large number
of agents. This can be resource intensive when modeling populations of tens or hundreds of thousands of
people. However, unlike network models, WS does not require explicitly constructing a contact graph,
which reduces memory and runtime requirements. Also, the model can be customized to fit the available
resources. For example, aggregated workgroups can be used instead of individual agents, which allows the
WS approach to be applied even in systems with limited computing power.

5. Conclusions

Epidemic modeling is a useful tool for understanding and controlling the spread of infectious diseases.
The proposed working set model, adapted to the epidemiological context, offers a new approach to
modeling the spread of infectious diseases and shows potential to improve the realism and responsiveness
of epidemiological modeling, especially in the context of dynamic control measures such as isolation and
quarantine. Unlike classical SIR and SEIR models, our model allows us to identify an active subset of
agents as a “working set” that are directly involved in the transmission of infection. This approach allows
us to account for heterogeneity in social contacts and to identify superspreaders, which is important for
slowing epidemic growth. The introduction of dynamic isolation mechanisms allows more accurate
modeling of the impact of control measures on the rate of disease spread. Despite some advantages, the
WS model has certain limitations, including the complexity of the mathematical apparatus, the need for
accurate empirical data, and detailed parameter calibration. Nevertheless, this approach, which combines
resource management principles from computer science with epidemiological problems, offers prospects
for the development of optimal epidemic control strategies.

Thus, the adapted working set model is a promising tool for analyzing and managing the spread of
infectious diseases. Its use can facilitate a more accurate assessment of the impact of control measures, the
development of optimal isolation strategies, and a timely response to epidemic threats. This study could
help in the modeling of other similar diseases. Further research in this area will improve the model and
integrate it with other approaches to improve public health planning in a rapidly changing epidemiological
environment.
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