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Abstract: Due to irregular sampling or device failure, the data collected from sensor network has
missing value, that is, missing time-series data occurs. To address this issue, many methods have
been proposed to impute random or non-random missing data. However, the imputation accuracy of
these methods are not accurate enough to be applied, especially in the case of complete data missing
(CDM). Thus, we propose a cross-modal method to impute time-series missing data by dense spatio-
temporal transformer nets (DSTTN). This model embeds spatial modal data into time-series data by
stacked spatio-temporal transformer blocks and deployment of dense connections. It adopts cross-
modal constraints, a graph Laplacian regularization term, to optimize model parameters. When the
model is trained, it recovers missing data finally by an end-to-end imputation pipeline. Various baseline
models are compared by sufficient experiments. Based on the experimental results, it is verified that
DSTTN achieves state-of-the-art imputation performance in the cases of random and non-random
missing. Especially, the proposed method provides a new solution to the CDM problem.

Keywords: time-series data missing; complete data missing; time-series data imputation; cross-modal
data fusion; dense spatio-temporal transformer nets

1. Introduction

Due to irregular sampling or device failure, the data collected from a sensor device may not be
completed, that is, missing values are included in the data. High-quality data enables many data-driven
networked control techniques to perform better [1–5]. The missing data issue can be categorized
as missing at random (MAR) and missing not at random (MNAR) [6–9]. Among them, complete
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data missing (CDM) is a special but critical case of MNAR [10]. That is, the missing rates of some
network nodes reach 100%. The bottleneck of CDM is that the traffic data of some nodes is unobserved
completely, and no time-series data can be used for feature extraction [11].

To address the time-series data missing issue, many methods have been proposed, including
weighted-average methods, tensor-based methods, deep-learning methods, and multi-view methods.
Among them, weighted-average methods heavily depend on the definition of weights, such as the
k-nearest neighbors (KNN) model [12]. The imputation results of these methods are often too rough
to use because the weighted average principle are linear. This is not in line with reality. More popular
are tensor-based methods. For example, the Bayesian Gaussian CANDECOMP/PARAFAC (BGCP)
model [13] is established with the low-rank assumption [14]. It imputes missing data by processing
global tensor information and reconstructing sparse tensors though Bayesian inference. However, the
usage of spatial information in most tensor-based methods, including [13, 15, 16], are limited in the
temporary modal tensor structure. They ignore other spatial modals, such as the locations of sensor
network nodes. Thus, the recovered missing data of these methods can hardly match the
corresponding nodes in some extreme cases, especially in the CDM case. Furthermore, deep-learning
methods provide an alternative way to impute missing data [17–20]. They obtain good performance
based on sufficient observation. But, due to the heavy dependence on the large number of training
samples required, they often fall into the overfitting problem, and then the performance declines
dramatically if the missing rate is too high. By contrast, multi-view methods impute missing data by
shared latent representation among different views for one observational object [7, 8]. They rely
heavily on the assumptions of view consistency and instance completeness. But, unfortunately, these
two assumptions are violated in the CDM problem because the data missing for different views are
unbalanced. In the so-called spatial view [21], the missing rate is low because only a few sensor
stations are unobservable. But, in the temporal view, the missing rate for these unobservable stations
reach 100% because no time-series data can be collected.

Thus, to improve the imputation performance for high missing rates, especially for the CDM issue,
this paper proposes a cross-modal missing time-series data imputation method. This method imputes
missing data based on a cross-modal principle [22, 23], that is, to use spatial modal data to recover
temporal modal data. From the perspective of complex network, it is found that the spatial locations
collected from GPS data of sensors are correlated to the evolution of traffic flow [24]. Thus, if the
time-series traffic data is missing, it can be recovered from the spatial modal data collected from not
only GPS, but also social media, etc. This approach to address missing data is called spatio-temporal
cross modal. Based on this, a DSTTN model is specially designed to fuse the spatio-temporal modal
information with stacked fusion modules with dense connections. DSTTN enables different modals to
be processed together, and output the time-series missing data in an end-to-end way. Moreover, a graph
Laplacian regularization constraint is added to the training target function. The constraint enables the
spatial modal data to be extrapolated to the missing time-series data, which is an unseen domain if the
CDM issue happens.

Thus, the main contributions of this work are as follows:

1) We propose a cross-modal method to solve the time-series missing data problem. This method
uses a graph Laplacian regularization constraint to model complex correlations between spatial
and temporal modals. It provides a way to extrapolate observation data to a completely unseen
data domain, and finally solves the CDM problem.
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2) We propose a DSTTN model to fuse spatial and temporal modal data for the realization of a cross-
modal method. This model is organized with multiple stackable spatio-temporal transformer
blocks, while dense connections are designed to improve communication between these blocks
and accelerate model training.

3) By conducting comparative experiments, the state-of-the-art imputation performance of the cross-
modal method is verified. The essential analysis is presented to demonstrate the principle of the
cross-modal method to solve the CDM problem.

The rest of this paper is organized as follows: Section 2 presents the reviews of related works on
time-series data missing problem. Section 3 presents the cross-modal method and the DSTTN model.
Section 4 analyzes the results of comparative experiments. Section 5 concludes this paper.

2. Related work

As early as the 1990s, the autoRegressive integrated moving average (ARIMA) model was proposed
to predict the trend of short-term freeway flow data, and impute time-series missing data [25, 26]. In
2008, probabilistic principle components analysis (PPCA) was introduced to impute missing values
by compressing damaged data and minimizing reconstruction error [27]. It modeled the uncertainty
of time series and extracted low-dimensional periodic features from time-series data by singular value
decomposition. Based on PPCA model, a kernel PPCA model [28] was further developed to extract
nonlinear features by the kernel trick, improving the accuracy of imputation. Furthermore, some non-
parametric methods were also proposed to reconstruct damaged data by the weighted average principle,
such as KNN [12], fuzzy C-means method [29], and OOC-based Kriging estimation [30]. These
calculate missing values by weighted observation features of k-nearest neighbors.

Similarly, based on the principle of data reconstruction, Tan et al. [15] proposed a tensor-based
method for imputation of incomplete time-series data. It focused on the preserved spatio-temporal
information in multi-way nature of matrix pattern, and achieved good performance while the missing
data rate is high. To further exploit the temporal characteristics and the spatial similarity between
road links, Wang et al. [31] proposed a low-rank matrix decomposition method to reconstruct damaged
time-series via adaptive Laplacian regularization spatial constraint. Chen et al. [32] proposed an SVD-
combined tensor decomposition method to capture the main latent features for missing data estimation,
and then proposed a Bayesian tensor decomposition approach, called BGCP [13], to achieve great
performance. To improve the local consistency in spatio-temporal data, Chen et al. [16] also proposed
a low-rank autoregressive tensor completion (LATC) model that introduces temporal variation as a
constraint into the completion of third-order tensor. However, the concepts of space and time in these
methods are only limited to the spatio-temporal information, but do not consider multimodal labels,
such as the location, lane type, and station length of the traffic stations in an intelligent transportation
system.

In addition to these tensor-based methods, deep learning technology has attracted more and more
academic and industrial interest recently. Based on deep learning, Duan et al. [17] proposed a
denoising stacked autoencoder (DSAE) to impute missing data. It considered the missing value as
outliers, and used the damaged data as input directly. Then, the missing value was filtered by
layer-wise encoding and decoding, which replaced the missing value with the estimated ones.
Another popular method was long short-term memory (LSTM) nets [18]. These also modeled the
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uncertainty of time-series pattern dependency, and realized an end-to-end training process and
imputation. Cui et al. [33] also proposed a bidirectional LSTM (BDLSTM) with imputation
mechanism and verified that the imputed data improved the accuracy of the LSTM prediction model.
Kong et al. [34] proposed a dynamic graph convolutional recurrent imputation network (DGCRIN) to
impute missing time-series data with static and dynamic graph features together. Based on this, a
graph attention recurrent neural network (GARNN) [35] was also proposed to address two special
cases of time-series data missing at random, including temporally continuous missing and spatially
continuous missing. Moreover, Chen et al. [19] proposed a time-series imputation method using
generative adversarial nets (GAN). Zhang et al. [36] also proposed a GAN-based imputation model,
which utilized self-attention technology to extract spatial features. Kang et al. [10, 37] proposed a
cross-modal GAN to address CDM issues on spatio-temporal data, and then used the cross-modal
GAN to generate scenarios data for dispatching application with missing data.

Furthermore, multi-view methods were also proposed to impute missing values with multi-view
information of sensors [7, 8]. Li et al. [38] proposed a hybrid imputation method combining LSTM
and a collaborative filtering technique by multi-view learning. To improve the imputation accuracy,
Yao et al. [21] proposed a multi-view spatio-temporal graph network (MVSTGN), which combined
attention and convolution mechanisms to apply for spatio-temporal pattern analysis. The multi-view
design of MVSTGN, however, is only for spatial and temporal characteristics of time-series data. Some
other modal data, such as GPS locations of sensors, were not considered.

Overall, among them, weighted-average methods, e.g., KNN and fuzzy C-means, are relatively
not robust. Their imputations often dramatically change with the input arguments K or C. ARIMA
and PCA-based methods are all regression-based methods. Thus, they need to minimize the residual
between true time-series values and the imputed ones. However, due to their linearity, that is, they only
use a linear model to fit the observation data, the model representation of the data is not enough. By
contrast, deep-learning methods have excellent ability to represent nonlinearity in data. However, the
time complexity of deep-learning method is higher than ARIMA and the other PCA-based methods if
there are to many neurons in neural network. Thus, if time consumption can be ignored, deep-learning
methods are better on imputation performance.

Under the framework of deep learning, multi-view methods and multi-modal methods are two ways
to address the missing data issue, especially for the CDM issue. They both pay attention to data
processing, but there are still three main differences, as follows: (1) The multiple views of multi-view
methods are concentrated on the only observation object, while the cross-modal method faces towards
various modals, not limited to a single object. (2) The spatial and temporal views (e.g., in [21]) are
only toward the time-series data, and do not involve more spatial information, such as GPS data.
(3) The cross-modal method makes full use of these modal data, including GPS data, to solve the
CDM problem. Meanwhile, multi-view can not solve the CDM problem, which is verified though
comparative experiments.

3. Methodology

To solve the time-series data missing problem, a cross-modal method is proposed, based on the
DSTTN model, as shown in Figure 1. The framework mainly has two parts: (1) The introduction of
cross-modal data fusion technique. (2) the introduction of the DSTTN model. The module of cross-
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Figure 1. The cross-modal missing time series imputation architecture based on DSTTN.

modal data fusion is specially-designed to address the CDM issue, and DSTTN is used to realize the
ability of fitting data. In the following, the implementation and algorithm of this method is presented.

3.1. Cross-modal data fusion

In the real world, the ways to sense the state of a system are different, such as seeing, hearing, and
smelling, which are called modals [22]. Though the modals are different, the object to sense is the same
one. Thus, these modals can be translated to each other. Here, a cross-modal data fusion technique
is proposed to fuse time-series data and graph data, and output the missing time series data. We refer
to this as the cross-modal way. Due to the fact that the time-series data and graph data both carry the
same information to the same object, the missing value of time series can be recovered from the graph.

Given the time series that are represented as a 2-dimensional tensor X = {xit|i = 1, . . . ,N, t =
1, . . . ,T }, here, N is the number of nodes and T is the number of samples depending on the time
intervals. Then, if a MAR or MNAR problem happens, a part of the elements in X are missing and
unobservable, and are set as zero. The missing rate can be defined as

η =
m

N × T
× 100%, (3.1)

where m is the number of missing elements in tensor X.
Furthermore, a graph G = (V,E, A) is known, V is the set of nodes, and E is the set of undirected

edges. The weights of the adjacency matrix A ∈ RN×N , deriving from the graph G, describe the
similarity between different nodes. Then, we can define the loss function as

L = Lrc + λLreg, (3.2)
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where Lrc is the reconstruction error. It can be defined as

Lrc =
1

CI[Iit = 1]

∑
i,t

Iit||x̂it − xit||
2, (3.3)

where Iit = 0 if xit is missing, otherwise Iit = 1, and CI[Iit = 1] is a countif function that counts
the element number of Iit = 1. Then, Lreg is a graph Laplacian regularization term, which makes the
imputed value of similar nodes more similar. Thus, the Lreg can be defined as

Lreg =
∑

t

∑
i, j

Ai j||x̂it − x̂ jt||
2

=
∑

t

x̂:t∆x̂:t,
(3.4)

where ∆ = D − A is the unnormalized graph Laplacian matrix, and Dii =
∑

j Ai j is the degree matrix
of A. Besides, λ is a penalty factor, and X̂ = f (X) is the estimator of missing data, where f is a
mapping between them. When the mapping is fitted, the dynamic flow information and the static graph
information are fused at the end, which means the cross-modal data fusion. Then, the remaining work
is to define the path to the fitness of mapping f .

Figure 2. A spatio-temporal transformer block.

3.2. DSTTN

As demonstrated above, a sequential regression model needs to be designed to fit the mapping f .
Thus, we design the DSTTN model to complete this issue by an end-to-end missing data imputation
pipeline. In DSTTN, the naive transformer structure [39] is redefined as a stackable spatio-temporal
transformer block as shown in Figure 2. It is a combination of a spatial transformer, temporal
transformer, and skip connection as detailed in the following description:

In the spatial transformer, the initial input XS is defined as

XS = hl + ES, (3.5)
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where hl ∈ R
N×T×C is the hidden feature in l-th hidden layer, and ES = AWS

a , embedding the spatial
modal information into positional code by weight matrix WS

a ∈ R
N×C. C represents the number of

embedding channels, ES is repeatedly expanded into RN×T×C, and next added to hl. Then, according to
the standard transformer model [39], the queries, keys, and values are computed by three linear layers,
that is,

QS = XSWS
q ,

KS = XSWS
k ,

VS = XSWS
v ,

(3.6)

where WS
q ,W

S
k ,W

S
v ∈ R

C×C are the weight matrices for QS,KS,VS, respectively. After that, the
dynamical spatial dependencies between different nodes are learned by the softmax dot-product

MS = softmax(
QS(KS)T√

dSk

), (3.7)

where dSk is a scaling factor, which equals to the channels C. Note that QS(KS)T is a matrix product
at the axis of N and T , which means MS ∈ RN×N×C. Then, new spatial node features are obtained by
weighted sum

US = MSVS, (3.8)

where MSVS is a matrix product at the axis of N and T , which means US ∈ RN×T×C. Then, a simple
feed-forward layer is applied to filter feature information as

YS = ReLU(ReLU(USWS
0 )WS

1 )WS
2 , (3.9)

where WS
0 ,W

S
1 ,W

S
2 ∈ R

C×C are the weighted matrices of the three-layer feed-forward neural networks.
The temporal transformer is similar to the spatial transformer, but the positional code is different.

Its initial input is defined as
XT = hl + ET , (3.10)

where ET = Embedding([1, . . . ,T ]), and Embedding(·) is a general vector embedding layer. Then, the
queries, keys, and values are obtained by

QT = XTWT
q ,

KT = XTWT
k ,

VT = XTWT
v ,

(3.11)

where WT
q ,W

T
k ,W

T
v ∈ R

C×C are the weight matrices for QT ,KT ,VT , respectively. Then,

MT = softmax(
QT (KT )T√

dTk

), (3.12)

where dTk = C, and (QT (KT )T is a matrix product at the axis of N and T , which means MT ∈ RN×N×C.
Then,

UT = MTVT , (3.13)
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where MTVT is a matrix product at the axis of N and T , concluding that MT ∈ RN×T×C. Then, the
same feed-forward layer is applied as

YT = ReLU(ReLU(UTWT
0 )WT

1 )WT
2 , (3.14)

where WT
0 ,W

T
1 ,W

T
2 ∈ R

C×C are weighted matrices of the three-layer feed-forward neural networks.
At the end of the spatio-temporal transformer module, a merge layer is added, as follows:

D = ReLU([YS; YT ]Wm), (3.15)

where [·; ·] indicates matrix concatenation at the axis of C, and Wm ∈ R
2C×C

2 . Then, the output of the
l + 1-th hidden layer is

hl+1 = [D; hlWc], (3.16)

where Wc ∈ R
C×C

2 is a weighted matrix for compressing hl into RN×T×C
2 .

This work supposes the time-series data X ∈ RN×T is collected, and a relation graph G and its
correspond adjacency matrix A ∈ RN×N is given. At first, the input missing data X is scaled to be
C-dimensional, namely as RN×T×C, by a 1 × 1 convolution layer, as shown in Figure 1. The feature
information flow goes through the multiple spatio-temporal transformer blocks, and finally outputs the
imputed data X̂ by two 1 × 1 convolution layers as

X̂ = Conv1×1(ReLU(Conv1×1(hlast))), (3.17)

where hlast is the last hidden feature of these transformer modules. The first convolution layer scales
hlast from RN×T×C to RN×T×C at the axis of T as a nonlinear transformation with the ReLU function, and
is then embedded into RN×T , namely as X̂.

Note that, due to the bit-wise imputation in the bottom of Figure 1, the parameterized mapping
fθ, namely DSTTN, may be close to the linear function f (X) = X, but not the same as it. Thus,
the skip connection from X to the output of the last spatio-temporal transformer block, as shown in
Figure 3, can facilitate the fitness of DSTTN to be linear, which means stronger representation power
with few additional parameters. Thus, the dense deployments of many skip connections, namely as
dense connections, are adopted to the whole model, which can be comprehensively described as

hl = fl([hl−1, hl−2, . . . , h0]), (3.18)

where h0 ∈ R
N×T×C is the initial input generated from the first convolution layer in Figure 1. It improves

the convergence efficiency and reuse of features for DSTTN.

3.3. Implementation and algorithm

To implement the training algorithm of DSTTN, a sliding window shown in Figure 1 is set to divide
tensors into many subsamples with fixed size, and the sliding speed is set as one bit at one step. That is,
the evolution process of a node is independent and identically distributed, and all time-series samples
of the node are visible for each bit of the same row.

Then, we train the DSTTN by the standard Adam optimizer [40], which is a widely used
momentum-based stochastic optimization method. The overall algorithm is presented as
Algorithm 1.
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Figure 3. The schematic of the dense connections.

Algorithm 1: Cross-modal Missing Data Imputation
Input: Observation X, parameterized fθ, the parameters of Adam optimizer and learning rate

α = 0.0001
Output: The imputed tensor X

1 Split X into subsamples by sliding window for training;
/* Step 1: Train DSTTN */

2 Initialize the DSTTN fθ and the Adam optimizer;
3 while θ not converge do
4 Shuffle the training subsamples;
5 for each batch of subsamples Xb do
6 X̂b ← fθ(Xb)
7 θ ← Adam(∇θL(X̂b), α)

8 Get the optimal θ∗;
/* Step 2: Impute missing data */

9 for each subsample do
10 X̂ ← fθ∗(X)

11 Impute the missing value in X by the estimator X̂.

4. Experiments

4.1. Data description

The performance and stability of our proposed model is tested on two public traffic datasets,
including the Caltrans performance measurement system district 5 (PeMSD5) dataset and the seattle
inductive loop detector (SILD) dataset.

The PeMSD5 dataset was collected from real-time traffic data of district 5 of the Caltrans
performance measurement system in 2019. It provides real traffic flow data samples, which are
aggregated with 53 sensor stations and traffic speed samples over 7 months. The time interval is 5
minutes, and the flow value represents the average traffic speed (km/h) within the corresponding 5
minutes interval. The location of these sensors is represented with latitude and longitude, and the
distribution of all sensors is shown in Figure 4.

The SILD dataset is a public dataset, widely used in traffic prediction scenarios [41]. In order to

Mathematical Biosciences and Engineering Volume 21, Issue 4, 4989–5006.



4998

adapt to the scenarios of this paper, the raw data is aggregated with 323 sensor stations and traffic speed
(km/h) samples with 5-minute time intervals over a whole year. It also contains the corresponding
latitude and longitude of stations.

Figure 4. The distribution of the traffic sensor stations.

4.2. Experimental configuration

Various baseline methods are selected, including BGCP [13], LATC [16], DSAE [17],
GAN-DSAE [19], BDLSTM [33], MVSTGN [21], and DGCRIN [34]. In the case of MAR, the
original data which has no missing value is damaged randomly at different missing rates, and the
damaged value is set to be zero. Then, the damaged data is considered as training data and the
original is considered as test data. Similarly, CDM experiments are also conducted, where a part of
the traffic nodes are randomly selected to be completely unobservable. The way to split training data
and test data is same as the case of MAR.

For DSTTN, the graph G is set with adjacency matrix A. It is generated by Ai j = 0 if i = j,
otherwise, Ai j = e−d2

i j where di j is the spatial distance between node i and j. The spatial transformer is
also initialized by the graph G as spatial positional code. The λ in Eq. (3.2) is set as 0.1. DSTTN is
organized with 2 spatio-temporal transformer blocks. The size of embedded channels C is set as 32.
The size of the sliding window T is set as 96, which is the same as in the sampling process of the other
deep learning models.

Furthermore, the hidden layers of the DSAE are set with neural units of [2048, 1024, 2048]. The
activation function is a sigmoid function. The broken 2-dimensional tensor is flattened into a
1-dimensional vector as the input of the DSAE. Meanwhile, the GAN-DSAE model adopts an extra
GAN to generate so-called paralleled data [19] to expand training samples before training the DSAE.
The generator of the GAN in GAN-DSAE is set with neural units of [512, 512, 512], and the
discriminator is set with neural units of [288, 36, 1]. The activation functions are tanh functions
applied to the first two layers and a sigmoid activation applied to the last layer.

For the BDLSTM model, it has 3 bidirectional LSTM layers. After the hidden feature extraction by
BDLSTM, a single linear layer with 96 neural units is adopted to fit the mapping from the extracted
features to the damaged tensor.

For the MVSTGN model, the number of attention layers is set as 2, and the number heads of each
layer is also set as 2. The other configurations are the same as that in the source research paper.
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For the DGCRIN model, the parameters are set as the default configuration in section 5.3 in [34].
Note that, the static graph in DGCRIN is obtained by Ai j = 0 if i = j, otherwise, Ai j = e−d2

i j . Here, di j

is the spatial distance between node i and j, which is the same as the graph in DSTTN.
BGCP and LATC are both tensor-based methods. In BGCP, the Gibbs sampling iteration is set as

100 and the maximum iteration epochs is set as 1000. Besides, the rank degree is set as 10. In addition
to the above special statements, the other model configurations are the same as the original papers for
all comparative models.

4.3. Evaluation

To evaluate imputation performance, two indices are selected, including mean absolute percentage
error (MAPE) and root mean square error (RMSE). They are defined as

MAPE =
1

CI[Ĩit = 1]

∑
i,t

Ĩit
|x̂it − xit|

xit
× 100%,

RMS E =

√
1

CI[Ĩit = 1]

∑
i,t

Ĩit(x̂it − xit)2,

(4.1)

where Ĩi,t = 1 if xit is missing, otherwise, Ĩi,t = 0. CI[Ĩi,t = 1] is a countif function of Ĩi,t = 1.

Table 1. Performance comparison (in RMSE /MAPE) for MAR on PeMSD5 dataset.

Model / η 30% 40% 50% 60% 70%
BGCP 3.53 3.73% 3.55 3.74% 3.56 3.76% 3.61 3.82% 3.63 3.83%
LATC 2.52 2.38% 2.55 2.88% 2.79 3.01% 3.14 3.22% 3.23 3.37%
DSAE 3.54 4.08% 3.61 4.27% 4.03 4.75% 4.28 5.10% 4.36 5.29%
GAN-DSAE 3.28 3.60% 3.51 3.90% 3.99 4.67% 4.27 5.07% 4.41 5.32%
BDLSTM 2.88 2.75% 2.91 2.77% 2.95 2.97% 3.21 3.08% 3.63 3.48%
MVSTGN 2.52 2.53% 2.70 2.59% 2.89 2.91% 2.98 2.99% 3.32 3.28%
DGCRIN 2.21 2.19% 2.59 2.51% 2.79 2.80% 3.01 2.98% 3.31 3.25%
DSTTN 2.05 1.94% 2.31 1.96% 2.45 2.51% 2.95 2.95% 3.28 3.13%

4.4. Imputation accuracy analysis

The performance comparison of all models on the PeMSD5 dataset is presented in Table 1. It is
clear that DSTTN obtains state-of-the-art imputation performance in RMSE and MAPE. By visual
inspection, BGCP and LATC perform stably at each η, but the imputation accuracy is not high. By
contrast, deep-learning methods, including BDLSTM, MVSTGN, and DGCRIN, obtain lower RMSE
and MAPE. It is worthy noting that the performance of the GAN-DSAE model is slightly better than
DSAE as η is relatively low. That is, the synthetic data generated from GAN improves the overfitting
problem by data augmentation to some extent. Thus, the DSTTN can also be further improved by
combination with GAN-like data augmentation techniques, but this is not presented in this paper.

Moreover, there is a gap between DSTTN, DGCRIN, and MVSTGN, and the gap diminishes as the
missing rate increases. Due to the fact that they are all deep-learning models, this is possibly a common
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problem. That is, the performances of deep-learning models drop to a same level if the missing rate
of time-series data is too high. Despite this, it is still found that the cross-modal data fusion technique
has some advantages to improve the imputation performance. Between them, MVSTGN only uses a
spatial encode on the self-attention module. The spatial attention module just has a dynamic encode,
rather than the location information from GPS data. Meanwhile, DGCRIN uses a graph-based gated
recurrent unit model to sequentially extract the temporal features, and DSTTN embeds the cross-modal
data fusion technique into the self-attention mechanism. Thus, the possible reason of performance
improvements is induced from the self-attention mechanism and extra cross-modal information from
GPS data.

4.5. Local complete data missing

CDM is a special case of MNAR. If a CDM issue happens, all time-series observation data are
missing for some nodes in graph. That is, for the nodes, the missing rate is 100%, which is highest
possible missing rate. But, at the same time, the other nodes are still observed, and their data are not
missing. Thus, the missing rate here is the proportion of the nodes with missing data to all nodes,
according to Eq (3.1).

In practice, if there arises long-term device failure for some traffic stations, or even if they have no
equipped sensors, then a local CDM happens. For these traffic nodes, no data is collected to analyze
traffic pattern and running law, as shown in the red curve of Figure 5. In general, we can not know the
traffic flow evolution law of an unobservable node without any information about it. However, from
the cross-modal perspective, the traffic flow data of different sensor nodes with short spatial distance
is similar under a specific pattern. This is intuitively presented in Figure 5. The Pearson correlation
r between sensor #49 and other sensors are calculated with corresponding p values for significance
testing. It can be seen that sensor #49 has the similar traffic pattern to sensors #50 and #51, and not
only is this reflected in strong correlations, but also in low p values. Thus, for example, if sensor #49
is unobservable, then we can still infer the missing data by the complete data of other adjacent sensors.
In our experiments, we assume that only the local CDM case happens. That is, only a few sensors are
set to be unobserved and the data of other sensors is collected.

Tables 2 and 3 present the results of comparative experiments on the PeMSD5 dataset and the SILD
dataset, respectively. These experiments validate the imputation performance of DSTTN, compared
to the other methods in local CDM cases at missing rates of η = 5%, 10%, 15%. For the PeMSD5
dataset, the results show that these traditional deep-learning imputation methods all fail to deal with
this problem with bad performance. This is similar to the results on the SILD dataset.

To provide more reliable evidence, we remove the representation loss function of the GAN-based
models (see Eq (3) in [19]), and further reproduce and implement the naive Wasserstein GAN (WGAN)
model [42] to solve the same CDM problem. Actually, the imputation performance of WGAN is still
bad, and, by contrast, the performance of DSTTN is relatively better. Meanwhile, we also compare
the imputation results of MVSTGN and non-cross-modal DSTTN (DSTTN*). Note that the objective
function of DSTTN* does not have the graph Laplacian regularization term (see Eq (3.4)). They both
achieve similar performance for CDM, and are both worse than the performance of DSTTN. Thus, the
cross-modal technology has contributed in extrapolating the observed data to the unseen domain. It
breaks though the bottleneck of CDM for deep-learning imputation methods as stated in [11].

Moreover, the performance of DSTTN exceeds that of the BGCP and LATC. For LATC, the MAPE
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is near 100%. This is because the objective function of LATC encourages the time-series data to show
stronger temporal consistency (see Eq (2) in [16]). This consistency term can not work well in the case
of CDM. By contrast, taking the missing rate at 5% as an example of BGCP, the percent of RMSE and
MAPE on the PeMSD5 dataset decreases by 27.8% and 25.5%, respectively, compared to DSTTN.
Actually, since, the loss of positional embedding information, BGCP can only reproduce the missing
data by the structural property of traffic flow tensor, regardless of the heterogeneity of each traffic node
to be imputed. Thus, given the recovered missing data, BGCP can not offer a classification to match
data and nodes, which results in the homogeneous and coarse imputation of BGCP.

Thus, it is reasonable for DSTTN to consider cross-modal constraints based on the spatial similarity
of traffic flow. That is, completely unobserved traffic flow data can be recovered through the cross-
modal way from spatial modals to temporal modals. To obtain higher accuracy, the used graph can
be constructed by other similarity measurements, but it will not change the reasonability of the cross-
modal data fusion.

Figure 5. The pattern similarity is positively correlated to sensor distance on the PeMSD5
dataset.
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Table 2. The results of CDM imputation on PeMSD5 dataset.

RMSE /MAPE 5% 10% 15%
BGCP 5.71 / 7.01% 5.86 / 6.94% 5.96 / 7.11%
LATC 62.72 / 99.99% 63.44 / 99.99% 64.25 / 100.00%
DSAE 32.12 / 38.12% 31.12 / 40.49% 35.67 / 45.21%
GAN-DSAE 35.47 / 48.29% 42.65 / 56.46% 43.91 / 55.93%
WGAN 29.68 / 39.73% 32.65 / 43.13% 37.29 / 49.38%
BDLSTM 38.23 / 51.50% 40.36 / 56.80% 41.81 / 53.85%
MVSTGN 31.09 / 40.22% 34.18 / 41.59% 35.82 / 47.33%
DSTTN* 28.93 / 36.11% 31.21 / 39.47% 31.97 / 40.62%
DSTTN 4.12 / 5.22% 4.17 / 5.24% 5.45 / 6.94%
Note: * denotes DSTTN without graph Laplacian regularization term.

Table 3. The results of CDM imputation on SILD dataset.

RMSE /MAPE 5% 10% 15%
BGCP 10.18 / 24.02% 10.35 / 24.27% 10.83 / 29.05%
LATC 57.84 / 99.99% 58.08 / 99.99% 58.23 / 100.00%
DSAE 54.58 / 93.60% 54.68 / 94.40% 54.70 / 93.78%
GAN-DSAE 34.74 / 61.29% 35.99 / 63.80% 38.60 / 66.48%
WGAN 48.65 / 81.23% 53.38 / 90.47% 55.75 / 94.77%
BDLSTM 35.45 / 65.20% 38.60 / 62.11% 42.97 / 71.61%
MVSTGN 55.84 / 92.81% 54.40 / 93.79% 54.70 / 92.31%
DSTTN* 55.91 / 94.26% 53.54 / 90.20% 55.45 / 94.14%
DSTTN 9.72 / 21.18% 10.30 / 24.12% 9.81 / 24.12%
Note: * denotes DSTTN without graph Laplacian regularization term.

Figure 6. The comparison for DSTTN with and without dense connections.
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4.6. Dense connections

To test the effects of dense connections, the decline curves concerning the real-time MAPE and
RMSE are plotted in Figure 6. In the controlled experiments, the configurations of DSTTN are same,
except for the dense connections. It is observed that the real-time MAPE and RMSE with dense
connections decline faster than that without dense connections as the iteration increases from 50 to
1000. Furthermore, the real-time MAPE and RMSE with dense connections are always lower than that
without dense connections within the limited iterations. Thus, the deployment of the dense connections
accelerates the training process and improves the accuracy of DSTTN.

5. Conclusions

To solve the time-series data missing problems, we propose a cross-modal method. This method
uses a graph Laplacian regularization constraint to extrapolate the remaining observation data to the
target data domain. It uses the DSTTN model to fuse spatial and temporal modal data, and finally
impute the expected time-series data.

Sufficient comparative experiments are conducted to test the performance of the cross-modal
method. The experimental results verify that DSTTN achieves state-of-the-art performance not only
in the MAR case, but also in the CDM case. The results reveal that the graph Laplacian regularization
constraint enables deep-learning methods to extrapolate data efficiently.
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