Research article Special Issues

Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile


  • Published: 27 May 2025
  • We propose several spatial-temporal epidemiological mathematical models to study their suitability to approximate the dynamics of the early phase of the COVID-19 pandemic in Chile. The model considers the population density of susceptible, infected, and recovered individuals. The models are based on a system of partial differential equations. The first model considers a space-invariant transmission rate, and the second modeling approach is based on different space-variant transmission rates. The third modeling approach, which is more complex, uses a transmission rate that varies with space and time. One main aim of this study is to present the advantages and drawbacks of the mathematical approaches proposed to describe the COVID-19 pandemic in Chile. We show that the calibration of the models is challenging. The results of the model's calibration suggest that the spread of SARS-CoV-2 in the regions of Chile was different. Moreover, this study provides additional insight since few studies have explored similar mathematical modeling approaches with real-world data.

    Citation: Gilberto González-Parra, Cristina-Luisovna Pérez, Marcos Llamazares, Rafael-J. Villanueva, Jesus Villegas-Villanueva. Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile[J]. Mathematical Biosciences and Engineering, 2025, 22(7): 1680-1721. doi: 10.3934/mbe.2025062

    Related Papers:

  • We propose several spatial-temporal epidemiological mathematical models to study their suitability to approximate the dynamics of the early phase of the COVID-19 pandemic in Chile. The model considers the population density of susceptible, infected, and recovered individuals. The models are based on a system of partial differential equations. The first model considers a space-invariant transmission rate, and the second modeling approach is based on different space-variant transmission rates. The third modeling approach, which is more complex, uses a transmission rate that varies with space and time. One main aim of this study is to present the advantages and drawbacks of the mathematical approaches proposed to describe the COVID-19 pandemic in Chile. We show that the calibration of the models is challenging. The results of the model's calibration suggest that the spread of SARS-CoV-2 in the regions of Chile was different. Moreover, this study provides additional insight since few studies have explored similar mathematical modeling approaches with real-world data.



    加载中


    [1] World Health Organization, WHO Coronavirus (COVID-19) dashboard Cases [Dashboard]. Available from: https://data.who.int/dashboards/covid19/cases.
    [2] Cifras oficiales COVID-19. Available from: https://www.gob.cl/pasoapaso/cifrasoficiales/.
    [3] I. Cooper, A. Mondal, C. G. Antonopoulos, A SIR model assumption for the spread of COVID-19 in different communities, Chaos, Solitons Fractals, 139 (2020), 110057. https://doi.org/10.1016/j.chaos.2020.110057 doi: 10.1016/j.chaos.2020.110057
    [4] G. González-Parra, M. Díaz-Rodríguez, A. J. Arenas, Mathematical modeling to study the impact of immigration on the dynamics of the COVID-19 pandemic: A case study for Venezuela, Spatial Spatio-temporal Epidemiol., 43 (2022), 100532. https://doi.org/10.1016/j.sste.2022.100532 doi: 10.1016/j.sste.2022.100532
    [5] X. Huo, J. Chen, S. Ruan, Estimating asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan: A mathematical modeling study, BMC Infect. Dis., 21 (2021), 476. https://doi.org/10.1186/s12879-021-06078-8 doi: 10.1186/s12879-021-06078-8
    [6] E. S. Kurkina, E. M. Koltsova, Mathematical modeling of the propagation of COVID-19 pandemic waves in the world, Comput. Math. Model., 32 (2021), 147–170. https://doi.org/10.1007/s10598-021-09523-0 doi: 10.1007/s10598-021-09523-0
    [7] C. Lee, Y. Li, J. Kim, The susceptible-unidentified infected-confirmed (SUC) epidemic model for estimating unidentified infected population for COVID-19, Chaos, Solitons Fractals, 139 (2020), 110090. https://doi.org/10.1016/j.chaos.2020.110090 doi: 10.1016/j.chaos.2020.110090
    [8] F. Majid, A. M. Deshpande, S. Ramakrishnan, S. Ehrlich, M. Kumar, Analysis of epidemic spread dynamics using a PDE model and COVID-19 data from Hamilton County OH USA, IFAC-PapersOnLine, 54 (2021), 322–327. https://doi.org/10.1016/j.ifacol.2021.11.194 doi: 10.1016/j.ifacol.2021.11.194
    [9] I. Nakamoto, J. Zhang, Modeling the underestimation of COVID-19 infection, Results Phys., 25 (2021), 104271. https://doi.org/10.1016/j.rinp.2021.104271 doi: 10.1016/j.rinp.2021.104271
    [10] Y. Tu, T. Hayat, A. Hobiny, X. Meng, Modeling and multi-objective optimal control of reaction-diffusion COVID-19 system due to vaccination and patient isolation, Appl. Math. Modell., 118 (2023), 556–591. https://doi.org/10.1016/j.apm.2023.02.002 doi: 10.1016/j.apm.2023.02.002
    [11] M. Alfaro, C. Rubio, G. Fuertes, M. Vargas A. Mejia-Giraldo, Biomathematical model to analyze the transmission dynamics of Covid-19: Case study, Santiago de Cali, Colombia, PloS one, 19 (2024), e0311414. https://doi.org/10.1371/journal.pone.0311414 doi: 10.1371/journal.pone.0311414
    [12] H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [13] A. Mata, S. Dourado, Mathematical modeling applied to epidemics: An overview, Sao Palo J. Math. Sci., 15 (2021), 1025–1044. https://doi.org/10.1007/s40863-021-00268-7 doi: 10.1007/s40863-021-00268-7
    [14] F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer New York, 2 (2012). https://doi.org/10.1007/978-1-4614-1686-9 doi: 10.1007/978-1-4614-1686-9
    [15] G. Gonzalez-Parra, Md S. Mahmud, C. Kadelka, Learning from the COVID-19 pandemic: A systematic review of mathematical vaccine prioritization models, Infect. Dis. Modell., 9 (2024), 1057–1080. https://doi.org/10.1016/j.idm.2024.05.005 doi: 10.1016/j.idm.2024.05.005
    [16] M. Renardy, D. Kirschner, M. Eisenberg, Structural identifiability analysis of age-structured PDE epidemic models, J. Math. Biol., 84 (2022), 9. https://doi.org/10.1007/s00285-021-01711-1 doi: 10.1007/s00285-021-01711-1
    [17] N. Tuncer, A. Timsina, M. Nuno, G. Chowell, M. Martcheva, Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic, J. Biol. Dyn., 16 (2022), 412–438. https://doi.org/10.1080/17513758.2022.2078899 doi: 10.1080/17513758.2022.2078899
    [18] D. Earn, S. Park, B. Bolker, Fitting epidemic models to data: A tutorial in memory of Fred Brauer, Bull. Math. Biol., 86 (2024), 1–32. https://doi.org/10.1007/s11538-024-01326-9 doi: 10.1007/s11538-024-01326-9
    [19] M. Rendana, W. R. Idris, S. Rahim, Spatial distribution of COVID-19 cases, epidemic spread rate, spatial pattern, and its correlation with meteorological factors during the first to the second waves, J. Infect. Public Health, 14 (2021), 1340–1348. https://doi.org/10.1016/j.jiph.2021.07.010 doi: 10.1016/j.jiph.2021.07.010
    [20] A. Uzzoli, S. Kovács, A. Fábián, B. Páger, T. Szabó, Spatial analysis of the COVID-19 pandemic in Hungary: Changing epidemic waves in time and space, Region, 8 (2021), 147–165, 2021. https://doi.org/10.18335/region.v8i2.343 doi: 10.18335/region.v8i2.343
    [21] S. Winkelmann, J. Zonker, C. Schütte, N. Conrad, Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading, Math. Biosci., 336 (2021), 108619. https://doi.org/10.1016/j.mbs.2021.108619 doi: 10.1016/j.mbs.2021.108619
    [22] S. Chauhan, P. Rana, K. Chaudhary, Shivam, T. Singh, Economic evaluation of two-strain COVID-19 compartmental epidemic model with pharmaceutical and non-pharmaceutical interventions and spatio-temporal patterns, Results Control Optim., 16 (2024), 100444. https://doi.org/10.1016/j.rico.2024.100444 doi: 10.1016/j.rico.2024.100444
    [23] P. Kevrekidis, J. Cuevas-Maraver, Y. Drossinos, Z. Rapti, G. Kevrekidis, Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples, Phys. Rev. E, 104 (2021), 024412. https://doi.org/10.1103/PhysRevE.104.024412 doi: 10.1103/PhysRevE.104.024412
    [24] S. Paeng, J. Lee, Continuous and discrete SIR-models with spatial distributions, J. Math. Biol., 74 (2017), 1709–1727. https://doi.org/10.1007/s00285-016-1071-8 doi: 10.1007/s00285-016-1071-8
    [25] W. Pan, Q. Deng, J. Li, Z. Wang, W. Zhum, STSIR: A spatial temporal pandemic model with mobility data-A COVID-19 study, in 2021 International Joint Conference on Neural Networks (IJCNN), (2021), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533596
    [26] T. Rodriguez, Modeling the Spatial-Temporal Dynamics of COVID-19: Impact of Heterogeneity on the Environmental Temperature, PhD thesis, San Diego State University, 2023.
    [27] A. Wyss, A. Hidalgo, Modeling COVID-19 using a modified SVIR compartmental model and lstm-estimated parameters, Mathematics, 11 (2023), 1436. https://doi.org/10.3390/math11061436 doi: 10.3390/math11061436
    [28] Q. Zhuang, J. Wang, A spatial epidemic model with a moving boundary, Infect. Dis. Modell., 6 (2021), 1046–1060. https://doi.org/10.1016/j.idm.2021.08.005 doi: 10.1016/j.idm.2021.08.005
    [29] M. Canals, C. Cuadrado, A. Canals, K. Yohannessen, L. Lefio, M. Bertoglia, et al., Epidemic trends, public health response and health system capacity: The Chile an experience in four months of the COVID-19 pandemic, Rev. Panam. Salud Pública, 44 (2020), e99. https://doi.org/10.26633/rpsp.2020.99 doi: 10.26633/rpsp.2020.99
    [30] D. Freire-Flores, N. Llanovarced-Kawles, A. Sanchez-Daza, Á. Olivera-Nappa, On the heterogeneous spread of COVID-19 in Chile, Chaos, Solitons Fractals, 150 (2021), 111156. https://doi.org/10.1016/j.chaos.2021.111156 doi: 10.1016/j.chaos.2021.111156
    [31] C. Guerrero-Nancuante, P. Manríquez, An epidemiological forecast of COVID-19 in Chile based on the generalized SEIR model and the concept of recovered, Medwave, 20 (2020), e7898. https://doi.org/10.5867/medwave.2020.04.7898 doi: 10.5867/medwave.2020.04.7898
    [32] N. Jerez-Lillo, B. L. Álvarez, J. M. Gutiérrez, J. Figueroa-Zúñiga, V. Leiva, A statistical analysis for the epidemiological surveillance of COVID-19 in Chile, Signa Vitae, 18 (2022). https://doi.org/10.22514/sv.2021.130 doi: 10.22514/sv.2021.130
    [33] A. Tariq, E. Undurraga, C. Laborde, K. Vogt-Geisse, R. Luo, R. Rothenberg, et al., Transmission dynamics and control of COVID-19 in Chile, March-October, 2020, PLoS Negl. Trop. Dis., 15 (2021), e0009070. https://doi.org/10.1371/journal.pntd.0009070 doi: 10.1371/journal.pntd.0009070
    [34] C. Barría-Sandoval, G. Ferreira, K. Benz-Parra, P. López-Flores, Prediction of confirmed cases of and deaths caused by COVID-19 in Chile through time series techniques: A comparative study, Plos One, 16 (2021), e0245414. https://doi.org/10.1371/journal.pone.0245414 doi: 10.1371/journal.pone.0245414
    [35] M. Vicuña, C. Vásquez, B. Quiroga, Forecasting the 2020 COVID-19 epidemic: A multivariate quasi-poisson regression to model the evolution of new cases in Chile, Front. Public Health, 9 (2021), 610479. https://doi.org/10.3389/fpubh.2021.610479 doi: 10.3389/fpubh.2021.610479
    [36] P. Cumsille, Ó. Rojas-Díaz, P. de Espanés, P. Verdugo-Hernández, Forecasting COVID-19 chile' second outbreak by a generalized SIR model with constant time delays and a fitted positivity rate, Math. Comput. Simul., 193 (2022), 1–18. https://doi.org/10.1016/j.matcom.2021.09.016 doi: 10.1016/j.matcom.2021.09.016
    [37] E. Undurraga, G. Chowell, K. Mizumoto, COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020, Infect. Dis. Poverty, 10 (2021), 1–11. https://doi.org/10.1186/s40249-020-00785-1 doi: 10.1186/s40249-020-00785-1
    [38] S. Chinviriyasit, W. Chinviriyasit, Numerical modelling of an SIR epidemic model with diffusion, Appl. Math. Comput., 216 (2010), 395–409. https://doi.org/10.1016/j.amc.2010.01.028 doi: 10.1016/j.amc.2010.01.028
    [39] M. Grave, A. Viguerie, G. Barros, A. Reali, A. Coutinho, Assessing the spatio-temporal spread of COVID-19 via compartmental models with diffusion in Italy, USA, and Brazil, Arch. Comput. Methods Eng., 28 (2021), 4205–4223. https://doi.org/10.1007/s11831-021-09627-1 doi: 10.1007/s11831-021-09627-1
    [40] F. Majid, M. Gray, A. Deshpande, S. Ramakrishnan, M. Kumar, S. Ehrlich, Non-pharmaceutical interventions as controls to mitigate the spread of epidemics: An analysis using a spatiotemporal PDE model and COVID–19 data, ISA Trans., 124 (2022), 215–224. https://doi.org/10.1016/j.isatra.2021.02.038 doi: 10.1016/j.isatra.2021.02.038
    [41] S. Marzban, R. Han, N. Juhász, G. Röst, A hybrid PDE–ABM model for viral dynamics with application to SARS-CoV-2 and influenza, R. Soc. Open Sci., 8 (2021), 210787. https://doi.org/10.1098/rsos.210787 doi: 10.1098/rsos.210787
    [42] A. Vaziry, T. Kolokolnikov, P. Kevrekidis, Modelling of spatial infection spread through heterogeneous population: From lattice to partial differential equation models, R. Soc. Open Sci., 9 (2022), 220064. https://doi.org/10.1098/rsos.220064 doi: 10.1098/rsos.220064
    [43] N. Yamamoto, B. Jiang, H. Wang, Quantifying compliance with COVID-19 mitigation policies in the US: A mathematical modeling study, Infect. Dis. Modell., 6 (2021), 503–513. https://doi.org/10.1016/j.idm.2021.02.004 doi: 10.1016/j.idm.2021.02.004
    [44] M. Ghani, I. Fahmiyah, R. Ningrum, A. Wardana, Dynamical analysis of spatio-temporal COVID-19 model, Int. J. Dyn. Control, 12 (2024), 1–27. https://doi.org/10.1007/s40435-024-01399-3 doi: 10.1007/s40435-024-01399-3
    [45] P. Machado, S. Pinheiro, V. Afreixo, C. Silva, R. Leitão, Graph theory approach to COVID-19 transmission by municipalities and age groups, Math. Comput. Appl., 27 (2022), 86. https://doi.org/10.3390/mca27050086 doi: 10.3390/mca27050086
    [46] T. Alzahrani, Spatio-temporal modeling of immune response to SARS-CoV-2 infection, Mathematics, 9 (2021), 3274. https://doi.org/10.3390/math9243274 doi: 10.3390/math9243274
    [47] W. Barreto, F. Pereira, Y. Peres, P. Schimit, Spatial dynamics of COVID-19 in São Paulo: A cellular automata and GIS approach, Spatial Spatio-temporal Epidemiol., 50 (2024), 100674. https://doi.org/10.1016/j.sste.2024.100674 doi: 10.1016/j.sste.2024.100674
    [48] C. Fortaleza, R. Guimarães, R. de Castro Catão, C. Ferreira, G. de Almeida, T. Vilches, et al., The use of health geography modeling to understand early dispersion of COVID-19 in São Paulo, Brazil, PloS One, 16 (2021), e0245051. https://doi.org/10.1371/journal.pone.0245051 doi: 10.1371/journal.pone.0245051
    [49] T. Oyedotun, S. Moonsammy, Spatiotemporal variation of COVID-19 and its spread in South America: A rapid assessment, Ann. Am. Assoc. Geogr., 111 (2021), 1868–1879. https://doi.org/10.1080/24694452.2020.1830024 doi: 10.1080/24694452.2020.1830024
    [50] A. de Souza, C. de Miranda Mota, A. Rosa, C. de Figueiredo, A. Candeias, A spatial-temporal analysis at the early stages of the COVID-19 pandemic and its determinants: The case of Recife neighborhoods, Brazil, PloS One, 17 (2022), e0268538. https://doi.org/10.1371/journal.pone.0268538 doi: 10.1371/journal.pone.0268538
    [51] P. Wang, X. Zheng, H. Liu, Simulation and forecasting models of COVID-19 taking into account spatio-temporal dynamic characteristics: A review, Front. Public Health, 10 (2022), 1033432. https://doi.org/10.3389/fpubh.2022.1033432 doi: 10.3389/fpubh.2022.1033432
    [52] S. Martin, J. Bergmann, (Im) mobility in the age of COVID-19, Int. Migr. Rev., 55 (2021), 660–687. https://doi.org/10.1177/0197918320984104 doi: 10.1177/0197918320984104
    [53] F. Rowe, A. Calafiore, D. Arribas-Bel, K. Samardzhiev, M. Fleischmann, Urban exodus? understanding human mobility in Britain during the COVID-19 pandemic using Meta-Facebook data, Popul. Space Place, 29 (2023), e2637. https://doi.org/10.1002/psp.2637 doi: 10.1002/psp.2637
    [54] E. Willberg, O. Järv, T. Väisänen, T. Toivonen, Escaping from cities during the COVID-19 crisis: Using mobile phone data to trace mobility in Finland, ISPRS Int. J. Geo-Inf., 10 (2021), 103. https://doi.org/10.3390/ijgi10020103 doi: 10.3390/ijgi10020103
    [55] C. Parra-Rojas, E. Hernandez-Vargas, PDEparams: Parameter fitting toolbox for partial differential equations in python, Bioinformatics, 36 (2020), 2618–2619. https://doi.org/10.1093/bioinformatics/btz938 doi: 10.1093/bioinformatics/btz938
    [56] H. Berestycki, J. Roquejoffre, L. Rossi, Propagation of epidemics along lines with fast diffusion, Bull. Math. Biol., 83 (2021), 2. https://doi.org/10.1007/s11538-020-00826-8 doi: 10.1007/s11538-020-00826-8
    [57] Wikipedia contributors. Chile—Wikipedia, the free encyclopedia. Available from: https://en.wikipedia.org/w/index.php?title=Chile&oldid=1193912696.
    [58] Wikipedia contributors. Geography of chile—Wikipedia, the free encyclopedia. Available from: https://en.wikipedia.org/w/index.php?title=Geography_of_Chile&oldid=1191702187.
    [59] Wikipedia. Regions of Chile—Wikipedia, the free encyclopedia. Available from: http://en.wikipedia.org/w/index.php?title=Regions%20of%20Chile&oldid=1180173594.
    [60] R. Mukhra, K. Krishan, T. Kanchan, COVID-19 sets off mass migration in India, Arch. Med. Res., 51 (2020), 736–738. https://doi.org/10.1016/j.arcmed.2020.06.003 doi: 10.1016/j.arcmed.2020.06.003
    [61] S. Engebretsen, A. Diz-Lois Palomares, G. Rø, A. Kristoffersen, J. Lindstrøm, K. Engø-Monsen, et al., A real-time regional model for COVID-19: Probabilistic situational awareness and forecasting, PLoS Comput. Biol., 19 (2023), e1010860. https://doi.org/10.1371/journal.pcbi.1010860 doi: 10.1371/journal.pcbi.1010860
    [62] Y. Li, H. Campbell, D. Kulkarni, A. Harpur, M. Nundy, X. Wang, et al., The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: A modelling study across 131 countries, Lancet Infect. Dis., 21 (2021), 193–202. https://doi.org/10.1016/S1473-3099(20)30785-4 doi: 10.1016/S1473-3099(20)30785-4
    [63] Y. Zelenkov, I. Reshettsov, Analysis of the COVID-19 pandemic using a compartmental model with time-varying parameters fitted by a genetic algorithm, Expert Syst. Appl., 224 (2023), 120034. https://doi.org/10.1016/j.eswa.2023.120034 doi: 10.1016/j.eswa.2023.120034
    [64] pdepe built-in Matlab function. Available from: https://www.mathworks.com/help/matlab/ref/matlab/ref/pdepe.html.
    [65] D. Yudianto, X. Yuebo, A comparison of some numerical methods in solving 1-D steady-state advection dispersion reaction equation, Civ. Eng. Environ. Syst., 27 (2010), 155–172. https://doi.org/10.1080/10286600902849968 doi: 10.1080/10286600902849968
    [66] D. Kumar, V. Kumar, V. Singh, Mathematical modeling of brown stock washing problems and their numerical solution using MATLAB, Comput. Chem. Eng., 34 (2010), 9–16. https://doi.org/10.1016/j.compchemeng.2009.08.005 doi: 10.1016/j.compchemeng.2009.08.005
    [67] R. Skeel, M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Stat. Comput., 11 (1990), 1–32. https://doi.org/10.1137/0911001 doi: 10.1137/0911001
    [68] L. Shampine, M. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18 (1997), 1–22.
    [69] L. Shampine, M. Reichelt, J. Kierzenka, Solving index-1 DAEs in MATLAB and Simulink, SIAM Rev., 41 (1999), 538–552. https://doi.org/10.1137/S003614459933425X doi: 10.1137/S003614459933425X
    [70] L. Roques, O. Bonnefon, Modelling population dynamics in realistic landscapes with linear elements: A mechanistic-statistical reaction-diffusion approach, PloS One, 11 (2016), e0151217. https://doi.org/10.1371/journal.pone.0151217 doi: 10.1371/journal.pone.0151217
    [71] A. Ossandón, R. Truffello, D. Moreno, H. Altamirano, M. Flores, I. Puig, Territorial infrastructure support index (ISIT): A theoretical and empirical contribution to the analysis of lag zones in Chile, Reg.: J. ERSA, 10 (2023), 45–66. https://doi.org/10.18335/region.v10i1.392 doi: 10.18335/region.v10i1.392
    [72] N. Gnedin, V. Semenov, A. Kravtsov, Enforcing the Courant–Friedrichs–Lewy condition in explicitly conservative local time stepping schemes, J. Comput. Phys., 359 (2018), 93–105. https://doi.org/10.1016/j.jcp.2018.01.008 doi: 10.1016/j.jcp.2018.01.008
    [73] A. Narasingam, P. Siddhamshetty, J. Sang-Il Kwon, Temporal clustering for order reduction of nonlinear parabolic PDE systems with time-dependent spatial domains: Application to a hydraulic fracturing process, AIChE J., 63 (2017), 3818–3831. https://doi.org/10.1016/j.jcp.2018.01.008 doi: 10.1016/j.jcp.2018.01.008
    [74] R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Dev., 11 (1967), 215–234. https://doi.org/10.1147/rd.112.0215 doi: 10.1147/rd.112.0215
    [75] C. DeChant, H. Moradkhani, Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation, Hydrol. Earth Syst. Sci., 15 (2011), 3399–3410. https://doi.org/10.5194/hess-15-3399-2011 doi: 10.5194/hess-15-3399-2011
    [76] L. Yu, J. O'Brien, On the initial condition in parameter estimation, J. Phys. Oceanogr., 22 (1992), 1361–1361. https://doi.org/10.1175/1520-0485 doi: 10.1175/1520-0485
    [77] H. Zhu, A. Thorpe, Predictability of extratropical cyclones: The influence of initial condition and model uncertainties, J. Atmos. Sci., 63 (2006), 1483–1497. https://doi.org/10.1175/JAS3688.1 doi: 10.1175/JAS3688.1
    [78] F. Fritsch, R. Carlson, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal., 17 (1980), 238–246. https://doi.org/10.1137/0717021 doi: 10.1137/0717021
    [79] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software, Prentice-Hall, Inc., 1989.
    [80] I. Al-Nahhal, O. Dobre, E. Basar, C. Moloney, S. Ikki, A fast, accurate, and separable method for fitting a Gaussian function [tips & tricks], IEEE Signal Process Mag., 36 (2019), 157–163. https://doi.org/10.1109/MSP.2019.2927685 doi: 10.1109/MSP.2019.2927685
    [81] L. Luh, The shape parameter in the Gaussian function, Comput. Math. Appl., 63 (2012), 687–694. https://doi.org/10.1016/j.camwa.2011.11.032 doi: 10.1016/j.camwa.2011.11.032
    [82] J. Górriz, A. Lassl, J. Ramírez, D. Salas-Gonzalez, C. Puntonet, E. Lang, Automatic selection of ROIs in functional imaging using Gaussian mixture models, Neurosci. Lett., 460 (2009), 108–111. https://doi.org/10.1016/j.neulet.2009.05.039 doi: 10.1016/j.neulet.2009.05.039
    [83] A. Roonizi, A new approach to Gaussian signal smoothing: Application to ECG components separation, IEEE Signal Process Lett., 27 (2020), 1924–1928. https://doi.org/10.1109/LSP.2020.3031501 doi: 10.1109/LSP.2020.3031501
    [84] C. Roux, B. Silvestre-Brac, Description of the nucleon wave function as a sum of well-chosen gaussian functions, Few-Body Syst., 19 (1995), 1–18. https://doi.org/10.1007/s006010050014 doi: 10.1007/s006010050014
    [85] X. Yang, J. Lu, S. Fomel, Seismic modeling using the frozen Gaussian approximation, in SEG Technical Program Expanded Abstracts 2013, Society of Exploration Geophysicists, (2013), 4677–4682. https://doi.org/10.1190/segam2013-1225.1
    [86] A. Hong, Gaussian Markov Random Field Models for Surveillance Error and Geographic Boundaries, PhD thesis, University of Pennsylvania, 2013. Available from: https://repository.upenn.edu/handle/20.500.14332/32537.
    [87] U. Schnabel, O. Tietje, Explorative data analysis of heavy metal contaminated soil using multidimensional spatial regression, Environ. Geol., 44 (2003), 893–904. https://doi.org/10.1007/s00254-003-0844-8 doi: 10.1007/s00254-003-0844-8
    [88] V. Finn, M. Jakobson, Mobility during pandemics: Moving borders and citizenship into uncharted territories, Cosmos+ Taxis: Stud. Emergent Order Organ., 9 (2021), 109–121.
    [89] N. Liberona, C. Piñones-Rivera, Economic and mobility repercussions of the COVID-19 pandemic on the Chile–Bolivia border, Politics, 44 (2024), 268–283. https://doi.org/10.1177/02633957231178526 doi: 10.1177/02633957231178526
    [90] F. Varela, Incidence of COVID-19 and the social vulnerability of migrants in Chile, Migr. Int., 13 (2022). https://doi.org/10.33679/rmi.v1i1.2479 doi: 10.33679/rmi.v1i1.2479
    [91] C. Andreu-Vilarroig, J. Cortés, C. Pérez, R. Villanueva, A random spatio-temporal model for the dynamics of Candida Auris in intensive care units with regular cleaning, Physica A: Stat. Mech. Appl., 630 (2023), 129254. https://doi.org/10.1016/j.physa.2023.129254 doi: 10.1016/j.physa.2023.129254
    [92] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, et al., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25 (2009), 1923–1929. https://doi.org/10.1093/bioinformatics/btp358 doi: 10.1093/bioinformatics/btp358
    [93] J. Ma, Estimating epidemic exponential growth rate and basic reproduction number, Infect. Dis. Modell., 5 (2020), 129–141. https://doi.org/10.1016/j.idm.2019.12.009 doi: 10.1016/j.idm.2019.12.009
    [94] Y. Wu, Y. Sun, M. Lin, SQEIR: An epidemic virus spread analysis and prediction model, Comput. Electr. Eng., 102 (2022), 108230. https://doi.org/10.1016/j.compeleceng.2022.108230 doi: 10.1016/j.compeleceng.2022.108230
    [95] R. Bürger, G. Chowell, I. Kröker, L. Lara-Díaz, A computational approach to identifiability analysis for a model of the propagation and control of COVID-19 in Chile, J. Biol. Dyn., 17 (2023), 2256774. https://doi.org/10.1080/17513758.2023.2256774 doi: 10.1080/17513758.2023.2256774
    [96] S. Ciupe, N. Tuncer, Identifiability of parameters in mathematical models of SARS-CoV-2 infections in humans, Sci. Rep., 12 (2022), 14637. https://doi.org/10.1038/s41598-022-18683-x doi: 10.1038/s41598-022-18683-x
    [97] V. Nguyen, E. Hernandez-Vargas, Identifiability challenges in mathematical models of viral infectious diseases, IFAC-PapersOnLine, 48 (2015), 257–262. https://doi.org/10.1016/j.ifacol.2015.12.135 doi: 10.1016/j.ifacol.2015.12.135
    [98] C. Kreutz, An easy and efficient approach for testing identifiability, Bioinformatics, 34 (2018), 1913–1921. https://doi.org/10.1093/bioinformatics/bty035 doi: 10.1093/bioinformatics/bty035
    [99] R. Muñoz-Tamayo, L. Puillet, J. Daniel, D. Sauvant, O. Martin, M. Taghipoor, et al., To be or not to be an identifiable model. Is this a relevant question in animal science modelling, Animal, 12 (2018), 701–712. https://doi.org/10.1017/S1751731117002774 doi: 10.1017/S1751731117002774
    [100] N. Afshordi, B. Holder, M. Bahrami, D. Lichtblau, Diverse local epidemics reveal the distinct effects of population density, demographics, climate, depletion of susceptibles, and intervention in the first wave of COVID-19 in the United States, medRxiv, arXiv: 2007.00159.
    [101] A. Celestini, F. Colaiori, S. Guarino, E. Mastrostefano, L. Zastrow, Epidemic risk assessment from geographic population density, Appl. Network Sci., 7 (2022), 39. https://doi.org/10.1007/s41109-022-00480-0 doi: 10.1007/s41109-022-00480-0
    [102] H. Hu, K. Nigmatulina, P. Eckhoff, The scaling of contact rates with population density for the infectious disease models, Math. Biosci., 244 (2013), 125–134. https://doi.org/10.1016/j.mbs.2013.04.013 doi: 10.1016/j.mbs.2013.04.013
    [103] P. Tarwater, C. Martin, Effects of population density on the spread of disease, Complexity, 6 (2001), 29–36. https://doi.org/10.1002/cplx.10003 doi: 10.1002/cplx.10003
    [104] G. González-Parra, R. Villanueva, J. Ruiz-Baragaño, J. Moraño, Modelling influenza A (H1N1) 2009 epidemics using a random network in a distributed computing environment, Acta Trop., 143 (2015), 29–35. https://doi.org/10.1016/j.actatropica.2014.12.008 doi: 10.1016/j.actatropica.2014.12.008
    [105] P. Magal, G. Webb, The parameter identification problem for SIR epidemic models: Identifying unreported cases, J. Math. Biol., 77 (2018), 1629–1648. https://doi.org/10.1007/s00285-017-1203-9 doi: 10.1007/s00285-017-1203-9
    [106] B. Ashby, A. Best, Herd immunity, Curr. Biol., 31 (2021), R174–R177. https://doi.org/10.1016/j.cub.2021.01.006 doi: 10.1016/j.cub.2021.01.006
    [107] A. Díez-Gandía, R. Villanueva, J. Moraño, L. Acedo, J. Mollar, J. Díez-Domingo, Studying the herd immunity effect of the varicella vaccine in the community of Valencia, Spain, in Bioinformatics and Biomedical Engineering: 4th International Conference, (2016), 38–46. https://doi.org/10.1007/978-3-319-31744-1-4
    [108] G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G. Toscani, et al., Kinetic modelling of epidemic dynamics: Social contacts, control with uncertain data, and multiscale spatial dynamics, in Predicting Pandemics in a Globally Connected World, Volume 1: Toward a Multiscale, Multidisciplinary Framework through Modeling and Simulation, Springer, (2022), 43–108. https://doi.org/10.1007/978-3-030-96562-4-3
    [109] E. Tagliazucchi, P. Balenzuela, M. Travizano, G. Mindlin, P. Mininni, Lessons from being challenged by COVID-19, Chaos, Solitons Fractals, 137 (2020), 109923. https://doi.org/10.1016/j.chaos.2020.109923 doi: 10.1016/j.chaos.2020.109923
    [110] S. Treibert, H. Brunner, M. Ehrhardt, A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics, Math. Biosci. Eng., 19 (2022), 1213–1238. https://doi.org/10.3934/mbe.2022056 doi: 10.3934/mbe.2022056
    [111] K. Wang, X. Han, L. Dong, X. Chen, G. Xiu, M. Kwan, et al., Quantifying the spatial spillover effects of non-pharmaceutical interventions on pandemic risk, Int. J. Health Geographics, 22 (2023), 13. https://doi.org/10.1186/s12942-023-00335-6 doi: 10.1186/s12942-023-00335-6
    [112] Z. Cao, Z. Qiu, F. Tang, S. Liang, Y. Wang, H. Long, et al., Drivers and forecasts of multiple waves of the coronavirus disease 2019 pandemic: A systematic analysis based on an interpretable machine learning framework, Transboundary Emerging Dis., 69 (2022), e1584–e1594. https://doi.org/10.1111/tbed.14492 doi: 10.1111/tbed.14492
    [113] G. González-Parra, A. Arenas, D. Aranda, L. Segovia, Modeling the epidemic waves of AH1N1/09 influenza around the world, Spatial Spatio-temporal Epidemiol., 2 (2011), 219–226. https://doi.org/10.1016/j.sste.2011.05.002 doi: 10.1016/j.sste.2011.05.002
    [114] E. Kaxiras, G. Neofotistos, Multiple epidemic wave model of the COVID-19 pandemic: Modeling study, J. Med. Internet Res., 22 (2020), e20912. https://doi.org/10.2196/20912 doi: 10.2196/20912
    [115] H. Khataee, J. Kibble, I. Scheuring, A. Czirok, Z. Neufeld, Transition from growth to decay of an epidemic due to lockdown, Biophys. J., 120 (2021), 2872–2879. https://doi.org/10.1016/j.bpj.2021.04.004 doi: 10.1016/j.bpj.2021.04.004
    [116] J. Miranda, A. Arenas, G. González-Parra, L. Villada, Existence of traveling waves of a diffusive susceptible–infected–symptomatic–recovered epidemic model with temporal delay, Mathematics, 12 (2024), 710. https://doi.org/10.3390/math12050710 doi: 10.3390/math12050710
    [117] G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infect. Dis. Modell., 2 (2017), 379–398. https://doi.org/10.1016/j.idm.2017.08.001 doi: 10.1016/j.idm.2017.08.001
    [118] B. Lagos-Álvarez, S. Flores, J. Figueroa-Zuñiga, F. Novoa-Muñoz, Surveillance of the recurrence time of the effectiveness of national and region-level quarantines of COVID-19 pandemic in Chile, Plos One, 19 (2024), e0295368. https://doi.org/10.1371/journal.pone.0295368 doi: 10.1371/journal.pone.0295368
    [119] E. Cuevas, An agent-based model to evaluate the COVID-19 transmission risks in facilities, Comput. Biol. Med., 121 (2020), 103827. https://doi.org/10.1016/j.compbiomed.2020.103827 doi: 10.1016/j.compbiomed.2020.103827
    [120] M. González-Leonardo, A. López-Gay, N. Newsham, J. Recaño, F. Rowe, Understanding patterns of internal migration during the COVID-19 pandemic in Spain, Popul. Space Place, 28 (2022), e2578. https://doi.org/10.1002/psp.2578 doi: 10.1002/psp.2578
    [121] K. Nguyen, E. Rutter, K. Flores, Estimation of parameter distributions for reaction-diffusion equations with competition using aggregate spatiotemporal data, Bull. Math. Biol., 85 (2023), 62. https://doi.org/10.1007/s11538-023-01162-3 doi: 10.1007/s11538-023-01162-3
    [122] G. González-Parra, A. Arenas, B. Chen-Charpentier, Positive numerical solution for a nonarbitrage liquidity model using nonstandard finite difference schemes, Numer. Methods Partial Differ. Equ., 30 (2014), 210–221. https://doi.org/10.1002/num.21804 doi: 10.1002/num.21804
    [123] R. Mickens, Numerical integration of population models satisfying conservation laws: NSFD methods, J. Biol. Dyn., 1 (2007), 427–436. https://doi.org/10.1080/17513750701605598 doi: 10.1080/17513750701605598
    [124] G. González-Parra, A. Arenas, B Chen-Charpentier, Combination of nonstandard schemes and Richardson's extrapolation to improve the numerical solution of population models, Math. Comput. Modell., 52 (2010), 1030–1036. https://doi.org/10.1016/j.mcm.2010.03.015 doi: 10.1016/j.mcm.2010.03.015
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1343) PDF downloads(80) Cited by(2)

Article outline

Figures and Tables

Figures(19)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog