Research article Special Issues

Stationary distribution and extinction of a stochastic HIV/AIDS model with nonlinear incidence rate


  • Received: 11 September 2023 Revised: 19 November 2023 Accepted: 03 December 2023 Published: 02 January 2024
  • This paper studies a stochastic HIV/AIDS model with nonlinear incidence rate. In the model, the infection rate coefficient and the natural death rates are affected by white noise, and infected people are affected by an intervention strategy. We derive the conditions of extinction and permanence for the stochastic HIV/AIDS model, that is, if $ R_0^s < 1, $ HIV/AIDS will die out with probability one and the distribution of the susceptible converges weakly to a boundary distribution; if $ R_0^s > 1 $, HIV/AIDS will be persistent almost surely and there exists a unique stationary distribution. The conclusions are verified by numerical simulation.

    Citation: Helong Liu, Xinyu Song. Stationary distribution and extinction of a stochastic HIV/AIDS model with nonlinear incidence rate[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 1650-1671. doi: 10.3934/mbe.2024072

    Related Papers:

  • This paper studies a stochastic HIV/AIDS model with nonlinear incidence rate. In the model, the infection rate coefficient and the natural death rates are affected by white noise, and infected people are affected by an intervention strategy. We derive the conditions of extinction and permanence for the stochastic HIV/AIDS model, that is, if $ R_0^s < 1, $ HIV/AIDS will die out with probability one and the distribution of the susceptible converges weakly to a boundary distribution; if $ R_0^s > 1 $, HIV/AIDS will be persistent almost surely and there exists a unique stationary distribution. The conclusions are verified by numerical simulation.



    加载中


    [1] N. Dalal, D. Greenhalgh, X. Mao, A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341 (2008), 1084–1101. https://doi.org/10.1016/j.jmaa.2007.11.005 doi: 10.1016/j.jmaa.2007.11.005
    [2] A. Nhd, B. Nnn, Permanence and extinction for the stochastic SIR epidemic model, J. Differ. Equation, 269 (2020), 9619–9652. https://doi.org/10.1016/j.jde.2020.06.049 doi: 10.1016/j.jde.2020.06.049
    [3] A. Gral, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X
    [4] Z. Liu, Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Anal. RWA, 14 (2013), 1286–1299. https://doi.org/10.1016/j.nonrwa.2012.09.016 doi: 10.1016/j.nonrwa.2012.09.016
    [5] L. Imhof, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equation, 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017
    [6] X. Mao, G. Marion, E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [7] X. Y. Zhou, X. Gao, X. Y. Shi, Analysis of an SQEIAR stochastic epidemic model with media coverage and asymptomatic infection, Int. J. Biomath., 15 (2022), 2250083. https://doi.org/10.1142/S1793524522500838 doi: 10.1142/S1793524522500838
    [8] Q. Liu, D. Q. Jiang, N. Shi, B. Ahmad, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Phys. A, 469 (2017), 510–517. https://doi.org/10.1016/j.physa.2017.02.028 doi: 10.1016/j.physa.2017.02.028
    [9] W. D. Wang, Epidemic models with nonlinear infection forces, Math. Biosci. Eng., 3 (2006), 267–279. https://doi.org/10.3934/mbe.2006.3.267 doi: 10.3934/mbe.2006.3.267
    [10] D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429. https://doi.org/10.1016/j.mbs.2006.09.025 doi: 10.1016/j.mbs.2006.09.025
    [11] J. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 38 (2008), 1323–1334. https://doi.org/10.1216/RMJ-2008-38-5-1323 doi: 10.1216/RMJ-2008-38-5-1323
    [12] J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dynam. Differ. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
    [13] C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission, ISRN Biomath., (2012), 581274. https://doi.org/10.5402/2012/581274 doi: 10.5402/2012/581274
    [14] Y. Cai, Y. Kang, M. Banerjee, W. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equation, 259 (2015), 7463–7502. https://doi.org/10.1016/j.jde.2015.08.024 doi: 10.1016/j.jde.2015.08.024
    [15] W. Liu, A SIRS epidemic model incorporating media coverage with random perturbation, Abst. Appl. Anal., (2013), 792308. https://doi.org/10.1155/2013/792308 doi: 10.1155/2013/792308
    [16] Y. Zhang, K. Fan, S. Gao, Y. Liu, S. Chen, Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate, Phys. A, 514 (2019), 671–685. https://doi.org/10.1016/j.physa.2018.09.124 doi: 10.1016/j.physa.2018.09.124
    [17] W. Guo, Q. Zhang, X. Li, W. Wang, Dynamic behavior of a stochastic SIRS epidemic model with media coverage, Math. Meth. Appl. Sci., 41 (2018), 5506–5525. https://doi.org/10.1002/mma.5094 doi: 10.1002/mma.5094
    [18] W. Liu, Q. Zheng, A stochastic SIS epidemic model incorporating media coverage in a two patch setting, Appl. Math. Comput., 62 (2015), 160–168. https://doi.org/10.1016/j.amc.2015.04.025 doi: 10.1016/j.amc.2015.04.025
    [19] Y. P. Tan, Y. L. Cai, Z. Peng, K. Wang, R. Yao, et al., Stochastic dynamics of an SIS epidemiological model with media coverage, Math. Comput. Simulat., 204 (2–23), 1–27. https://doi.org/10.1016/j.matcom.2022.08.001 doi: 10.1016/j.matcom.2022.08.001
    [20] B. Q. Zhou, D. Q. Jiang, B. Han, T. Hayat, Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process, Math. Comput. Simulat., 196 (2022), 15–44. https://doi.org/10.1016/j.matcom.2022.01.014 doi: 10.1016/j.matcom.2022.01.014
    [21] B. Q. Zhou, B. T. Han, D. Q. Jiang, T. Hayat, A. Alsaedi, Ergodic stationary distribution and extinction of a staged progression HIV/AIDS infection model with nonlinear stochastic perturbations, Nonlinear Dyn., 104 (2022), 3863–3886. https://doi.org/10.1007/s11071-021-07116-5 doi: 10.1007/s11071-021-07116-5
    [22] B. T. Han, D. Q. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second-order perturbation, Chaos Soliton Fract., 140 (2020), 110238. https://doi.org/10.1016/j.chaos.2020.110238 doi: 10.1016/j.chaos.2020.110238
    [23] Q. Liu, D. Q. Jiang, T. Hayat, B. Ahmad, Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence, Phys. A, 486 (2017), 867–882. https://doi.org/10.1016/j.physa.2017.05.069 doi: 10.1016/j.physa.2017.05.069
    [24] M. M. Gao, D. Q. Jiang, T. Hayat, Qualitative analysis of an HIV/AIDS model with treatment and nonlinear perturbation, Qual. Theor. Dyn. Syst., 21 (2022), 12346-022-00615-9. https://doi.org/10.1007/s12346-022-00615-9 doi: 10.1007/s12346-022-00615-9
    [25] Q. Liu, D. Q. Jiang, Dynamics of a stochastic multigroup S-DI-A model for the transmission of HIV, Appl. Anal., 99 (2020), 1–26. https://doi.org/10.1080/00036811.2020.1758310 doi: 10.1080/00036811.2020.1758310
    [26] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
    [27] Q. S. Yang, D. Q. Jiang, N. Z. Shi, C. Y. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248–271. https://doi.org/10.1016/j.jmaa.2011.11.072 doi: 10.1016/j.jmaa.2011.11.072
    [28] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operations, Cambridge: Cambridge University Press, 1984.
    [29] X. Mao, Stochastic Differential Equations and Applications, Chichester: Elsevier, 2007.
    [30] L. Allen, An introduction to stochastic epidemic models, Berlin Heidelberg: Springer, 2008.
    [31] D. Nguyen, G. Yin, Z. Chu, Certain properties related to well posedness of switching diffusions, Stoch. Process. Appl., 127 (2017), 3135–3158. https://doi.org/10.1016/j.spa.2017.02.004 doi: 10.1016/j.spa.2017.02.004
    [32] N. Nguyen, G. Yin, Stochastic partial differential equation SIS epidemic models: modeling and analysis, Commun. Stoch. Anal., 13 (2019), 8. https://doi.org/10.31390/cosa.13.3.08 doi: 10.31390/cosa.13.3.08
    [33] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(866) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog