Research article Special Issues

Deterministic and stochastic approaches to a minimal model for the transition from autophagy to apoptosis


  • Received: 18 December 2023 Revised: 09 January 2024 Accepted: 21 January 2024 Published: 01 February 2024
  • Autophagy and apoptosis are crucial cellular mechanisms. The cytoprotective function of autophagy is mediated by the negative regulation of apoptosis, which in turn inhibits autophagy. Although research into the molecular connection between autophagy and apoptosis is booming, the intricate regulatory mechanisms of this process are still not completely understood. Therefore, the objective of this study was to develop a minimal model to explore the transition from autophagy to apoptosis. This biological system was analyzed by comprehensively integrating both the deterministic and the stochastic dynamics of the cells. The system exhibited bistability, and the statistical properties of cells undergoing autophagy and apoptosis were analyzed at two different stress levels with varying noise strengths. Moreover, we investigated how noise affected the double negative feedback loops between autophagy and apoptosis and further triggered transitions at two different stress levels and initial conditions. Finally, the effect of noise on transition was comprehensively studied under continuous stress variations and the two different initial conditions, showing that stronger noise results in more randomness during the switching process. Our work may provide novel insights for further experiments and modeling.

    Citation: Bojie Yang, Zhuoqin Yang. Deterministic and stochastic approaches to a minimal model for the transition from autophagy to apoptosis[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 3207-3228. doi: 10.3934/mbe.2024142

    Related Papers:

  • Autophagy and apoptosis are crucial cellular mechanisms. The cytoprotective function of autophagy is mediated by the negative regulation of apoptosis, which in turn inhibits autophagy. Although research into the molecular connection between autophagy and apoptosis is booming, the intricate regulatory mechanisms of this process are still not completely understood. Therefore, the objective of this study was to develop a minimal model to explore the transition from autophagy to apoptosis. This biological system was analyzed by comprehensively integrating both the deterministic and the stochastic dynamics of the cells. The system exhibited bistability, and the statistical properties of cells undergoing autophagy and apoptosis were analyzed at two different stress levels with varying noise strengths. Moreover, we investigated how noise affected the double negative feedback loops between autophagy and apoptosis and further triggered transitions at two different stress levels and initial conditions. Finally, the effect of noise on transition was comprehensively studied under continuous stress variations and the two different initial conditions, showing that stronger noise results in more randomness during the switching process. Our work may provide novel insights for further experiments and modeling.



    加载中


    [1] W. Cao, J. Li, K. Yang, D. Cao, An overview of autophagy: Mechanism, regulation and research progress, Bull. Cancer, 108 (2021), 304–322. https://doi.org/10.1016/j.bulcan.2020.11.004 doi: 10.1016/j.bulcan.2020.11.004
    [2] H. Yamamoto, S. Zhang, N. Mizushima, Autophagy genes in biology and disease, Nat. Rev. Genet., 24 (2023), 382–400. https://doi.org/10.1038/s41576-022-00562-w doi: 10.1038/s41576-022-00562-w
    [3] S. Liu, S. Yao, H. Yang, S. Liu, Y. Wang, Autophagy: Regulator of cell death, Cell Death Dis., 14 (2023), 648. https://doi.org/10.1038/s41419-023-06154-8 doi: 10.1038/s41419-023-06154-8
    [4] W. Xie, J. Zhou, Aberrant regulation of autophagy in mammalian diseases, Biol. Lett., 14 (2018), 20170540. https://doi.org/10.1098/rsbl.2017.0540 doi: 10.1098/rsbl.2017.0540
    [5] O. Kapuy, B. Lizák, I. Stiller, G. Bánhegyi, A systems biological perspective of cellular stress-directed programmed cell death, Comput. Mol. Biosci., 4 (2014), 28–34. https://doi.org/10.4236/cmb.2014.41003 doi: 10.4236/cmb.2014.41003
    [6] O. Kapuy, P. K. Vinod, J. Mandl, G. Bánhegyi, A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis, Mol. BioSyst., 9 (2013), 296–306. https://doi.org/10.1039/C2MB25261A doi: 10.1039/C2MB25261A
    [7] M. C. Maiuri, E. Zalckvar, A. Kimchi, G. Kroemer, Self-eating and self-killing: crosstalk between autophagy and apoptosis, Nat. Rev. Mol. Cell Biol., 8 (2007), 741–752. https://doi.org/10.1038/nrm2239 doi: 10.1038/nrm2239
    [8] V. Nikoletopoulou, M. Markaki, K. Palikaras, N. Tavernarakis, Crosstalk between apoptosis, necrosis and autophagy, Biochim. Biophys. Acta, Mol. Cell Res., 1833 (2013), 3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001 doi: 10.1016/j.bbamcr.2013.06.001
    [9] M. Redza-Dutordoir, D. A. Averill-Bates, Activation of apoptosis signalling pathways by reactive oxygen species, Biochim. Biophys. Acta, Mol. Cell Res., 1863 (2016), 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012 doi: 10.1016/j.bbamcr.2016.09.012
    [10] L. A. Booth, S. Tavallai, H. A. Hamed, N. Cruickshanks, P. Dent, The role of cell signalling in the crosstalk between autophagy and apoptosis, Cell. Signalling, 26 (2014), 549–555. https://doi.org/10.1016/j.cellsig.2013.11.028 doi: 10.1016/j.cellsig.2013.11.028
    [11] K. Cadwell, Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis, Nat. Rev. Immunol., 16 (2016), 661–675. https://doi.org/10.1038/nri.2016.100 doi: 10.1038/nri.2016.100
    [12] K. F. Cooper, Till death do us part: The marriage of autophagy and apoptosis, Oxid. Med. Cell Longevity, 2018 (2018), 1-13. https://doi.org/10.1155/2018/4701275 doi: 10.1155/2018/4701275
    [13] J. Doherty, E.H. Baehrecke, Life, death and autophagy, Nat, Cell Biol. 20 (2018), 1110–1117. https://doi.org/10.1038/s41556-018-0201-5 doi: 10.1038/s41556-018-0201-5
    [14] C. Gordy, Y. W. He, The crosstalk between autophagy and apoptosis: where does this lead, Protein. Cell, 3 (2012), 17-27. https://doi.org/10.1007/s13238-011-1127-x doi: 10.1007/s13238-011-1127-x
    [15] R. Kang, H. J. Zeh, M. T. Lotze, D. Tang, The Beclin 1 network regulates autophagy and apoptosis, Cell Death Differ., 18 (2011), 571–580. https://doi.org/10.1038/cdd.2010.191 doi: 10.1038/cdd.2010.191
    [16] F. Strappazzon, M. Vietri-Rudan, S. Campello, F. Nazio, F. Florenzano, G.M. Fimia, et al., Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy, EMBO J., 30 (2011), 1195–1208. https://doi.org/10.1038/emboj.2011.49 doi: 10.1038/emboj.2011.49
    [17] S. Song, J. Tan, Y. Miao, M. Li, Q. Zhang, Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress, J. Cell Physiol., 232 (2017), 2977–2984. https://doi.org/10.1002/jcp.25785 doi: 10.1002/jcp.25785
    [18] T. T. Su, Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different, Open Biol., 8 (2018), 180157. https://doi.org/10.1098/rsob.180157 doi: 10.1098/rsob.180157
    [19] A. B. Uzdensky, Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins, Apoptosis, 24 (2019), 687–702. https://doi.org/10.1007/s10495-019-01556-6 doi: 10.1007/s10495-019-01556-6
    [20] A. Ashkenazi, W. J. Fairbrother, J. D. Leverson, A. J. Souers, From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors, Nat. Rev. Drug Discovery, 16 (2017), 273–284. https://doi.org/10.1038/nrd.2016.253 doi: 10.1038/nrd.2016.253
    [21] R. Singh, A. Letai, K. Sarosiek, Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins, Nat. Rev. Mol. Cell Biol., 20 (2019), 175–193. https://doi.org/10.1038/s41580-018-0089-8 doi: 10.1038/s41580-018-0089-8
    [22] Z. Li, M. Ni, J. Li, Y. Zhang, Q. Ouyang, C. Tang, Decision making of the p53 network: Death by integration, J. Theor. Biol., 271 (2011), 205-211. https://doi.org/10.1016/j.jtbi.2010.11.041 doi: 10.1016/j.jtbi.2010.11.041
    [23] R. Ma, D. Yu, Y. Peng, H. Yi, Y. Wang, T. Cheng, et al., Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells, Acta Biochim. Biophys. Sin., 53 (2021), 775–783. https://doi.org/10.1093/abbs/gmab042 doi: 10.1093/abbs/gmab042
    [24] G. Y. Liu, W. L. Xie, Y. T. Wang, L. Chen, Z. Z. Xu, Y. Lv, et al., Calpain: the regulatory point of myocardial ischemia-reperfusion injury, Front. Cardiovasc. Med., 10 (2023), 1194402. https://doi.org/10.3389/fcvm.2023.1194402 doi: 10.3389/fcvm.2023.1194402
    [25] E. Kania, G. Roest, T. Vervliet, J. B. Parys, G. Bultynck, IP3 receptor-mediated calcium signaling and its role in autophagy in cancer, Front. Oncol., 7 (2017), 140. https://doi.org/10.3389/fonc.2017.00140 doi: 10.3389/fonc.2017.00140
    [26] B. Liu, Z. N. Oltvai, H. Bayır, G. A. Silverman, S. C. Pak, D. H. Perlmutter, et al., Quantitative assessment of cell fate decision between autophagy and apoptosis, Sci. Rep., 7 (2017), 17605. https://doi.org/10.1038/s41598-017-18001-w doi: 10.1038/s41598-017-18001-w
    [27] I. Tavassoly, J. Parmar, A. N. Shajahan-Haq, R. Clarke, W. T. Baumann, J. J. Tyson, Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells, CPT Pharmacometrics Syst. Pharmacol., 4 (2015), 263-272. https://doi.org/10.1002/psp4.29 doi: 10.1002/psp4.29
    [28] B. J. Yang, Q. S. Liu, Y. H. Bi, Autophagy and apoptosis are regulated by stress on Bcl2 by AMBRA1 in the endoplasmic reticulum and mitochondria, Theor. Biol. Med. Modell., 16 (2019), 18. https://doi.org/10.1186/s12976-019-0113-5 doi: 10.1186/s12976-019-0113-5
    [29] M. Holczer, M. Márton, A. Kurucz, G. Bánhegyi, O. Kapuy, A comprehensive systems biological study of autophagy-apoptosis crosstalk during endoplasmic reticulum stress, BioMed. Res. Int., 2015 (2015), 319589. https://doi.org/10.1155/2015/319589 doi: 10.1155/2015/319589
    [30] O. Kapuy, P. K. Vinod, G. Bánhegyi, mTOR inhibition increases cell viability via autophagy induction during endoplasmic reticulum stress—An experimental and modeling study, FEBS. Open Bio, 4 (2014), 704–713. https://doi.org/10.1016/j.fob.2014.07.006 doi: 10.1016/j.fob.2014.07.006
    [31] P. Smolen, D. A. Baxter, J. H. Byrne, Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory, Phys. Rev. E, 79 (2009), 031902. https://doi.org/10.1103/PhysRevE.79.031902 doi: 10.1103/PhysRevE.79.031902
    [32] J. Tang, X. Yang, J. Ma, Y. Jia, Noise effect on persistence of memory in a positive-feedback gene regulatory circuit, Phys. Rev. E, 80 (2009), 011907. https://doi.org/10.1103/PhysRevE.80.011907 doi: 10.1103/PhysRevE.80.011907
    [33] X. P. Zhang, Z. Cheng, F. Liu, W. Wang, Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling, Phys. Rev. E, 76 (2007), 031924. https://doi.org/10.1103/PhysRevE.76.031924 doi: 10.1103/PhysRevE.76.031924
    [34] M. Chen, L. Wang, C. C. Liu, Q. Nie, Noise attenuation in the ON and OFF states of biological Switches, ACS Synth. Biol., 2 (2013), 587–593. https://doi.org/10.1021/sb400044g doi: 10.1021/sb400044g
    [35] V. Hatzimanikatis, C. Gérard, D. Gonze, F. Lemaigre, B. Novák, A model for the epigenetic switch linking inflammation to cell transformation: deterministic and stochastic approaches, PLoS Comput. Biol., 10 (2014), e1003455. https://doi.org/10.1371/journal.pcbi.1003455 doi: 10.1371/journal.pcbi.1003455
    [36] B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, Appl. Mech. Rev., (2002). https://doi.org/10.1137/1.9780898718195 doi: 10.1137/1.9780898718195
    [37] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, MATCONT: a matlab package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw, 29 (2003), 141–164. https://doi.org/10.1145/779359.779362 doi: 10.1145/779359.779362
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(819) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog