Research article Special Issues

Cross-modal missing time-series imputation using dense spatio-temporal transformer nets


  • Received: 06 November 2023 Revised: 20 January 2024 Accepted: 24 January 2024 Published: 01 March 2024
  • Due to irregular sampling or device failure, the data collected from sensor network has missing value, that is, missing time-series data occurs. To address this issue, many methods have been proposed to impute random or non-random missing data. However, the imputation accuracy of these methods are not accurate enough to be applied, especially in the case of complete data missing (CDM). Thus, we propose a cross-modal method to impute time-series missing data by dense spatio-temporal transformer nets (DSTTN). This model embeds spatial modal data into time-series data by stacked spatio-temporal transformer blocks and deployment of dense connections. It adopts cross-modal constraints, a graph Laplacian regularization term, to optimize model parameters. When the model is trained, it recovers missing data finally by an end-to-end imputation pipeline. Various baseline models are compared by sufficient experiments. Based on the experimental results, it is verified that DSTTN achieves state-of-the-art imputation performance in the cases of random and non-random missing. Especially, the proposed method provides a new solution to the CDM problem.

    Citation: Xusheng Qian, Teng Zhang, Meng Miao, Gaojun Xu, Xuancheng Zhang, Wenwu Yu, Duxin Chen. Cross-modal missing time-series imputation using dense spatio-temporal transformer nets[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 4989-5006. doi: 10.3934/mbe.2024220

    Related Papers:

  • Due to irregular sampling or device failure, the data collected from sensor network has missing value, that is, missing time-series data occurs. To address this issue, many methods have been proposed to impute random or non-random missing data. However, the imputation accuracy of these methods are not accurate enough to be applied, especially in the case of complete data missing (CDM). Thus, we propose a cross-modal method to impute time-series missing data by dense spatio-temporal transformer nets (DSTTN). This model embeds spatial modal data into time-series data by stacked spatio-temporal transformer blocks and deployment of dense connections. It adopts cross-modal constraints, a graph Laplacian regularization term, to optimize model parameters. When the model is trained, it recovers missing data finally by an end-to-end imputation pipeline. Various baseline models are compared by sufficient experiments. Based on the experimental results, it is verified that DSTTN achieves state-of-the-art imputation performance in the cases of random and non-random missing. Especially, the proposed method provides a new solution to the CDM problem.



    加载中


    [1] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
    [2] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [3] P. Dai, W. Yu, G. Wen, S. Baldi, Distributed reinforcement learning algorithm for dynamic economic dispatch with unknown generation cost functions, IEEE Trans. Ind. Inf., 16 (2019), 2258–2267. https://doi.org/10.1109/TII.2019.2933443 doi: 10.1109/TII.2019.2933443
    [4] X. Miao, Y. Wu, L. Chen, Y. Gao, J. Wang, J. Yin, Efficient and effective data imputation with influence functions, in Proceedings of the VLDB Endowment, 15 (2021), 624–632. https://doi.org/10.14778/3494124.3494143
    [5] A. Blázquez-García, K. Wickstrøm, S. Yu, K. Ø. Mikalsen, A. Boubekki, A. Conde, et al., Selective imputation for multivariate time series datasets with missing values, IEEE Trans. Knowl. Data Eng., 2023 (2023). https://doi.org/10.1109/TKDE.2023.3240858 doi: 10.1109/TKDE.2023.3240858
    [6] Y. Li, Z. Li, L. Li, Missing traffic data: comparison of imputation methods, IET Intell. Transp. Syst., 8 (2014), 51–57. https://doi.org/10.1049/iet-its.2013.0052 doi: 10.1049/iet-its.2013.0052
    [7] C. Zhang, Y. Cui, Z. Han, J. T. Zhou, H. Fu, Q. Hu, Deep partial multi-view learning, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2020), 2402–2415. https://doi.org/10.1109/TPAMI.2020.3037734 doi: 10.1109/TPAMI.2020.3037734
    [8] M. Yang, Y. Li, P. Hu, J. Bai, J. C. Lv, X. Peng, Robust multi-view clustering with incomplete information, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2022), 1055–1069. https://doi.org/10.1109/TPAMI.2022.3155499 doi: 10.1109/TPAMI.2022.3155499
    [9] X. Miao, Y. Wu, L. Chen, Y. Gao, J. Yin, An experimental survey of missing data imputation algorithms, IEEE Trans. Knowl. Data Eng., 2022 (2022). https://doi.org/10.1109/TKDE.2022.3186498 doi: 10.1109/TKDE.2022.3186498
    [10] M. Kang, R. Zhu, D. Chen, X. Liu, W. Yu, CM-GAN: A cross-modal generative adversarial network for imputing completely missing data in digital industry, IEEE Trans. Neural Networks Learn. Syst., 2023 (2023). https://doi.org/10.1109/TNNLS.2023.3284666 doi: 10.1109/TNNLS.2023.3284666
    [11] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, et al., Generalizing to unseen domains: A survey on domain generalization, IEEE Trans. Knowl. Data Eng., 2022 (2022). https://doi.org/10.24963/ijcai.2021/628 doi: 10.24963/ijcai.2021/628
    [12] B. Sun, L. Ma, W. Cheng, W. Wen, P. Goswami, G. Bai, An improved k-nearest neighbours method for traffic time series imputation, in 2017 Chinese Automation Congress, (2017), 7346–7351. https://doi.org/10.1109/CAC.2017.8244105
    [13] X. Chen, Z. He, L. Sun, A bayesian tensor decomposition approach for spatiotemporal traffic data imputation, Transp. Res. Part C Emerging Technol., 98 (2019), 73–84. https://doi.org/10.1016/j.trc.2018.11.003 doi: 10.1016/j.trc.2018.11.003
    [14] S. Coogan, C. Flores, P. Varaiya, Traffic predictive control from low-rank structure, Transp. Res. Part B Methodol., 97 (2017), 1–22. https://doi.org/10.1016/j.trb.2016.11.013 doi: 10.1016/j.trb.2016.11.013
    [15] H. Tan, G. Feng, J. Feng, W. Wang, Y. J. Zhang, F. Li, A tensor-based method for missing traffic data completion, Transp. Res. Part C Emerging Technol., 28 (2013), 15–27. https://doi.org/10.1016/j.trc.2012.12.007 doi: 10.1016/j.trc.2012.12.007
    [16] X. Chen, M. Lei, N. Saunier, L. Sun, Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation, IEEE Trans. Intell. Transp. Syst., 23 (2022), 12301–12310. https://doi.org/10.1109/TITS.2021.3113608 doi: 10.1109/TITS.2021.3113608
    [17] Y. Duan, Y. Lv, Y. L. Liu, F. Y. Wang, An efficient realization of deep learning for traffic data imputation, Transp. Res. Part C Emerging Technol., 72 (2016), 168–181. https://doi.org/10.1016/j.trc.2016.09.015 doi: 10.1016/j.trc.2016.09.015
    [18] Y. Tian, K. Zhang, J. Li, X. Lin, B. Yang, LSTM-based traffic flow prediction with missing data, Neurocomputing, 318 (2018), 297–305. https://doi.org/10.1016/j.neucom.2018.08.067 doi: 10.1016/j.neucom.2018.08.067
    [19] Y. Chen, Y. Lv, F. Y. Wang, Traffic flow imputation using parallel data and generative adversarial networks, IEEE Trans. Intell. Transp. Syst., 21 (2019), 1624–1630. https://doi.org/10.1109/TITS.2019.2910295 doi: 10.1109/TITS.2019.2910295
    [20] X. Miao, Y. Wu, J. Wang, Y. Gao, X. Mao, J. Yin, Generative semi-supervised learning for multivariate time series imputation, in Proceedings of the AAAI conference on artificial intelligence, 35 (2021), 8983–8991. https://doi.org/10.1609/aaai.v35i10.17086
    [21] Y. Yao, B. Gu, Z. Su, M. Guizani, MVSTGN: A multi-view spatial-temporal graph network for cellular traffic prediction, IEEE Trans. Mobile Comput., 2021 (2021). https://doi.org/10.1109/TMC.2021.3129796 doi: 10.1109/TMC.2021.3129796
    [22] T. Baltrušaitis, C. Ahuja, L. P. Morency, Multimodal machine learning: A survey and taxonomy, IEEE Trans. Pattern Anal. Mach. Intell., 41 (2018), 423–443. https://doi.org/10.1109/TPAMI.2018.2798607 doi: 10.1109/TPAMI.2018.2798607
    [23] D. Wang, Y. Yan, R. Qiu, Y. Zhu, K. Guan, A. Margenot, et al., Networked time series imputation via position-aware graph enhanced variational autoencoders, in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, (2023), 2256–2268. https://doi.org/10.1145/3580305.3599444
    [24] D. Chen, Q. Shao, Z. Liu, W. Yu, C. L. P. Chen, Ridesourcing behavior analysis and prediction: A network perspective, IEEE Trans. Intell. Transp. Syst., 23 (2022), 1274–1283. https://doi.org/10.1109/TITS.2020.3023951 doi: 10.1109/TITS.2020.3023951
    [25] S. Lee, D. B. Fambro, Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting, Transp. Res. Record, 1678 (1999), 179–188. https://doi.org/10.3141/1678-22 doi: 10.3141/1678-22
    [26] M. Zhong, S. Sharma, P. Lingras, Genetically designed models for accurate imputation of missing traffic counts, Transp. Res. Record, 1879 (2004), 71–79. https://doi.org/10.3141/1879-09 doi: 10.3141/1879-09
    [27] L. Qu, L. Li, Y. Zhang, J. Hu, PPCA-based missing data imputation for traffic flow volume: A systematical approach, IEEE Trans. Intell. Transp. Syst., 10 (2009), 512–522. https://doi.org/10.1109/TITS.2009.2026312 doi: 10.1109/TITS.2009.2026312
    [28] L. Li, Y. Li, Z. Li, Efficient missing data imputing for traffic flow by considering temporal and spatial dependence, Transp. Res. Part C Emerging Technol., 34 (2013), 108–120. https://doi.org/10.1016/j.trc.2013.05.008 doi: 10.1016/j.trc.2013.05.008
    [29] J. Tang, G. Zhang, Y. Wang, H. Wang, F. Liu, A hybrid approach to integrate fuzzy c-means based imputation method with genetic algorithm for missing traffic volume data estimation, Transp. Res. Part C Emerging Technol., 51 (2015), 29–40. https://doi.org/10.1016/j.trc.2014.11.003 doi: 10.1016/j.trc.2014.11.003
    [30] S. Wang, G. Mao, Missing data estimation for traffic volume by searching an optimum closed cut in urban networks, IEEE Trans. Intell. Transp. Syst., 20 (2018), 75–86. https://doi.org/10.1109/TITS.2018.2801808 doi: 10.1109/TITS.2018.2801808
    [31] Y. Wang, Y. Zhang, X. Piao, H. Liu, K. Zhang, Traffic data reconstruction via adaptive spatial-temporal correlations, IEEE Trans. Intell. Transp. Syst., 20 (2018), 1531–1543. https://doi.org/10.1109/TITS.2018.2854968 doi: 10.1109/TITS.2018.2854968
    [32] X. Chen, Z. He, J. Wang, Spatial-temporal traffic speed patterns discovery and incomplete data recovery via svd-combined tensor decomposition, Transp. Res. Part C Emerging Technol., 86 (2018), 59–77. https://doi.org/10.1016/j.trc.2017.10.023 doi: 10.1016/j.trc.2017.10.023
    [33] Z. Cui, R. Ke, Z. Pu, Y. Wang, Stacked bidirectional and unidirectional lstm recurrent neural network for forecasting network-wide traffic state with missing values, Transp. Res. Part C Emerging Technol., 118 (2020), 102674. https://doi.org/10.1016/j.trc.2020.102674 doi: 10.1016/j.trc.2020.102674
    [34] X. Kong, W. Zhou, G. Shen, W. Zhang, N. Liu, Y. Yang, Dynamic graph convolutional recurrent imputation network for spatiotemporal traffic missing data, Knowl. Based Syst., 261 (2023), 110188. https://doi.org/10.1016/j.knosys.2022.110188 doi: 10.1016/j.knosys.2022.110188
    [35] G. Shen, W. Zhou, W. Zhang, N. Liu, Z. Liu, X. Kong, Bidirectional spatial–temporal traffic data imputation via graph attention recurrent neural network, Neurocomputing, 531 (2023), 151–162. https://doi.org/10.1016/j.neucom.2023.02.017 doi: 10.1016/j.neucom.2023.02.017
    [36] W. Zhang, P. Zhang, Y. Yu, X. Li, S. A. Biancardo, J. Zhang, Missing data repairs for traffic flow with self-attention generative adversarial imputation net, IEEE Trans. Intell. Transp. Syst., 23 (2021), 7919–7930. https://doi.org/10.1109/TITS.2021.3074564 doi: 10.1109/TITS.2021.3074564
    [37] M. Kang, R. Zhu, D. Chen, C. Li, W. Gu, X. Qian, et al., A cross-modal generative adversarial network for scenarios generation of renewable energy, IEEE Trans. Power Syst., 2023 (2023). https://doi.org/10.1109/TPWRS.2023.3277698 doi: 10.1109/TPWRS.2023.3277698
    [38] L. Li, J. Zhang, Y. Wang, B. Ran, Missing value imputation for traffic-related time series data based on a multi-view learning method, IEEE Trans. Intell. Transp. Syst., 20 (2018), 2933–2943. https://doi.org/10.1109/TITS.2018.2869768 doi: 10.1109/TITS.2018.2869768
    [39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, in Advances in Neural Information Processing Systems, (2017), 5998–6008.
    [40] D. P. Kingma, J. Ba, ADAM: A method for stochastic optimization, in International Conference on Learning Representations, 2015.
    [41] Z. Cui, K. Henrickson, R. Ke, Y. Wang, Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting, IEEE Trans. Intell. Transp. Syst., 21 (2019), 4883–4894. https://doi.org/10.1109/TITS.2019.2950416 doi: 10.1109/TITS.2019.2950416
    [42] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in International Conference on Machine Learning, (2017), 214–223.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1014) PDF downloads(139) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog