Research article Special Issues

Prediction of influential proteins and enzymes of certain diseases using a directed unimodular hypergraph


  • Received: 12 August 2023 Revised: 16 November 2023 Accepted: 22 November 2023 Published: 13 December 2023
  • Protein-protein interaction (PPI) analysis based on mathematical modeling is an efficient means of identifying hub proteins, corresponding enzymes and many underlying structures. In this paper, a method for the analysis of PPI is introduced and used to analyze protein interactions of diseases such as Parkinson's, COVID-19 and diabetes melitus. A directed hypergraph is used to represent PPI interactions. A novel directed hypergraph depth-first search algorithm is introduced to find the longest paths. The minor hypergraph reduces the dimension of the directed hypergraph, representing the longest paths and results in the unimodular hypergraph. The property of unimodular hypergraph clusters influential proteins and enzymes that are related thereby providing potential avenues for disease treatment.

    Citation: Sathyanarayanan Gopalakrishnan, Swaminathan Venkatraman. Prediction of influential proteins and enzymes of certain diseases using a directed unimodular hypergraph[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 325-345. doi: 10.3934/mbe.2024015

    Related Papers:

  • Protein-protein interaction (PPI) analysis based on mathematical modeling is an efficient means of identifying hub proteins, corresponding enzymes and many underlying structures. In this paper, a method for the analysis of PPI is introduced and used to analyze protein interactions of diseases such as Parkinson's, COVID-19 and diabetes melitus. A directed hypergraph is used to represent PPI interactions. A novel directed hypergraph depth-first search algorithm is introduced to find the longest paths. The minor hypergraph reduces the dimension of the directed hypergraph, representing the longest paths and results in the unimodular hypergraph. The property of unimodular hypergraph clusters influential proteins and enzymes that are related thereby providing potential avenues for disease treatment.



    加载中


    [1] J. De Las Rivas, C. Fontanillo, Protein–protein interactions essentials: key concepts to building and analyzing interactome networks, PLoS Comput. Biol., 6 (2010), e1000807. https://doi.org/10.1371/journal.pcbi.1000807 doi: 10.1371/journal.pcbi.1000807
    [2] D. Kurzbach, Network representation of protein interactions: Theory of graph description and analysis, Protein Sci., 25 (2016), 1617–1627. https://doi.org/10.1002/pro.2963 doi: 10.1002/pro.2963
    [3] K. Raman, Construction and analysis of protein–protein interaction networks, Autom. Exp., 2 (2010), 1–11. https://doi.org/10.1186/1759-4499-2-2 doi: 10.1186/1759-4499-2-2
    [4] B. H. Junker, F. Schreiber, Analysis of Biological Networks, John Wiley & Sons, 2011.
    [5] D. Petrey, H. Zhao, S. J. Trudeau, D. Murray, B. Honig, PrePPI: A structure informed proteome-wide database of protein-protein interactions, J. Mol. Biol., 435 (2023), 168052. https://doi.org/10.1016/j.jmb.2023.168052 doi: 10.1016/j.jmb.2023.168052
    [6] D. Vella, S. Marini, F. Vitali, D. D. Silvestre, G. Mauri, R. Bellazzi, MTGO: PPI network analysis via topological and functional module identification, Sci. Rep., 8 (2018), 5499. https://doi.org/10.1038/s41598-018-23672-0 doi: 10.1038/s41598-018-23672-0
    [7] F. Sun, J. Sun, Q. Zhao, A deep learning method for predicting metabolite–disease associations via graph neural network, Brief. Bioinf., 23 (2022), bbac266. https://doi.org/10.1093/bib/bbac266 doi: 10.1093/bib/bbac266
    [8] W. Wang, L. Zhang, J. Sun, Q. Zhao, J. Shuai, Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field, Brief. Bioinf., 23 (2022), bbac463. https://doi.org/10.1093/bib/bbac463 doi: 10.1093/bib/bbac463
    [9] H. Gao, J. Sun, Y. Wang, Y. Lu, L. Liu, Q. Zhao, et al., Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization, Brief. Bioinf., 24 (2022), bbad259. https://doi.org/10.1093/bib/bbad259 doi: 10.1093/bib/bbad259
    [10] Z. Chen, L. Zhang, J. Sun, R. Meng, S. Yin, Q. Zhao, DCAMCP: A deep learning model based on capsule network and attention mechanism for molecular carcinogenicity prediction, J. Cell. Mol. Med., 27 (2023), 3117–3126. https://doi.org/10.1111/jcmm.17889 doi: 10.1111/jcmm.17889
    [11] R. Meng, S. Yin, J. Sun, H. Hu, Q. Zhao, scAAGA: Single cell data analysis framework using asymmetric autoencoder with gene attention, Comput. Biol. Med., 165 (2023), 107414. https://doi.org/10.1016/j.compbiomed.2023.107414 doi: 10.1016/j.compbiomed.2023.107414
    [12] T. Wang, J. Sun, Q. Zhao, Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism, Comput. Biol. Med., 153 (2023), 106464. https://doi.org/10.1016/j.compbiomed.2022.106464 doi: 10.1016/j.compbiomed.2022.106464
    [13] F. Klimm, C. M. Deane, G. Reinert, Hypergraphs for predicting essential genes using multiprotein complex data, J. Complex Networks, 9 (2021). https://doi.org/10.1093/comnet/cnaa028 doi: 10.1093/comnet/cnaa028
    [14] S. Feng, E. Heath, B. Jefferson, C. Joslyn, H. Kvinge, H. D. Mitchell, et al., Hypergraph models of biological networks to identify genes critical to pathogenic viral response, BMC Bioinf., 22 (2021), 1–21. https://doi.org/10.1186/s12859-021-04197-2 doi: 10.1186/s12859-021-04197-2
    [15] V. Swaminathan, R. Gangothri, K. Kannan, Unimodular hypergraph for DNA sequencing: A polynomial time algorithm, Proc. Natl. Acad. Sci. India-Phys. Sci., 90 (2020), 49–56. https://doi.org/10.1007/s40010-018-0561-z doi: 10.1007/s40010-018-0561-z
    [16] V. Swaminathan, R. Gangothri, V. Abhishek, B. S. Reddy, K. Kannan, A novel hypergraph-based genetic algorithm (hgga) built on unimodular and anti-homomorphism properties for DNA sequencing by hybridization, Interdiscip. Sci. Comput. Life Sci., 11 (2019), 397–411. https://doi.org/10.1007/s12539-017-0267-y doi: 10.1007/s12539-017-0267-y
    [17] M. R. Nallui, K. Kannan, X. Z. Gao, D. S. Roy, Multiobjective hybrid monarch butterfly optimization for imbalanced disease classification problem, Int. J. Mach. Learn. Cybern., 11 (2020), 1423–1451. https://doi.org/10.1007/s13042-019-01047-9 doi: 10.1007/s13042-019-01047-9
    [18] N. Kim, H. J. Lee, Target enzymes considered for the treatment of Alzheimer's disease and Parkinson's disease, BioMed. Res. Int., 2020 (2020). https://doi.org/10.1155/2020/2010728 doi: 10.1155/2020/2010728
    [19] M. Goldstein, A. Lieberman, The role of the regulatory enzymes of catecholamine synthesis in Parkinson's disease, Neurology, 42 (1992), 8–12. http://europepmc.org/abstract/MED/1350074
    [20] W. D. Rausch, F. Wang, K. Radad, From the tyrosine hydroxylase hypothesis of Parkinson's disease to modern strategies: a short historical overview, J. Neural Transm., 129 (2022), 487–495. https://doi.org/10.1007/s00702-022-02488-3 doi: 10.1007/s00702-022-02488-3
    [21] M. Nakano, H. Imamura, N. Sasaoka, M. Yamamoto, N. Uemura, T. Shudo, et al., ATP maintenance via two types of ATP regulators mitigates pathological phenotypes in mouse models of Parkinson's disease, EBioMedicine, 22 (2017), 225–241. https://doi.org/10.1016/j.ebiom.2017.07.024 doi: 10.1016/j.ebiom.2017.07.024
    [22] E. Angelopoulou, E. Karlafti, V. E. Georgakopoulou, P. Papalexis, S. G. Papageorgiou, T. Tegos, et al., Exploring the role of ACE2 as a connecting link between COVID-19 and Parkinson's disease, Life, 13 (2023), 536. https://doi.org/10.3390/life13020536 doi: 10.3390/life13020536
    [23] E. Estrada, Cascading from SARS-CoV-2 to parkinson's disease through protein-protein interactions, Viruses, 13 (2021), 897. https://doi.org/10.3390/v13050897 doi: 10.3390/v13050897
    [24] T. Jia, Y. Yang, X. Lu, Q. Zhu, K. Yang, X. Zhou, Link prediction based on tensor decomposition for the knowledge graph of COVID-19 antiviral drug, Data Intell., (2022), 1–12. https://doi.org/10.1162/dint_a_00117 doi: 10.1162/dint_a_00117
    [25] Y. Guo, F. Esfahani, X. Shao, V. Srinivasan, A. Thomo, L. Xing, et al., Integrative COVID-19 biological network inference with probabilistic core decomposition, Brief. Bioinf., 23 (2022), bbab455. https://doi.org/10.1093/bib/bbab455 doi: 10.1093/bib/bbab455
    [26] B. S. Kamel, C. R. Voolstra, M. Medina, BioMine-DB: A database for metazoan biomineralization proteins, Biol. Mater. Sci., (2016), 1–9. https://doi.org/10.7287/peerj.preprints.1983v2 doi: 10.7287/peerj.preprints.1983v2
    [27] M. I. Hasan, M. H. Rahman, M. B. Islam, M. Z. Islam, M. A. Hossain, M. A. Moni, Systems Biology and Bioinformatics approach to Identify blood based signatures molecules and drug targets of patient with COVID-19, Inf. Med. Unlocked, 28 (2022), 100840. https://doi.org/10.1016/j.imu.2021.100840 doi: 10.1016/j.imu.2021.100840
    [28] G. Li, X. He, L. Zhang, Q. Ran, J. Wang, A. Xiong, et al., Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19, J. Autoimmun., 112 (2020), 102463. https://doi.org/10.1016/j.jaut.2020.102463 doi: 10.1016/j.jaut.2020.102463
    [29] F. Messina, E. Giombini, C. Montaldo, A. A. Sharma, A. Zoccoli, R. P. Sekaly, et al., Looking for pathways related to COVID-19: confirmation of pathogenic mechanisms by SARS-CoV-2–host interactome, Cell Death Dis., 12 (2021), 1–10. https://doi.org/10.1038/s41419-021-03881-8 doi: 10.1038/s41419-021-03881-8
    [30] M. N. Karimabad, P. Khalili, F. Ayoobi, A. Esmaeili-Nadimi, C. L. Vecchia, Z. Jamali, Serum liver enzymes and diabetes from the Rafsanjan cohort study, BMC Endocr. Disord., 22 (2022), 1–12. https://doi.org/10.1186/s12902-022-01042-2 doi: 10.1186/s12902-022-01042-2
    [31] S. C. C. Chen, S. P. Tsai, J. Y. Jhao, W. K. Jiang, C. K. Tsao, L. Y. Chang, Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: a prospective study of 132,377 adults, Sci. Rep., 7 (2017), 4649. https://doi.org/10.1038/s41598-017-04631-7 doi: 10.1038/s41598-017-04631-7
    [32] J. J. Ross, C. H. Wasserfall, R. Bacher, D. J. Perry, K. McGrail, A. L. Posgai, et al., Exocrine pancreatic enzymes are a serological biomarker for type 1 diabetes staging and pancreas size, Diabetes, 70 (2021), 944–954. https://doi.org/10.2337/db20-0995 doi: 10.2337/db20-0995
    [33] A. Al-Kouh, F. Babiker, M. Al-Bader, Renin-angiotensin system antagonism protects the diabetic heart from ischemia/reperfusion injury in variable hyperglycemia duration settings by a glucose transporter type 4-mediated pathway, Pharmaceuticals, 16 (2023), 238. https://doi.org/10.3390/ph16020238 doi: 10.3390/ph16020238
    [34] G. Sathyanarayanan, S. Supriya, N. S. Ranjan, N. Janmenjoy, V. Swaminathan, Central hubs prediction for bio networks by directed hypergraph-GA with validation to COVID-19 PPI, Pattern Recognit. Lett., 153 (2022), 246–253. https://doi.org/10.1016/j.patrec.2021.12.015 doi: 10.1016/j.patrec.2021.12.015
    [35] I. Adler, T. Gavenčiak, T. Klimošová, Hypertree-depth and minors in hypergraphs, Theor. Comput. Sci., 463 (2012), 84–95. https://doi.org/10.1016/j.tcs.2012.09.007 doi: 10.1016/j.tcs.2012.09.007
    [36] M. Raghavachari, A constructive method to recognize the total unimodularity of a matrix, Zeitschrift für Oper. Res., 20 (1976), 59–61. https://doi.org/10.1007/BF01916748 doi: 10.1007/BF01916748
    [37] The UniProt Consortium, UniProt: the Universal Protein knowledgebase in 2023, Nucleic Acids Res., 51 (2023), D523–D531. https://doi.org/10.1093/nar/gkac1052 doi: 10.1093/nar/gkac1052
    [38] M. H. M. E. Alves, L. C. Mahnke, T. C. Macedo, T. K. dos S. Silva, L. B. C. Junior, The enzymes in COVID-19: A review, Biochimie, 197 (2022), 38–48. https://doi.org/10.1016/j.biochi.2022.01.015 doi: 10.1016/j.biochi.2022.01.015
    [39] M. H. M. E. Alves, L. C. Mahnke, T. C. Macedo, T. K. dos Santos Silva, L. B. C. Junior, COVID-19 associated liver injury: An updated review on the mechanisms and management of risk groups, Liver Res., 7 (2023), 207–215. https://doi.org/10.1016/j.livres.2023.07.001 doi: 10.1016/j.livres.2023.07.001
    [40] K. Turkmen, A. Karagoz, A. Kucuk, Sirtuins as novel players in the pathogenesis of diabetes mellitus, World J. Diabetes, 5 (2014), 894. https://doi.org/10.4239/wjd.v5.i6.894 doi: 10.4239/wjd.v5.i6.894
    [41] J. Song, B. Yang, X. Jia, M. Li, W. Tan, S. Ma, et al., Distinctive roles of sirtuins on diabetes, protective or detrimental?, Front. Endocrinol., 9 (2018), 724. https://https://doi.org/10.3389/fendo.2018.00724 doi: 10.3389/fendo.2018.00724
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(978) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog