Research article Special Issues

Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network


  • Received: 17 October 2023 Revised: 28 January 2024 Accepted: 01 February 2024 Published: 21 February 2024
  • Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. Despite progress in cancer treatment, identifying administration protocols for therapeutic agents remains a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administrative costs. In this work, optimal control theory was employed to design a cost-effective and efficient co-administration protocols for bortezomib and OVs that could significantly diminish the population of cancer cells via the cell death program with the NF$ \kappa $B-BAX-RIP1 signaling network. Both linear and quadratic control strategies were explored to obtain practical treatment approaches by adapting necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination therapy commencing with the administration of OVs followed by bortezomib infusions yields an effective tumor-killing outcome. These results could provide valuable guidance for the development of clinical administration protocols in cancer treatment.

    Citation: Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim. Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 3876-3909. doi: 10.3934/mbe.2024173

    Related Papers:

  • Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. Despite progress in cancer treatment, identifying administration protocols for therapeutic agents remains a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administrative costs. In this work, optimal control theory was employed to design a cost-effective and efficient co-administration protocols for bortezomib and OVs that could significantly diminish the population of cancer cells via the cell death program with the NF$ \kappa $B-BAX-RIP1 signaling network. Both linear and quadratic control strategies were explored to obtain practical treatment approaches by adapting necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination therapy commencing with the administration of OVs followed by bortezomib infusions yields an effective tumor-killing outcome. These results could provide valuable guidance for the development of clinical administration protocols in cancer treatment.



    加载中


    [1] K. Aldape, K. Brindle, L. Chesler, R. Chopra, A. Gajjar, M. Gilbert, et al., Challenges to curing primary brain tumours, Nat. Rev. Clin. Oncol., 16 (2019), 509–520. https://doi.org/10.1038/s41571-019-0177-5 doi: 10.1038/s41571-019-0177-5
    [2] J. Godlewski, M. Nowicki, A. Bronisz, G. N. J. Palatini, M. D. Lay, J. Brocklyn, et al., MircroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells, Mol. Cell, 37 (2010), 620–632. https://doi.org/10.1016/j.molcel.2010.02.018 doi: 10.1016/j.molcel.2010.02.018
    [3] J. Lee, J. Kim, Y. Kim, Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies, PLoS Comput. Biol., 17 (2021), e1009457. https://doi.org/10.1371/journal.pcbi.1009457 doi: 10.1371/journal.pcbi.1009457
    [4] S. Schagen, A. Tsvetkov, A. Compter, J. Wefel, Cognitive adverse effects of chemotherapy and immunotherapy: are interventions within reach?, Nat. Rev. Neurol., 18 (2022), 173–185. https://doi.org/10.1038/s41582-021-00617-2 doi: 10.1038/s41582-021-00617-2
    [5] L. Zhong, Y. Li, L. Xiong, W. Wang, M. Wu, T. Yuan, et al., Small molecules in targeted cancer therapy: advances, challenges, and future perspectives, Signal Transduction Targeted Ther., 6 (2021), 201. https://doi.org/10.1038/s41392-021-00572-w doi: 10.1038/s41392-021-00572-w
    [6] J. Yoo, B. Hurwitz, C. Bolyard, J. Yu, J. Zhang, K. Selvendiran, et al., Bortezomib-induced unfolded protein response increases oncolytic hsv-1 replication resulting in synergistic antitumor effects, Clin. Cancer Res., 20 (2014), 3787–3798. https://doi.org/10.1158/1078-0432.CCR-14-0553 doi: 10.1158/1078-0432.CCR-14-0553
    [7] M. A. Shahshahan, M. N. Beckley, A. R. Jazirehi, Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: Basic and clinical aspects, Am. J. Cancer Res., 1 (2011), 913–924.
    [8] B. Cvek, Z. Dvorak, The ubiquitin-proteasome system (UPS) and the mechanism of action of bortezomib, Curr. Pharm. Des., 17 (2011), 1483–1499. https://doi.org/10.2174/138161211796197124 doi: 10.2174/138161211796197124
    [9] B. A. Teicher, J. E. Tomaszewski, Proteasome inhibitors, Biochem. Pharmacol., 96 (2015), 1–9. https://doi.org/10.1016/j.bcp.2015.04.008 doi: 10.1016/j.bcp.2015.04.008
    [10] N. Rastogi, D. P. Mishra, Therapeutic targeting of cancer cell cycle using proteasome inhibitors, Cell Div., 7 (2012), 26. https://doi.org/10.1186/1747-1028-7-26 doi: 10.1186/1747-1028-7-26
    [11] D. Chen, M. Frezza, S. Schmitt, J. Kanwar, Q. Dou, Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives, Curr. Cancer Drug Targets, 11 (2011), 239–253. https://doi.org/10.2174/156800911794519752 doi: 10.2174/156800911794519752
    [12] J. Z. Qin, H. Xin, L. A. Sitailo, M. F. Denning, B. J. Nickoloff, Enhanced killing of melanoma cells by simultaneously targeting Mcl-1 and NOXA, Cancer Res., 66 (2006), 9636–9645. https://doi.org/10.1158/0008-5472.CAN-06-0747 doi: 10.1158/0008-5472.CAN-06-0747
    [13] A. Dudek, K. Lesniewski-Kmak, N. Shehadeh, O. Pandey, M. Franklin, R. Kratzke, et al., Phase Ⅰ study of bortezomib and cetuximab in patients with solid tumours expressing epidermal growth factor receptor, Br. J. Cancer, 100 (2009), 1379–1384. https://doi.org/10.1038/sj.bjc.6605043 doi: 10.1038/sj.bjc.6605043
    [14] J. Gilbert, J. W. Lee, A. Argiris, M. Haigentz, L. E. Feldman, M. Jang, et al., Phase Ⅱ 2-arm trial of the proteasome inhibitor, PS-341 (bortezomib) in combination with irinotecan or PS-341 alone followed by the addition of irinotecan at time of progression in patients with locally recurrent or metastatic squamous cell carcinoma of the head and neck (e1304): A trial of the eastern cooperative oncology group, Head Neck, 35 (2013), 942–948. https://doi.org/10.1002/hed.23046 doi: 10.1002/hed.23046
    [15] C. Colomer, L. Marruecos, A. Vert, A. Bigas, L. Espinosa, Nf-kb members left home: Nf-kb-independent roles in cancer, Biomedicines, 5 (2017), 26. https://doi.org/10.3390/biomedicines5020026 doi: 10.3390/biomedicines5020026
    [16] K. Campbell, S. Tait, Targeting BCL-2 regulated apoptosis in cancer, Open Biol., 8 (2018), 180002.
    [17] D. Westphal, R. Kluck, G. Dewson, Building blocks of the apoptotic pore: how bax and bak are activated and oligomerize during apoptosis, Cell Death Differ., 21 (2014), 196–205. https://doi.org/10.1038/cdd.2013.139 doi: 10.1038/cdd.2013.139
    [18] N. Mitsiades, C. Mitsiades, V. Poulaki, D. Chauhan, P. Richardson, T. Hideshima, et al., Biologic sequelae of nuclear factor-kappab blockade in multiple myeloma: therapeutic applications, Blood, 29 (2002), 4079–4086. https://doi.org/10.1182/blood.V99.11.4079 doi: 10.1182/blood.V99.11.4079
    [19] P. Richardson, T. Hideshima, K. Anderson, Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers, Cancer Control, 10 (2003), 361–369. https://doi.org/10.1177/107327480301000502 doi: 10.1177/107327480301000502
    [20] A. Ashkenazi, G. Salvesen, Regulated cell death: signaling and mechanisms, Annu. Rev. Cell Dev. Biol., 30 (2014), 337–356. https://doi.org/10.1146/annurev-cellbio-100913-013226 doi: 10.1146/annurev-cellbio-100913-013226
    [21] K. Brown, S. Park, T. Kanno, G. Franzoso, U. Siebenlist, Mutual regulation of the transcriptional activator nf-kappa b and its inhibitor, I kappa B-alpha., PNAS, 90 (1993), 2532–2536. https://doi.org/10.1073/pnas.90.6.2532 doi: 10.1073/pnas.90.6.2532
    [22] P. Fan, A. Tyagi, F. Agboke, R. Mathur, N. Pokharel, V. Jordan, Modulation of nuclear factor-kappa B activation by the endoplasmic reticulum stress sensor PERK to mediate estrogen-induced apoptosis in breast cancer cells, Cell Death Discovery, 4 (2018), 15. https://doi.org/10.1038/s41420-017-0012-7 doi: 10.1038/s41420-017-0012-7
    [23] M. Ma, K. Parker, S. Manyak, C. Altamirano, Z. Wu, M. J. Borad, J. R. Berenson, Proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma cells to chemotherapeutic agents and overcomes chemoresistance through inhibition of the NF-kappa B pathway, Blood, 98 (2001), 473a.
    [24] J. Berenson, H. Ma, R. Vescio, The role of nuclear factor-kappaB in the biology and treatment of multiple myeloma, Semin. Oncol., 28 (2001), 626–633. https://doi.org/10.1016/S0093-7754(01)90036-3 doi: 10.1016/S0093-7754(01)90036-3
    [25] A. Masilamani, R. Ferrarese, E. Kling, N. Thudi, H. Kim, D. Scholtens, et al., KLF6 depletion promotes nf-$\kappa$b signaling in glioblastoma, Oncogene, 36 (2017), 3562–3575. https://doi.org/10.1038/onc.2016.507 doi: 10.1038/onc.2016.507
    [26] M. Karin, Nuclear factor-kappab in cancer development and progression, Nature, 441 (2006), 431–436. https://doi.org/10.1038/nature04870 doi: 10.1038/nature04870
    [27] T. Strobel, Y. Tai, S. Korsmeyer, S. Cannistra, Bad partly reverses paclitaxel resistance in human ovarian cancer cells, Oncogene, 17 (1998), 2419–2427. https://doi.org/10.1038/sj.onc.1202180 doi: 10.1038/sj.onc.1202180
    [28] J. Wojton, W. Meisen, B. Kaur, How to train glioma cells to die: molecular challenges in cell death, J. Neuro-Oncol., 126 (2016), 377–384. https://doi.org/10.1007/s11060-015-1980-1 doi: 10.1007/s11060-015-1980-1
    [29] M. Rosenfeld, X. Ye, J. Supko, S. Desideri, S. Grossman, S. Brem, et al., A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme, Autophagy, 10 (2014), 1359–1368. https://doi.org/10.4161/auto.28984 doi: 10.4161/auto.28984
    [30] S. Melo-Lima, M. C. Lopes, F. Mollinedo, Necroptosis is associated with low procaspase-8 and active RIPK1 and -3 in human glioma cells, Oncoscience, 1 (2014), 649–664. https://doi.org/10.18632/oncoscience.89 doi: 10.18632/oncoscience.89
    [31] S. Russell, J. Bell, C. Engeland, G. McFadden, Advances in oncolytic virotherapy, Commun. Med., 2 (2022), 33. https://doi.org/10.1038/s43856-022-00098-4 doi: 10.1038/s43856-022-00098-4
    [32] J. Malinzi, R. Ouifki, A. Eladdadi, D. F. M. Torres, K. A. J. White, Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis, Math. Biosci. Eng., 15 (2018), 1435–1463. https://doi.org/10.3934/mbe.2018066 doi: 10.3934/mbe.2018066
    [33] E. Kelly, S. J. Russell, History of oncolytic viruses: Genesis to genetic engineering, Mol. Ther., 15 (2007), 651–659. https://doi.org/10.1038/sj.mt.6300108 doi: 10.1038/sj.mt.6300108
    [34] H. Fukuhara, Y. Ino, T. Todo, Oncolytic virus therapy: A new era of cancer treatment at dawn, Cancer Sci., 107 (2016), 1373–1379. https://doi.org/10.1111/cas.13027 doi: 10.1111/cas.13027
    [35] E. A. Chiocca, S. D. Rabkin, Oncolytic viruses and their application to cancer immunotherapy, Cancer Immunol. Res., 2 (2014), 295–300. https://doi.org/10.1158/2326-6066.CIR-14-0015 doi: 10.1158/2326-6066.CIR-14-0015
    [36] D. Shin, T. Nguyen, B. Ozpolat, F. Lang, M. Alonso, C. Gomez-Manzano, et al., Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy, J. ImmunoTher. Cancer, 9 (2021), e002086. https://doi.org/10.1136/jitc-2020-002086 doi: 10.1136/jitc-2020-002086
    [37] A. Nguyen, L. Ho, Y. Wan, Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer, Front. Oncol., 4 (2014), 145. https://doi.org/10.3389/fonc.2014.00145 doi: 10.3389/fonc.2014.00145
    [38] Y. Kim, H. Lee, N. Dmitrieva, J. Kim, B. Kaur, A. Friedman, Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti-tumor efficacy: A mathematical model, PLoS One, 9 (2014), e102499. https://doi.org/10.1371/journal.pone.0102499 doi: 10.1371/journal.pone.0102499
    [39] R. Kanai, H. Wakimoto, T. Cheema, S. D. Rabkin, Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer?, Future Oncol., 6 (2010), 619–634. https://doi.org/10.2217/fon.10.18 doi: 10.2217/fon.10.18
    [40] G. Marelli, A. Howells, N. Lemoine, Y. Wang, Oncolytic viral therapy and the immune system: A double-edged sword against cancer, Front. Immunol., 9 (2018), 866. https://doi.org/10.3389/fimmu.2018.00866 doi: 10.3389/fimmu.2018.00866
    [41] T. C. Liu, E. Galanis, D. Kirn, Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress, Nat. Clin. Pract. Oncol., 4 (2007), 101–117. https://doi.org/10.1038/ncponc0736 doi: 10.1038/ncponc0736
    [42] G. Simpson, K. Relph, K. Harrington, A. Melcher, H. Pandha, Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances, Oncolytic Virother., 5 (2016), 1–13.
    [43] J. Yoo, A. Jaime-Ramirez, C. Bolyard, H. Dai, T. Nallanagulagari, J. Wojton, et al., Bortezomib treatment sensitizes oncolytic HSV-1 treated tumors to NK cell immunotherapy, Clin. Cancer Res., 22 (2016), 5265–5276. https://doi.org/10.1158/1078-0432.CCR-16-1003 doi: 10.1158/1078-0432.CCR-16-1003
    [44] A. Najafov, H. Chen, J. Yuan, Necroptosis and cancer, Trends Cancer, 3 (2017), 294–301. https://doi.org/10.1016/j.trecan.2017.03.002 doi: 10.1016/j.trecan.2017.03.002
    [45] Y. Kim, J. Y. Yoo, T. J. Lee, J. Liu, J. Yu, M. A. Caligiuri, et al., Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy, PNAS, 115 (2018), 4927–4932. https://doi.org/10.1073/pnas.1715295115 doi: 10.1073/pnas.1715295115
    [46] Y. Kim, J. Lee, D. Lee, H. Othmer, Synergistic effects of bortezomib-OV therapy and anti-invasive strategies in glioblastoma: a mathematical model, Cancers, 11 (2019), 215. https://doi.org/10.3390/cancers11020215 doi: 10.3390/cancers11020215
    [47] A. Aspirin, A. de Los Reyes, Y. Kim, Polytherapeutic strategies with oncolytic virus-bortezomib and adjuvant NK cells in cancer treatment, J. R. Soc. Interface, 18 (2021), 20200669. https://doi.org/10.1098/rsif.2020.0669 doi: 10.1098/rsif.2020.0669
    [48] A. Alsisi, R. Eftimie, D. Trucu, Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix, Math. Biosci. Eng., 19 (2022), 6157–6185. https://doi.org/10.3934/mbe.2022288 doi: 10.3934/mbe.2022288
    [49] Z. Parra-Guillen, T. Freshwater, Y. Cao, K. Mayawala, S. Zalba, M. Garrido, et al., Mechanistic modeling of a novel oncolytic virus, v937, to describe viral kinetic and dynamic processes following intratumoral and intravenous administration, Front. Pharmacol., 12 (2021), 705443.
    [50] P. Pooladvand, C. Yun, A. Yoon, P. Kim, F. Frascoli, The role of viral infectivity in oncolytic virotherapy outcomes: A mathematical study, Math. Biosci., 334 (2021), 108520. https://doi.org/10.1016/j.mbs.2020.108520 doi: 10.1016/j.mbs.2020.108520
    [51] N. Almuallem, D. Trucu, R. Eftimie, Oncolytic viral therapies and the delicate balance between virus-macrophage-tumour interactions: A mathematical approach, Math. Biosci. Eng., 18 (2020), 764–799. https://doi.org/10.3934/mbe.2021041 doi: 10.3934/mbe.2021041
    [52] T. Alzahrani, R. Eftimie, D. Trucu, Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: The impact of syncytia dynamics, Math. Biosci., 323 (2020), 108296. https://doi.org/10.1016/j.mbs.2019.108296 doi: 10.1016/j.mbs.2019.108296
    [53] A. Jenner, C. Yun, P. Kim, A. Coster, Mathematical modelling of the interaction between cancer cells and an oncolytic virus: Insights into the effects of treatment protocols, Bull. Math. Biol., 80 (2018), 1615–1629. https://doi.org/10.1007/s11538-018-0424-4 doi: 10.1007/s11538-018-0424-4
    [54] P. Kim, J. Crivelli, I. Choi, C. Yun, J. Wares, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics, Math. Biosci. Eng., 12 (2015), 841–858.
    [55] A. Jenner, C. Yun, A. Yoon, A. Coster, P. Kim, Modelling combined virotherapy and immunotherapy: strengthening the antitumour immune response mediated by IL-12 and GM-CSF expression, Lett. Biomath., 5 (2018), 99–116.
    [56] J. Wares, J. Crivelli, C. Yun, I. Choi, J. Gevertz, P. Kim, Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections, Math. Biosci. Eng., 12 (2015), 1237–1256. https://doi.org/10.3934/mbe.2015.12.1237 doi: 10.3934/mbe.2015.12.1237
    [57] A. Friedman, J. Tian, G. Fulci, E. Chiocca, J. Wang, Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006), 2314–2319. https://doi.org/10.1158/0008-5472.CAN-05-2661 doi: 10.1158/0008-5472.CAN-05-2661
    [58] A. Friedman, X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLoS One, 13 (2018), e0192449. https://doi.org/10.1371/journal.pone.0192449 doi: 10.1371/journal.pone.0192449
    [59] Y. Otani, D. Bottino, N. Gupta, M. Vakilynejad, Y. Tanigawara, Mathematical models for early detection of relapse in multiple myeloma patients treated with bortezomib/lenalidomide/dexamethasone, Blood, 140 (2022), 4310–4311. https://doi.org/10.1182/blood-2022-157625 doi: 10.1182/blood-2022-157625
    [60] L. Zhang, D. Mager, Systems modeling of bortezomib and dexamethasone combinatorial effects on bone homeostasis in multiple myeloma patients, J. Pharm. Sci., 108 (2019), 732–740. https://doi.org/10.1016/j.xphs.2018.11.024 doi: 10.1016/j.xphs.2018.11.024
    [61] P. Bloomingdale, C. Meregalli, K. Pollard, A. Canta, A. Chiorazzi, G. Fumagalli, et al., Systems pharmacology modeling identifies a novel treatment strategy for bortezomib-induced neuropathic pain, Front. Pharmacol., 12 (2022), 817236. https://doi.org/10.3389/fphar.2021.817236 doi: 10.3389/fphar.2021.817236
    [62] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology, Chapman and Hall/CRC, 2007.
    [63] A. Jarrett, D. Faghihi, D. Ii, E. Lima, J. Virostko, G. Biros, et al., Optimal control theory for personalized therapeutic regimens in oncology: Background, history, challenges, and opportunities, J. Clin. Med., 9 (2020), 1314. https://doi.org/10.3390/jcm9051314 doi: 10.3390/jcm9051314
    [64] K. Bahrami, M. Kim, Optimal control of multiplicative control systems arising from cancer therapy, IEEE Trans. Autom. Control, 20 (1975), 537–542. https://doi.org/10.1109/TAC.1975.1101019 doi: 10.1109/TAC.1975.1101019
    [65] G. W. Swan, T. L. Vincent, Optimal control analysis in the chemotherapy of igg multiple myeloma, Bull. Math. Biol., 39 (1977), 317–337. https://doi.org/10.1007/BF02462912 doi: 10.1007/BF02462912
    [66] G. W. Swan, Optimal control applications in the chemotherapy of multiple myeloma, Math. Med. Biol.: J. IMA, 2 (1985), 139–160. https://doi.org/10.1093/imammb/2.3.139 doi: 10.1093/imammb/2.3.139
    [67] A. Ergun, K. Camphausen, L. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. Math. Biol., 65 (2003), 407–424. https://doi.org/10.1016/S0092-8240(03)00006-5 doi: 10.1016/S0092-8240(03)00006-5
    [68] E. Ratajczyk, U. Ledzewicz, H. Schattler, Optimal control for a mathematical model of glioma treatment with oncolytic therapy and tnf-$\alpha$ inhibitors, J. Optim. Theory Appl., 176 (2018), 456–477. https://doi.org/10.1007/s10957-018-1218-4 doi: 10.1007/s10957-018-1218-4
    [69] H. Schattler, Y. Kim, U. Ledzewicz, A. los Reyes, E. Jung, On the control of cell migration and proliferation in glioblastoma, in 52nd IEEE Conference on Decision and Control, (2013), 1810–1815. https://doi.org/10.1109/CDC.2013.6760145
    [70] E. Jung, A. los Reyes, K. Pumares, Y. Kim, Strategies in regulating glioblastoma signaling pathways and anti-invasion therapy, PLoS One, 14 (2019), e0215547. https://doi.org/10.1371/journal.pone.0215547 doi: 10.1371/journal.pone.0215547
    [71] A. L. Reyes, E. Jung, Y. Kim, Optimal control strategies of eradicating invisible glioblastoma cells after conventional surgery, J. R. Soc. Interface, 12 (2015), 20141392. https://doi.org/10.1098/rsif.2014.1392 doi: 10.1098/rsif.2014.1392
    [72] A. Reyes, Y. Kim, Optimal regulation of tumour-associated neutrophils in cancer progression, R. Soc. Open Sci., 9 (2022), 210705. https://doi.org/10.1098/rsos.210705 doi: 10.1098/rsos.210705
    [73] J. Lee, D. Lee, Y. Kim, Mathematical model of stat signalling pathways in cancer development and optimal control approaches, R. Soc. Open Sci., 8 (2021), 210594. https://doi.org/10.1098/rsos.210594 doi: 10.1098/rsos.210594
    [74] C. Silva, C. Cruz, D. Torres, A. Munuzuri, A. Carballosa, I. Area, et al., Optimal control of the covid-19 pandemic: controlled sanitary deconfinement in portugal, Sci. Rep., 11 (2021), 3451. https://doi.org/10.1038/s41598-021-83075-6 doi: 10.1038/s41598-021-83075-6
    [75] I. Ahn, S. Heo, S. Ji, K. Kim, T. Kim, E. Lee, et al., Investigation of nonlinear epidemiological models for analyzing and controlling the mers outbreak in Korea, J. Theor. Biol., 437 (2018), 17–28. https://doi.org/10.1016/j.jtbi.2017.10.004 doi: 10.1016/j.jtbi.2017.10.004
    [76] U. Ledzewicz, H. Schattler, The structure of optimal protocols for a mathematical model of chemotherapy with antiangiogenic effects, SIAM J. Control. Optim., 60 (2022), 1092–1116. https://doi.org/10.1137/21M1395326 doi: 10.1137/21M1395326
    [77] U. Ledzewicz, H. Maurer, H. Schattler, Optimal combined radio- and anti-angiogenic cancer therapy, J. Optim. Theory Appl., 180 (2019), 321–340. https://doi.org/10.1007/s10957-018-1426-y doi: 10.1007/s10957-018-1426-y
    [78] H. Sbeity, R. Younes, Review of optimization methods for cancer chemotherapy treatment planning, J. Comput. Sci. Syst. Biol., 8 (2015), 74–95. https://doi.org/10.4172/jcsb.1000173 doi: 10.4172/jcsb.1000173
    [79] I. Elmouki, S. Saadi, BCG immunotherapy optimization on an isoperimetric optimal control problem for the treatment of superficial bladder cancer, Int. J. Dyn. Control, 4 (2016), 339–345. https://doi.org/10.1007/s40435-014-0106-5 doi: 10.1007/s40435-014-0106-5
    [80] I. Elmouki, S. Saadi, Quadratic and linear controls developing an optimal treatment for the use of BCG immunotherapy in superficial bladder cancer, Optim. Control Appl. Methods, 37 (2016), 176–189. https://doi.org/10.1002/oca.2161 doi: 10.1002/oca.2161
    [81] A. Hamdache, I. Elmouki, S. Saadi, Optimal control with an isoperimetric constraint applied to cancer immunotherapy, Int. J. Comput. Appl. Technol., 94 (2014), 31–37. https://doi.org/10.5120/16421-6073 doi: 10.5120/16421-6073
    [82] L. de Pillis, K. R. Fister, W. Gu, T. Head, K. Maples, T. Neal, et al., Optimal control of mixed immunotherapy and chemotherapy of tumors, J. Biol. Syst., 16 (2008), 51–80. https://doi.org/10.1142/S0218339008002435 doi: 10.1142/S0218339008002435
    [83] J. Zhang, Q. He, D. Mao, C. Wang, L. Huang, M. Wang et al., Efficacy and adverse reaction management of oncolytic viral intervention combined with chemotherapy in patients with liver metastasis of gastrointestinal malignancy, Front. Oncol., 13 (2023), 1159802. https://doi.org/10.3389/fonc.2023.1159802 doi: 10.3389/fonc.2023.1159802
    [84] X. Cheng, Q. Zhao, X. Xu, W. Guo, H. Gu, R. Zhou, et al., Case report: Extragonadal yolk sac tumors originating from the endometrium and the broad ligament: A case series and literature review, Front. Oncol., 11 (2021), 672434. https://doi.org/10.3389/fonc.2021.672434 doi: 10.3389/fonc.2021.672434
    [85] A. Rampen, J. Jongen, I. van Heuvel, M. S. de Boer, P. Sonneveld, M. van den Bent, Bortezomib-induced polyneuropathy, Neth. J. Med., 71 (2013), 128–133.
    [86] R. Orlowski, T. Stinchcombe, B. Mitchell, T. Shea, A. Baldwin, S. Stahl, et al., Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies, J. Clin. Oncol., 20 (2002), 4420–4427. https://doi.org/10.1200/JCO.2002.01.133 doi: 10.1200/JCO.2002.01.133
    [87] M. Mateos, J. S. Miguel, Bortezomib in multiple myeloma, Best Pract. Res. Clin. Haematol., 20 (2007), 701–715. https://doi.org/10.1016/j.beha.2007.09.003 doi: 10.1016/j.beha.2007.09.003
    [88] J. Zhang, Y. Liu, J. Tan, Y. Zhang, C. Wong, Z. Lin, et al., Necroptotic virotherapy of oncolytic alphavirus m1 cooperated with doxorubicin displays promising therapeutic efficacy in TNBC, Oncogene, 40 (2021), 4783–4795. https://doi.org/10.1038/s41388-021-01869-4 doi: 10.1038/s41388-021-01869-4
    [89] J. Sprooten, P. Wijngaert, I. Vanmeerbeerk, S. Martin, P. Vangheluwe, S. Schlenner, et al., Necroptosis in immuno-oncology and cancer immunotherapy, Cell, 9 (2020), 1823. https://doi.org/10.3390/cells9081823 doi: 10.3390/cells9081823
    [90] K. R. Fister, J. C. Panetta, Optimal control applied to competing chemotherapeutic cell-kill strategies, SIAM J. Appl. Math., 63 (2003), 1954–1971. https://doi.org/10.1137/S0036139902413489 doi: 10.1137/S0036139902413489
    [91] L. de Pillis, W. Gu, K. Fister, T. Head, K. Maples, A. Murugan, et al., Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Math. Biosci., 209 (2007), 292–315. https://doi.org/10.1016/j.mbs.2006.05.003 doi: 10.1016/j.mbs.2006.05.003
    [92] S. Sabir, N. Raissi, M. Serhani, Chemotherapy and immunotherapy for tumors: A study of quadratic optimal control, Int. J. Appl. Comput. Math., 6 (2020), 81. https://doi.org/10.1007/s40819-020-00838-x doi: 10.1007/s40819-020-00838-x
    [93] S. Sharma, G. P. Samanta, Analysis of the dynamics of a tumor-immune system with chemotherapy and immunotherapy and quadratic optimal control, Differ. Equations Dyn. Syst., 24 (2016), 149–171. https://doi.org/10.1007/s12591-015-0250-1 doi: 10.1007/s12591-015-0250-1
    [94] G. W. Swan, General applications of optimal control theory in cancer chemotherapy, Math. Med. Biol.: J. IMA, 5 (1988), 303–316. https://doi.org/10.1093/imammb/5.4.303 doi: 10.1093/imammb/5.4.303
    [95] A. E. Glick, A. Mastroberardino, An optimal control approach for the treatment of solid tumors with angiogenesis inhibitors, Mathematics, 5 (2017), 49. https://doi.org/10.3390/math5040049 doi: 10.3390/math5040049
    [96] L. Pontryagin, Mathematical Theory of Optimal Processes, Classics of Soviet Mathematics, Taylor & Francis, 1987.
    [97] G. Tundo, D. Sbardella, A. Santoro, A. Coletta, F. Oddone, G. Grasso, et al., The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges, Pharmacol. Ther., 213 (2020), 107579. https://doi.org/10.1016/j.pharmthera.2020.107579 doi: 10.1016/j.pharmthera.2020.107579
    [98] J. Adams, The development of proteasome inhibitors as anticancer drugs, Cancer Cell, 5 (2004), 417–421. https://doi.org/10.1016/S1535-6108(04)00120-5 doi: 10.1016/S1535-6108(04)00120-5
    [99] D. Johnson, The ubiquitin-proteasome system: Opportunities for therapeutic intervention in solid tumors, Endocr. Relat. Cancer, 22 (2015), T1–T17. https://doi.org/10.1530/ERC-14-0005 doi: 10.1530/ERC-14-0005
    [100] G. Kaplan, C. Torcun, T. Grune, N. Ozer, B. Karademir, Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect, Free Radical Biol. Med., 103 (2017), 1–13. https://doi.org/10.1016/j.freeradbiomed.2016.12.007 doi: 10.1016/j.freeradbiomed.2016.12.007
    [101] P. Richardson, B. Barlogie, J. Berenson, S. Singhal, S. Jagannath, D. Irwin, et al., Extended follow-up of a phase ii trial in relapsed, refractory multiple myeloma: Final time-to-event results from the summit trial, Cancer: Interdiscip. Int. J. Am., 106 (2006), 1316–1319. https://doi.org/10.1002/cncr.21740 doi: 10.1002/cncr.21740
    [102] T. Lawrence, The nuclear factor NF-kappaB pathway in inflammation, Cold Spring Harb Perspect Biol., 1 (2009), a001651.
    [103] M. Karin, F. Greten, Nf-kappab: linking inflammation and immunity to cancer development and progression, Nat. Rev. Immunol., 5 (2005), 749–759. https://doi.org/10.1038/nri1703 doi: 10.1038/nri1703
    [104] S. Marino, I. Hogue, C. Ray, D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
    [105] M. Curran, K. Mckeage, Bortezomib: a review of its use in patients with multiple myeloma, Drugs, 69 (2009), 859–888. https://doi.org/10.2165/00003495-200969070-00006 doi: 10.2165/00003495-200969070-00006
    [106] J. S. Miguel, R. Schlag, N. Khuageva, M. Dimopoulos, O. Shpilberg, M. Kropff, et al., Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma, N. Engl. J. Med., 359 (2008), 906–917. https://doi.org/10.1056/NEJMoa0801479 doi: 10.1056/NEJMoa0801479
    [107] S. Bergqvist, G. Ghosh, E. A. Komives, The IkBa/NF-kB complex has two hot spots, one at either end of the interface, Protein Sci., 17 (2008), 2051–2058. https://doi.org/10.1110/ps.037481.108 doi: 10.1110/ps.037481.108
    [108] E. Mathes, E. L. O'Dea, A. Hoffmann, G. Ghosh, NF-kB dictates the degradation pathway of IkBa, EMBO J., 27 (2008), 1357–1367. https://doi.org/10.1038/emboj.2008.73 doi: 10.1038/emboj.2008.73
    [109] M. Xin, X. Deng, Nicotine inactivation of the proapoptotic function of bax through phosphorylation, J. Biol. Chem., 280 (2005), 10781–10789. https://doi.org/10.1074/jbc.M500084200 doi: 10.1074/jbc.M500084200
    [110] Q. Wang, W. Chen, X. Xu, B. Li, W. He, M. T. Padilla, et al., RIP1 potentiates BPDE-induced transformation in human bronchial epithelial cells through catalase-mediated suppression of excessive reactive oxygen species, Carcinogenesis, 34 (2013), 2119–2128. https://doi.org/10.1093/carcin/bgt143 doi: 10.1093/carcin/bgt143
    [111] D. Leveque, M. Carvalho, F. Maloisel, Clinical pharmacokinetics of bortezomib, In vivo, 21 (2007), 273–278.
    [112] R. Kane, P. Bross, A. Farrell, R. Pazdur, The mean elimination half-life of bortezomib after the first dose ranged from 9–15 hours at doses ranging from 1.45–2.00 $mg/m^2$ in patients with advanced malignancies, Oncologist, 8 (2003), 508–513.
    [113] T. Lipniacki, P. Paszek, A. Brasier, B. Luxon, M. Kimmel, Mathematical model of NF-kappab regulatory module, J. Theor. Biol., 228 (2004), 195–215. https://doi.org/10.1016/j.jtbi.2004.01.001 doi: 10.1016/j.jtbi.2004.01.001
    [114] E. Lee, D. Boone, S. Chai, S. Libby, M. Chien, J. Lodolce et al., Failure to regulate tnf-induced nf-kappab and cell death responses in a20-deficient mice, Science, 289 (2000), 2350–2354. https://doi.org/10.1126/science.289.5488.2350 doi: 10.1126/science.289.5488.2350
    [115] J. Mothes, D. Busse, B. Kofahl, J. Wolf, Sources of dynamic variability in nf-kb signal transduction: a mechanistic model, Bioessays, 37 (2015), 452–462. https://doi.org/10.1002/bies.201400113 doi: 10.1002/bies.201400113
    [116] X. Xu, X. Wang, W. Hu, A modeled dynamic regulatory network of nf-$\kappa$b and il-6 mediated by mirna, Biosystems, 114 (2013), 214–218. https://doi.org/10.1016/j.biosystems.2013.09.001 doi: 10.1016/j.biosystems.2013.09.001
    [117] R. Kirkland, G. Saavedra, B. Cummings, J. Franklin, Bax regulates production of superoxide in both apoptotic and nonapoptotic neurons: role of caspases, J. Neurosci., 30 (2010), 16114–16127. https://doi.org/10.1523/JNEUROSCI.2862-10.2010 doi: 10.1523/JNEUROSCI.2862-10.2010
    [118] J. Li, T. McQuade, A. Siemer, J. Napetschnig, K. Moriwaki, Y. Hsiao, et al., The rip1/rip3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, 150 (2012), 339–350. https://doi.org/10.1016/j.cell.2012.06.019 doi: 10.1016/j.cell.2012.06.019
    [119] J. A. O'donoghue, M. Bardies, T. Wheldon, Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides, J. Nucl. Med., 36 (1995), 1902–1909.
  • mbe-21-03-173-supplementary.pdf
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1281) PDF downloads(103) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog