Research article Special Issues

Adaptive fuzzy fixed time formation control of state constrained nonlinear multi-agent systems against FDI attacks


  • Received: 10 January 2024 Revised: 09 February 2024 Accepted: 21 February 2024 Published: 29 February 2024
  • In this manuscript, based on nonlinear multi-agent systems (MASs) with full state constraints and considering security control problem under false data injection (FDI) attacks, the fixed-time formation control (FTFC) protocol was designed, which can ensure that all agents follow the required protocol within a fixed time. Fuzzy logic system (FLS) was used to compensate and approximate the uncertain function, which improved safety and robustness of the formation process. Finally, the fixed-time theory and Lyapunov stability theory were addressed to prove the effectiveness of the proposed method, and simulation examples verified the effectiveness of the theory.

    Citation: Jinxin Du, Lei Liu. Adaptive fuzzy fixed time formation control of state constrained nonlinear multi-agent systems against FDI attacks[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4724-4741. doi: 10.3934/mbe.2024207

    Related Papers:

  • In this manuscript, based on nonlinear multi-agent systems (MASs) with full state constraints and considering security control problem under false data injection (FDI) attacks, the fixed-time formation control (FTFC) protocol was designed, which can ensure that all agents follow the required protocol within a fixed time. Fuzzy logic system (FLS) was used to compensate and approximate the uncertain function, which improved safety and robustness of the formation process. Finally, the fixed-time theory and Lyapunov stability theory were addressed to prove the effectiveness of the proposed method, and simulation examples verified the effectiveness of the theory.



    加载中


    [1] X. W. Dong, G. Q. Hu, Time-varying formation control for general linear multi-agent systems with switching directed topologies, Automatica, 73 (2016), 47–55. https://doi.org/10.1016/j.automatica.2016.06.024 doi: 10.1016/j.automatica.2016.06.024
    [2] T. Guo, J. Han, C. Zhou, J. Zhou, Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology, Math. Biosci. Eng., 19 (2022), 7504–7520. https://doi.org/10.3934/mbe.2022353 doi: 10.3934/mbe.2022353
    [3] H. Q. Hou, Y. J. Liu, J. Lan, L. Liu, Adaptive fuzzy fixed time time-varying formation control for heterogeneous multiagent systems with full state constraints, IEEE Trans. Fuzzy Syst., 31 (2022), 1152–1162. https://doi.org/10.1109/TFUZZ.2022.3195609 doi: 10.1109/TFUZZ.2022.3195609
    [4] L. Wang, J. Dong, C. Xi, Event-triggered adaptive consensus for fuzzy output-constrained multi-agent systems with observers, J. Frankl. Inst., 19 (2022), 7504–7520. https://doi.org/10.1016/j.jfranklin.2019.09.033 doi: 10.1016/j.jfranklin.2019.09.033
    [5] Q. Shi, T. S. Li, J. Q. Li, C. L. P. Chen, Y. Xiao, Q. H. Shan, Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems, Neurocomputing, 350 (2019), 282–290. https://doi.org/10.1016/j.neucom.2019.03.045 doi: 10.1016/j.neucom.2019.03.045
    [6] S. Zhang, L. Tang, Y. J. Liu, Formation deployment control of multi-agent systems modeled with PDE, Math. Biosci. Eng., 19 (2022), 13541–13559. https://doi.org/10.3934/mbe.2022632 doi: 10.3934/mbe.2022632
    [7] S. Zhao, Affine formation maneuver control of multiagent systems, IEEE Trans. Autom. Control, 63 (2018), 4140–4155. https://doi.org/10.1109/TAC.2018.2798805 doi: 10.1109/TAC.2018.2798805
    [8] Y. Yang, Y. Xiao, T. S. Li, Attacks on formation control for multiagent systems, IEEE Trans. Cybern., 52 (2022), 12805–12817. https://doi.org/10.1109/TCYB.2021.3089375 doi: 10.1109/TCYB.2021.3089375
    [9] H. Liu, G. Xie, L. Wang, Necessary and sufficient conditions for containment control of networked multi-agent systems, Automatica, 48 (2012), 1415–1422. https://doi.org/10.1016/j.automatica.2012.05.010 doi: 10.1016/j.automatica.2012.05.010
    [10] H. Chu, S. Gorbachev, D. Yue, C. Dou, Output formation containment for multiagent systems under multipoint multipattern FDI attacks: A resilient impulsive compensation control approach, IEEE Trans. Cybern., (2023), 1–12. https://doi.org/10.1109/TCYB.2023.3319647 doi: 10.1109/TCYB.2023.3319647
    [11] Y. Cao, W. Ren, Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics, Automatica, 50 (2014), 2648–2656. https://doi.org/10.1016/j.automatica.2014.08.028 doi: 10.1016/j.automatica.2014.08.028
    [12] S. Sui, C. L. P. Chen, S. C. Tong, Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems, IEEE Trans. Fuzzy Syst., 27 (2019), 172–184. https://doi.org/10.1109/TFUZZ.2018.2882167 doi: 10.1109/TFUZZ.2018.2882167
    [13] Y. L. Cai, H. G. Zhang, Y. Liu, Q. He, Distributed bipartite finite-time event-triggered output consensus for heterogeneous linear multi-agent systems under directed signed communication topology, Appl. Math. Comput., 378 (2020), 125162. https://doi.org/10.1016/j.amc.2020.125162 doi: 10.1016/j.amc.2020.125162
    [14] J. Lan, Y. J. Liu, T. Y. Xu, S. C. Tong, L. Liu, Adaptive fuzzy fast finite-time formation control for second-order MASs based on capability boundaries of agents, IEEE Trans. Fuzzy Syst., 30 (2021), 3905–3917. https://doi.org/10.1109/TFUZZ.2021.3133903 doi: 10.1109/TFUZZ.2021.3133903
    [15] H. Q. Wang, K. Xu, P. X. P. Liu, J. F. Qiao, Adaptive fuzzy fast finite-time dynamic surface tracking control for nonlinear systems, IEEE Trans. Circuits I, 68 (2021), 4337–4348. https://doi.org/10.1109/TCSI.2021.3098830 doi: 10.1109/TCSI.2021.3098830
    [16] D. J. Yao, C. X. Dou, N. Zhao, T. J. Zhang, Practical fixed-time adaptive consensus control for a class of multi-agent systems with full state constraints and input delay, Neurocomputing, 446 (2021), 156–164. https://doi.org/10.1016/j.neucom.2021.03.032 doi: 10.1016/j.neucom.2021.03.032
    [17] H. B. Du, G. H. Wen, D. Wu, Y. Y. Cheng, J. H. Lü, Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems, Automatica, 113 (2020), 108797. https://doi.org/10.1016/j.automatica.2019.108797 doi: 10.1016/j.automatica.2019.108797
    [18] M. Chen, H. Wang, X. Liu, Adaptive fuzzy practical fixed-time tracking control of nonlinear systems, IEEE Trans. Fuzzy Syst., 29 (2021), 664–673. https://doi.org/10.1109/TFUZZ.2019.2959972 doi: 10.1109/TFUZZ.2019.2959972
    [19] Y. L. Cai, H. Zhang, Y. Wang, Z. Gao, Q. He, Adaptive bipartite fixed-time time-varying output formation-containment tracking of heterogeneous linear multiagent systems, IEEE Trans. Neural Networks Learn. Syst., 33 (2021), 4688–4698. https://doi.org/10.1109/TNNLS.2021.3059763 doi: 10.1109/TNNLS.2021.3059763
    [20] J. Qin, G. Zhang, W. X. Zheng, Y. Kang, Adaptive sliding mode consensus tracking for second-order nonlinear multiagent systems with actuator faults, IEEE Trans. Cybern., 49 (2019), 1605–1615. https://doi.org/10.1109/TCYB.2018.2805167 doi: 10.1109/TCYB.2018.2805167
    [21] D. P. Li, D. J. Li, Adaptive neural tracking control for nonlinear time-delay systems with full state constraints, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 1590–1601. https://doi.org/10.1109/TSMC.2016.2637063 doi: 10.1109/TSMC.2016.2637063
    [22] T. S. Li, W. W. Bai, Q. Liu, Y. Long, C. L. P. Chen, Distributed fault-tolerant containment control protocols for the discrete-time multi-agent systems via reinforcement learning method, IEEE Trans. Neural Networks Learn. Syst., 34 (2021), 3979–3991. https://doi.org/10.1109/TNNLS.2021.3121403 doi: 10.1109/TNNLS.2021.3121403
    [23] Q. He, Z. Feng, H. Fang, X. W. Wang, L. Zhao, Y. D. Yao, et al., A blockchain-based scheme for secure data offloading in healthcare with deep reinforcement learning, IEEE/ACM Trans. Networks, 2023 (2023), 1–16. https://doi.org/10.1109/TNET.2023.3274631 doi: 10.1109/TNET.2023.3274631
    [24] P. Lin, W. Ren, Y. Song, Distributed multi-agent optimization subject to nonidentical constraints and communication delays, Automatica, 65 (2016), 120–131. https://doi.org/10.1016/j.automatica.2015.11.014 doi: 10.1016/j.automatica.2015.11.014
    [25] K. Zhao, Y. Song, Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems, IEEE Trans. Autom. Control, 64 (2018), 1265–1272. https://doi.org/10.1109/TAC.2018.2845707 doi: 10.1109/TAC.2018.2845707
    [26] W. Zhao, Y. J. Liu, L. Liu, Observer-based adaptive fuzzy tracking control using integral barrier Lyapunov functionals for a nonlinear system with full state constraints, IEEE /CAA J. Autom. Sin., 8 (2021), 617–627. https://doi.org/10.1109/JAS.2021.1003877 doi: 10.1109/JAS.2021.1003877
    [27] D. P. Li, H. G. Han, J. F. Qiao, Adaptive NN controller of nonlinear state-dependent constrained systems with unknown control direction, IEEE Trans. Neural Networks Learn. Syst., 35 (2024), 913–922. https://doi.org/10.1109/TNNLS.2022.3177839 doi: 10.1109/TNNLS.2022.3177839
    [28] M. Chen, S. S. Ge, B. Ren, Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints, Automatica, 4 (2011), 452–465. https://doi.org/10.1016/j.automatica.2011.01.025 doi: 10.1016/j.automatica.2011.01.025
    [29] J. J. Fu, G. H. Wen, W. W. Yu, T. W. Huang, X. H. Yu, Consensus of second-order multiagent systems with both velocity and input constraints, IEEE Trans. Ind. Electron., 66 (2018), 7946–7955. https://doi.org/10.1109/TIE.2018.2879292 doi: 10.1109/TIE.2018.2879292
    [30] B. Fan, Q. Yang, S. Jagannathan, Y. Sun, Output-constrained control of nonaffine multiagent systems with partially unknown control directions, IEEE Trans. Autom. Control, 64 (2019), 3936–3942. https://doi.org/10.1109/TAC.2019.2892391 doi: 10.1109/TAC.2019.2892391
    [31] Q. He, H. Fang, J. Zhang, X. Wang, Dynamic opinion maximization in social networks, IEEE Trans. Knowl. Data Eng., 35 (2023), 350–361. https://doi.org/10.1109/TKDE.2021.3077491 doi: 10.1109/TKDE.2021.3077491
    [32] B. Miao, H. Wang, Y. J. Liu, L. Liu, Adaptive security control against false data injection attacks in cyber-physical systems, IEEE J. Emerging Sel. Top. Circuits Syst., 13 (2023), 743–751. https://doi.org/10.1109/JETCAS.2023.3253483 doi: 10.1109/JETCAS.2023.3253483
    [33] Y. Jiang, B. Niu, X. Wang, X. Zhao, H. Wang, B. Yan, Distributed finite-time consensus tracking control for nonlinear multi-agent systems with FDI attacks and application to single-link robots, IEEE Trans. Circuits II, 70 (2022), 1505–1509. https://doi.org/10.1109/TCSII.2022.3220359 doi: 10.1109/TCSII.2022.3220359
    [34] A. Mousavi, K. Aryankia, R. R. Selmic, A distributed FDI cyber-attack detection in discrete-time nonlinear multi-agent systems using neural networks, Eur. J. Control, 66 (2022), 100646. https://doi.org/10.1016/j.ejcon.2022.100646 doi: 10.1016/j.ejcon.2022.100646
    [35] M. Nadeem, A. Arshad, S. Riaz, A secure architecture to protect the network from replay attacks during client-to-client data transmission, Appl. Sci., 12 (2022), 8143. https://doi.org/10.3390/app12168143 doi: 10.3390/app12168143
    [36] Z. Gu, P. Shi, D. Yue, S. Yan, X. Xie, Memory-based continuous event-triggered control for networked T-S fuzzy systems against cyberattacks, IEEE Trans. Fuzzy Syst., 29 (2020), 3118–3129. https://doi.org/10.1109/TFUZZ.2020.3012771 doi: 10.1109/TFUZZ.2020.3012771
    [37] W. Qi, Y. Hou, J. H. Park, G. Zong, J. Cao, J. Cheng, SMC for discrete-time networked semi-Markovian switching systems with random DoS attacks and applications, IEEE Trans. Syst. Man Cybern. Syst., 53 (2022), 7504–7520. https://doi.org/10.1109/TSMC.2022.3211322 doi: 10.1109/TSMC.2022.3211322
    [38] H. Zhang, P. Cheng, L. Shi, J. Chen, Optimal DoS attack scheduling in wireless networked control system, IEEE Trans. Control Syst. Technol., 24 (2015), 843–852. https://doi.org/10.1109/TSMC.2022.3211322 doi: 10.1109/TSMC.2022.3211322
    [39] Y. Zhang, Z. G. Wu, P. Shi, Event/self-triggered control for leader-following consensus over unreliable network with DoS attacks, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 3137–3149. https://doi.org/10.1109/TNNLS.2018.2890119 doi: 10.1109/TNNLS.2018.2890119
    [40] Z. Gu, C. K. Ahn, D. Yue, X. Xie, Event-triggered H$\infty$ filtering for T-S fuzzy-model-based nonlinear networked systems with multisensors against dos attacks, IEEE Trans. Cybern., 52 (2022), 5311–5321. https://doi.org/10.1109/TCYB.2020.3030028 doi: 10.1109/TCYB.2020.3030028
    [41] B. L. Tian, Z. Y. Zuo, H. Wang, Leader–follower fixed-time consensus of multi-agent systems with high-order integrator dynamics, Int. J. Control, 90 (2017), 1420–1427. https://doi.org/10.1080/00207179.2016.1207101 doi: 10.1080/00207179.2016.1207101
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(745) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog