Research article Special Issues

Dynamics of Bacterial white spot disease spreads in Litopenaeus Vannamei with time-varying delay


  • Received: 30 August 2023 Revised: 21 October 2023 Accepted: 01 November 2023 Published: 17 November 2023
  • In this paper, we mainly consider a eco-epidemiological predator-prey system where delay is time-varying to study the transmission dynamics of Bacterial white spot disease in Litopenaeus Vannamei, which will contribute to the sustainable development of shrimp. First, the permanence and the positiveness of solutions are given. Then, the conditions for the local asymptotic stability of the equilibriums are established. Next, the global asymptotic stability for the system around the positive equilibrium is gained by applying the functional differential equation theory and constructing a proper Lyapunov function. Last, some numerical examples verify the validity and feasibility of previous theoretical results.

    Citation: Xue Liu, Xin You Meng. Dynamics of Bacterial white spot disease spreads in Litopenaeus Vannamei with time-varying delay[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20748-20769. doi: 10.3934/mbe.2023918

    Related Papers:

  • In this paper, we mainly consider a eco-epidemiological predator-prey system where delay is time-varying to study the transmission dynamics of Bacterial white spot disease in Litopenaeus Vannamei, which will contribute to the sustainable development of shrimp. First, the permanence and the positiveness of solutions are given. Then, the conditions for the local asymptotic stability of the equilibriums are established. Next, the global asymptotic stability for the system around the positive equilibrium is gained by applying the functional differential equation theory and constructing a proper Lyapunov function. Last, some numerical examples verify the validity and feasibility of previous theoretical results.



    加载中


    [1] A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 73 (1992), 1530–1535. https://doi.org/10.2307/1940005 doi: 10.2307/1940005
    [2] X. X. Liu, S. Y. Liu, Dynamics of a predator-prey system with inducible defense and disease in the prey, Nonlinear Anal. Real., 71 (2023), 103802. https://doi.org/10.1016/j.nonrwa.2022.103802 doi: 10.1016/j.nonrwa.2022.103802
    [3] X. Y. Meng, H. F. Huo, X. B. Zhang, Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput., 60 (2019), 1–25. https://doi.org/10.1007/s12190-018-1201-0 doi: 10.1007/s12190-018-1201-0
    [4] M. Gyllenberg, P. Yan, Y. Wang, Limit cycles for competitor-competitor-mutualist Lotka-Volterra systems, Phys. D, 221 (2006), 135–145. https://doi.org/10.1016/j.physd.2006.07.016 doi: 10.1016/j.physd.2006.07.016
    [5] X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics of a food chain model with two infected predators, Int. J. Bifurcat. Chaos, 31 (2021), 2150019. https://doi.org/10.1142/S021812742150019X doi: 10.1142/S021812742150019X
    [6] Z. W. Liang, X. Y. Meng, Stability and Hopf bifurcation of a multiple delayed predator-prey system with fear effect, prey refuge and Crowley-Martin function, Chaos Solitons Fractals, 175 (2023), 113955. https://doi.org/10.1016/j.chaos.2023.113955 doi: 10.1016/j.chaos.2023.113955
    [7] Y. S. Chen, T. Giletti, J. S. Guo, Persistence of preys in a diffusive three species predator-prey system with a pair of strong-weak competing preys, J. Differ. Equations, 281 (2021), 341–378. https://doi.org/10.1016/j.jde.2021.02.013 doi: 10.1016/j.jde.2021.02.013
    [8] R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, New York, 2006. https://doi.org/10.1007/bfb0089537
    [9] M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Complex., 11 (2012), 12–27. https://doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002
    [10] Y. Song, W. Xiao, X. Y. Qi, Stability and Hopf bifurcation of a predator-prey model with stage structure and time delay for the prey, Nonlinear Dyn., 83 (2016), 1409–1418. http://dx.doi.org/10.1007/s11071-015-2413-6 doi: 10.1007/s11071-015-2413-6
    [11] M. Cai, S. L. Yan, Z. J. Du, Positive periodic solutions of an eco-epidemic model with Crowley-Martin type functional response and disease in the prey, Qual. Theor. Dyn. Syst., 19 (2020), 1–20. https://doi.org/10.1007/s12346-020-00392-3 doi: 10.1007/s12346-020-00392-3
    [12] J. B. Zhang, H. Fang, Multiple periodic solutions for a discrete time model of plankton allelopathy, Adv. Differ. Equation, 2006 (2006), 1–14. https://doi.org/10.1155/ade/2006/90479 doi: 10.1155/ade/2006/90479
    [13] X. Y. Meng, Y. Q. Wu, Dynamical analysis of a fuzzy phytoplankton-zooplankton model with refuge, fishery protection and harvesting, J. Appl. Math. Comput., 63 (2020), 361–389. https://doi.org/10.1007/s12190-020-01321-y doi: 10.1007/s12190-020-01321-y
    [14] X. S. Xiong, Z. Q. Zhang, Periodic solutions of a discrete two-species competitive model with stage structure, Math. Comput. Model., 48 (2008), 333–343. https://doi.org/10.1016/j.mcm.2007.10.004 doi: 10.1016/j.mcm.2007.10.004
    [15] W. P. Zhang, D. M. Zhu, P. Bi, Multiple positive periodic solutions of a delayed discrete predator-prey system with type IV functional responses, Appl. Math. Lett., 20 (2007), 1031–1038. https://doi.org/10.1016/j.aml.2006.11.005 doi: 10.1016/j.aml.2006.11.005
    [16] Z. Q. Zhang, J. B. Luo, Multiple periodic solutions of a delayed predator-prey system with stage structure for the predator, Nonlinear Anal. Real., 11 (2010), 4109–4120. https://doi.org/10.1016/j.nonrwa.2010.03.015 doi: 10.1016/j.nonrwa.2010.03.015
    [17] Y. K. Li, K. H. Zhao, Y. Ye, Multiple positive periodic solutions of n-species delay competition systems with harvesting terms, Nonlinear Anal. Real., 12 (2011), 1013–1022. https://doi.org/10.1016/j.nonrwa.2010.08.024 doi: 10.1016/j.nonrwa.2010.08.024
    [18] Y. G. Sun, S. H. Saker, Positive periodic solutions of discrete three-level food-chain model of Holling type II, Appl. Math. Comput., 180 (2006), 353–365. https://doi.org/10.1016/j.amc.2005.12.015 doi: 10.1016/j.amc.2005.12.015
    [19] X. H. Ding, C. Lu, Existence of positive periodic solution for ratio-dependent n-species difference system, Appl. Math. Model., 33 (2009), 2748–2756. https://doi.org/10.1016/j.apm.2008.08.008 doi: 10.1016/j.apm.2008.08.008
    [20] K. Chakraborty, M. Chakraborty, T. K. Kar, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay, Nonlinear Anal. Hyb., 5 (2011), 613–625. https://doi.org/10.1016/j.nahs.2011.05.004 doi: 10.1016/j.nahs.2011.05.004
    [21] Sajan, B. Dubey, S. K. Sasmal, Chaotic dynamics of a plankton-fish system with fear and its carry over effects in the presence of a discrete delay, Chaos Solitons Fractals, 160 (2022), 112245. https://doi.org/10.1016/j.chaos.2022.112245 doi: 10.1016/j.chaos.2022.112245
    [22] J. G. Wang, X. Y. Meng, L. Lv, J. Li, Stability and bifurcation analysis of a Beddington-DeAngelis prey-predator model with fear effect, prey refuge and harvesting, Int. J. Bifurcat. Chaos, 33 (2023), 2350013. https://dx.doi.org/10.1142/S021812742350013X doi: 10.1142/S021812742350013X
    [23] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer Science and Business Media, Netherland, 1992.
    [24] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
    [25] L. Fan, Z. K. Shi, S. Y. Tang, Critical values of stability and Hopf bifurcations for a delayed population model with delay-dependent parameters, Nonlinear Anal. Real., 11 (2010), 341–355. https://doi.org/10.1016/j.nonrwa.2008.11.016 doi: 10.1016/j.nonrwa.2008.11.016
    [26] J. B. Geng, Y. H. Xia, Almost periodic solutions of a nonlinear ecological model, Commun. Nonlinear. Sci., 16 (2011), 2575–2597. https://doi.org/10.1016/j.cnsns.2010.09.033 doi: 10.1016/j.cnsns.2010.09.033
    [27] J. C. Holmes, W. M. Bethel, Modification of intermediate host behaviour by parasites, Zoolog. J. Linnean Soc., 51 (1972), 123–149.
    [28] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, London, Oxford University Press, 1991.
    [29] E. Venturino, Epidemics in predator-prey models: disease in the predators, Math. Medic. Biolog., 19 (2002), 185–205. https://doi.org/10.1093/imammb/19.3.185 doi: 10.1093/imammb/19.3.185
    [30] M. Haque, A predator-prey model with disease in the predator species only, Nonlinear Anal. Real., 11 (2010), 2224–2236. https://doi.org/10.1016/j.nonrwa.2009.06.012 doi: 10.1016/j.nonrwa.2009.06.012
    [31] A. Pal, A. Bhattacharyya, A. Mondal, Qualitative analysis and control of predator switching on an eco-epidemiological model with prey refuge and harvesting, Result. Control. Opt., 7 (2022), 100099. https://doi.org/10.1016/j.rico.2022.100099 doi: 10.1016/j.rico.2022.100099
    [32] Y. Zhang, S. J. Gao, S. H. Chen, A stochastic predator-prey eco-epidemiological model with the fear effect, Appl. Math. Lett., 134 (2022), 108300. https://doi.org/10.1016/j.aml.2022.108300 doi: 10.1016/j.aml.2022.108300
    [33] Z. K. Guo, W. L. Li, L. H. Cheng, Z. Z. Li, Eco-epidemiological model with epidemic and response function in the predator, J. Lanzhou Univ., 45 (2009), 117–121. https://doi.org/10.1360/972009-1650 doi: 10.1360/972009-1650
    [34] Y. N. Zeng, P. Yu, Complex dynamics of predator-prey systems with {Allee Effect}, Int. J. Bifurcat. Chaos, 32 (2022), 2250203. https://doi.org/10.1142/S0218127422502030 doi: 10.1142/S0218127422502030
    [35] G. H. Lin, L. Wang, J. S. Yu, Basins of attraction and paired Hopf bifurcations for delay differential equations with bistable nonlinearity and delay-dependent coefficient, J. Differ. Equations, 354 (2023), 183–206. https://doi.org/10.1016/j.jde.2023.01.015 doi: 10.1016/j.jde.2023.01.015
    [36] R. Xu, S. H. Zhang, Modelling and analysis of a delayed predator-prey model with disease in the predator, Appl. Math. Comput., 224 (2013), 372–386. https://doi.org/10.1016/j.amc.2013.08.067 doi: 10.1016/j.amc.2013.08.067
    [37] A. K. Verma, S. Gupta, S. P. Singh, N. S. Nagpure, An update on mechanism of entry of white spot syndrome virus into shrimps, Fish Shel. Immun., 67 (2017), 141–146. https://doi.org/10.1016/j.fsi.2017.06.007 doi: 10.1016/j.fsi.2017.06.007
    [38] C. F. Lo, C. H. Ho, C. H. Chen, K. F. Liu, Y. L. Chiu, P. Y. Yeh, et al., Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs, Dis. Aquat. Organ., 30 (1997), 53–72. https://doi.org/10.3354/dao030053 doi: 10.3354/dao030053
    [39] A. P. Sangamaheswaran, Jeyaseelan, White spot viral disease in penaeid shrimp–A review, Naga, 24 (2001), 16–22.
    [40] K. Pada Das, K. Kundu, J. Chattopadhyay, A predator–prey mathematical model with both the populations affected by diseases, Ecol. Complex., 8 (2011), 68–80. https://doi.org/10.1016/j.ecocom.2010.04.001 doi: 10.1016/j.ecocom.2010.04.001
    [41] S. Durand, D. Lightner, R. Redman, J. Bonami, Ultrastructure and morphogenesis of white spot syndrome baculovirus, Dis. Aquat. Organ., 29 (1997), 205–211. https://doi.org/10.3354/dao029205 doi: 10.3354/dao029205
    [42] M. E. Megahed, A comparison of the severity of white spot disease in cultured shrimp (Fenneropenaeus indicus) at a farm level in Egypt. I-Molecular, histopathological and field observations, Egypt. J. Aquat. Biol. Fish., 23 (2019), 613–637. https://doi.org/10.21608/ejabf.2019.47301 doi: 10.21608/ejabf.2019.47301
    [43] W. Warapond, A. Chitchanok, K. Panmile, J. Wachira, Effect of dietary Pediococcus pentosaceus MR001 on intestinal bacterial diversity and white spot syndrome virus protection in Pacific white shrimp, Aquacult. Rep., 30 (2023), 101570. https://doi.org/10.1016/j.aqrep.2023.101570 doi: 10.1016/j.aqrep.2023.101570
    [44] X. H. Wang, C. X. Lu, F. X. Wan, M. M. Onchari, X. Yin, B. Tian, et al., Enhance the biocontrol efficiency of Bacillus velezensis Bs916 for white spot syndrome virus in crayfish by overproduction of cyclic lipopeptide locillomycin, Aquaculture, 573 (2023), 739596. https://doi.org/10.1016/j.aquaculture.2023.739596 doi: 10.1016/j.aquaculture.2023.739596
    [45] X. B. Gao, Q. H. Pan, M. F. He, Y. B. Kang, A predator-prey model with diseases in both prey and predator, Physica A, 392 (2013), 5898–5906. https://doi.org/10.1016/j.physa.2013.07.077 doi: 10.1016/j.physa.2013.07.077
    [46] X. D. Ding, Global attractivity of Nicholson's blowflies system with patch structure and multiple pairs of distinct time-varying delays, Int. J. Biomat., 16 (2023), 2250081. https://doi.org/10.1142/S1793524522500814 doi: 10.1142/S1793524522500814
    [47] X. Long, S. H. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett., 100 (2020), 106027. https://doi.org/10.1016/j.aml.2019.106027 doi: 10.1016/j.aml.2019.106027
    [48] S. Gao, K. Y. Peng, C. R. Zhang, Existence and global exponential stability of periodic solutions for feedback control complex dynamical networks with time-varying delays, Chaos Soliton. Fract., 152 (2021), 111483. https://doi.org/10.1016/j.chaos.2021.111483 doi: 10.1016/j.chaos.2021.111483
    [49] C. J. Xu, P. L. Li, Y. Guo, Global asymptotical stability of almost periodic solutions for a non-autonomous competing model with time-varying delays and feedback controls, J. Biolog. Dyn., 13 (2019), 407–421. https://doi.org/10.1080/17513758.2019.1610514 doi: 10.1080/17513758.2019.1610514
    [50] X. Y. Zhou, X. Y. Shi, X. Y. Song, Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay, J. Appl. Math. Comput., 196 (2008), 129–136. https://doi.org/10.1016/j.amc.2007.05.041 doi: 10.1016/j.amc.2007.05.041
    [51] X. P. Yan, C. H. Zhang, Hopf bifurcation in a delayed Lokta-Volterra predator-prey system, Nonlinear Anal. Real., 9 (2008), 114–127. https://doi.org/10.1016/j.nonrwa.2006.09.007 doi: 10.1016/j.nonrwa.2006.09.007
    [52] K. Li, J. J. Wei, Stability and Hopf bifurcation analysis of a prey-predator system with two delays, Chaos Soliton. Fract., 42 (2009), 2606–2613. https://doi.org/10.1016/j.chaos.2009.04.001 doi: 10.1016/j.chaos.2009.04.001
    [53] X. Lv, S. Lu, P. Yan, Existence and global attractivity of positive periodic solutions of Lotka-Volterra predator-prey systems with deviatin arguments, Nonlinear Anal. Real., 11 (2010), 574–583. https://doi.org/10.1016/j.nonrwa.2009.09.004 doi: 10.1016/j.nonrwa.2009.09.004
    [54] F. D. Chen, Z. Li, Y. J. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal. Real., 8 (2007), 680–687. https://doi.org/10.1016/j.nonrwa.2006.02.006 doi: 10.1016/j.nonrwa.2006.02.006
    [55] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, United States of America, 1995. http://dx.doi.org/10.1090/surv/041/03
    [56] J. K. Hale, S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
    [57] F. Montes de Oca, M. Vivas, Extinction in two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal. Real., 7 (2006), 1042–1047. https://doi.org/10.1016/j.nonrwa.2005.09.005 doi: 10.1016/j.nonrwa.2005.09.005
    [58] T. Yoshizawa, Stability Theory by Liapunov's Second Method, Mathematical Society of Japan, Tokyo, 1966.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1061) PDF downloads(53) Cited by(2)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog